JPH09283321A - 超伝導マグネット・アセンブリ - Google Patents
超伝導マグネット・アセンブリInfo
- Publication number
- JPH09283321A JPH09283321A JP8342298A JP34229896A JPH09283321A JP H09283321 A JPH09283321 A JP H09283321A JP 8342298 A JP8342298 A JP 8342298A JP 34229896 A JP34229896 A JP 34229896A JP H09283321 A JPH09283321 A JP H09283321A
- Authority
- JP
- Japan
- Prior art keywords
- helium
- cryocooler
- container
- coolant
- superconducting magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001307 helium Substances 0.000 claims abstract description 114
- 229910052734 helium Inorganic materials 0.000 claims abstract description 114
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 114
- 239000007788 liquid Substances 0.000 claims abstract description 48
- 239000002826 coolant Substances 0.000 claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 27
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 18
- 230000005855 radiation Effects 0.000 claims description 14
- 230000005484 gravity Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003384 imaging method Methods 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 12
- 230000009977 dual effect Effects 0.000 abstract description 4
- 238000012546 transfer Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- SWQJXJOGLNCZEY-NJFSPNSNSA-N helium-6 atom Chemical compound [6He] SWQJXJOGLNCZEY-NJFSPNSNSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/381—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
- G01R33/3815—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/17—Re-condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
伝導マグネット・アセンブリであって、改善された熱効
率を有する超伝導マグネット・アセンブリを提供する。 【解決手段】 ヘリウム容器(4)内のヘリウム供給源
(6)に液体ヘリウムを戻すためのヘリウム・ガス再凝
縮装置を含んでいるヘリウム冷却形超伝導マグネット・
アセンブリ(1)が、再凝縮器(32)を含んでいる。
再凝縮器(32)は、ヘリウム容器(4)内でヘリウム
供給源(6)より上方に配置されており、二重スリーブ
・アセンブリ内で低温冷却器(12)に接続されてい
る。これにより、マグネット・アセンブリ(1)の超伝
導動作中に、低温冷却器の保守のためにヘリウムから熱
絶縁して熱ジョイント(13、38;22、25)を遮
断することができ、又、ヘリウム・ガス(5)が再凝縮
して重力によってヘリウム供給源(6)に落下する。
Description
((magnetic resonance imaging)以下、MRIと表
す。)に適したヘリウムで冷却される超伝導マグネット
・アセンブリに関し、更に詳しくは、結果として生じる
ヘリウム・ガスを再凝縮して液体ヘリウムに戻すための
ヘリウム容器内の改善され、簡略化された手段に関す
る。
めて低温の環境に配置することにより、例えば低温保持
装置(クライオスタット)、又は液体ヘリウム等の液体
冷却剤(クライオジェン)を収容している圧力容器に封
入することにより、超伝導性にすることができる。極度
の低温によって、マグネット・コイルは、超伝導動作に
維持される。最初(ある期間の間、例えば10分間)、
マグネット・コイルに電源を接続してコイルに電流を導
入すると、電源を除いた後もコイルの電気抵抗が無いた
め、コイルに電流が流れ続ける。これにより、強い磁界
が維持される。超伝導マグネット・アセンブリは、MR
Iの分野で広範な用途がある。
給する必要性を最小にすることにかなりの研究開発の努
力が向けられてきた。液体ヘリウムを使用して低温にす
ることは広く実施されており、MRI動作に対しては満
足できるものであるが、全世界のMRI設備に液体ヘリ
ウムの間断の無い供給源を設けることは難しく、費用の
かかることであることがわかった。
く最小限にすることが望ましい。又、超伝導マグネット
・アセンブリに超伝導温度を与える際に液体ヘリウムが
沸騰することによる液体ヘリウム供給源に絶えず補給す
る必要性を最小限にするか、又は無くすことが望まし
い。通常行われていることは、沸騰しているヘリウムか
らヘリウム・ガスを取り出し、ヘリウム供給源に周期的
に補給することである。
・アセンブリに低温を与える際に生じるもう1つの問題
は、液体ヘリウムの必要な予備供給源を4°Kの(即
ち、絶対零度に近い)低温で貯蔵しておくことである。
そして関連する問題は、貯蔵器内の液体ヘリウムの一部
を超伝導マグネット内の液体ヘリウム供給源に周期的に
移すことである。
フ・ガスをリサイクルするために、種々の試みが行われ
てきた。これらの試みは完全には成功しなかった。ヘリ
ウム・ガスを再凝縮する努力の中で生じた1つの難しさ
は、再凝縮装置へのアクセス及び再凝縮装置の保守の難
しさであった。再凝縮装置の保守中に少しでも可能であ
れば、MRIを動作状態に維持することが極めて重要で
ある。装置の保守をするために超伝導動作を中断する
と、ランプダウン及びそれに続くランプアップ、並びに
均一な超伝導動作とするための超伝導マグネットのシム
作用により、かなりのダウン時間が生じて、超伝導マグ
ネット・アセンブリ内のヘリウム供給源のボイルオフが
生じ得るからである。このような手順は、必然的に時間
及び物資を要するものであり、それらの少なからずがダ
ウン時間の間に、高価なMRI装置を使用できないこと
に伴うものである。
年12月29日に出願され、本発明と同じ譲り受け人に
譲渡された本発明者による係属米国特許出願第08/3
66,187号の発明の名称「ヘリウム再凝縮超伝導マ
グネット」(Helium Supercondensing Superconducting
Magnet)に開示されている。低温冷却器(クライオク
ーラ)、排気された外側容器、及びヘリウム容器内の低
温ヘリウム・ガスの間の熱絶縁が欠如していることによ
り、保守時間が増加し、保守中の冷却剤の消費量が増加
すると共に、再凝縮接触表面及び低温冷却システムの一
方又は両方の汚染の危険性が生じた。従って、汚染を回
避し得ることが重要であると共に、超伝導マグネット・
アセンブリの超伝導動作を維持しつつ、且つ外側容器及
び内側ヘリウム容器における真空の健全性を損なうこと
なく低温冷却器を取り外して保守作業を行える再凝縮装
置を提供することが重要である。
する複雑でない改善された超伝導マグネット・アセンブ
リであって、改善された熱効率を有する超伝導マグネッ
ト・アセンブリを提供することにある。本発明のもう1
つの目的は、超伝導マグネットMRIシステムの動作を
中断することなく取り外し及び保守を行うことができる
低温冷却器を利用している改善された再凝縮ヘリウム冷
却形超伝導マグネット・アセンブリを提供することにあ
る。
却器が、超伝導マグネット内のヘリウム容器と、それを
取り囲んでいる真空容器との間の空間内に伸びており、
その低温端、即ち第2の段が、再凝縮器に熱的に接続さ
れている。再凝縮器は、液体ヘリウムより上方のヘリウ
ム容器内に配置されており、ヘリウム容器内のヘリウム
・ガスは、重力によって落下して液体ヘリウム貯蔵器に
直接戻る再凝縮されたヘリウムと直接接触する。
段は、ヘリウム容器と真空容器との間に挿入された放射
シールドに熱的に接続されており、この熱的な接続は、
低温冷却器の第1の段と放射遮シールドとの間を伸びて
いる可撓性のジョイントを介して行われている。ヘリウ
ムの再凝縮器は、複数の再凝縮表面を含んでいる。複数
の再凝縮表面は、共通の熱ヒート・シンクを介して低温
冷却器の第2の段と直接に熱的に接続されており、衝突
するヘリウム・ガスを再凝縮させて、液体ヘリウムに戻
す。低温冷却器は、マグネット内の二重スリーブ・アセ
ンブリ内を伸びており、超伝導マグネットを超伝導動作
に維持しながら保守のために低温冷却器を取り外すこと
ができるようにする。
・システム1が、真空容器2によって取り囲まれている
ヘリウム容器4を含んでいる。ヘリウム容器と真空容器
との間に、熱絶縁性の放射シールド10が挿入されてい
る。4K低温冷却器12(これは、2段のギフォード−
マホン(Gifford-Mahon)低温冷却器であってもよ
い。)が、スリーブ18、21、17及び20内で真空
容器2を通って伸びており、真空容器2内の真空を破壊
することなく、低温冷却器をスリーブ内に選択的に位置
決めしたり、又は取り除いたりすることができる。第1
の段の可動スリーブ18及び固定スリーブ17が、低温
冷却器12の第1の段14を取り囲んでおり、第2の段
の可動スリーブ21及び固定スリーブ20が、低温冷却
器の第2の段16を取り囲んでいる。低温冷却器の内側
の可動スリーブ18、13、21及び25、並びに固定
スリーブ17、38、20及び22は、真空容器2の外
側に伸びており、カラー19を通過してスリーブ・フラ
ンジ15に至っている。スリーブ・フランジ15は真空
容器2から低温冷却器12を絶縁している。低温冷却器
12は、マッチング・トランジション・フランジ46で
低温冷却器スリーブ18、21、17及び20内に据え
付けられており、例えば参照番号49のようなボルト及
び座金でスリーブ・フランジ15に固定されている。
ーション14は、第1の段の可動スリーブ、即ちヒート
・シンク13と、固定スリーブのヒート・ステーショ
ン、即ちヒート・ステーション38とに接触しており、
ヒート・シンク13及びヒート・ステーション38は、
可撓性の銅組み紐(ブレード)熱カップリング(結合
部)34及び36を介して絶縁放射シールド10に熱的
に接続されている。この熱的な接続は、放射シールド上
の銅熱ブロック40を介して行われている。これによ
り、放射シールドは、約50°Kの温度に冷却されて、
ヘリウム容器4と真空容器2との間の熱絶縁が行われ
る。可撓性のカップリング34及び36は又、低温冷却
器12と放射シールド10との間の機械的、即ち振動の
絶縁を行っている。
の底部、即ち内側部分にある固定スリーブの銅の第2の
段のヒート・ステーション、即ちヒート・シンク22
は、第2の段の可動スリーブ21の底部表面25と接触
していると共に、低温冷却器12の第2の段のヒート・
ステーション16に至っており、、ヒート・シンク22
に4Kの温度が効率よく与えられる。
2は、ヘリウム容器4内に伸びていると共に、再凝縮器
ヒート・シンク30に熱的に接続されている。再凝縮器
32は、再凝縮器のヒート・シンクと熱的に接触してい
る複数の実質的に平行な伝熱表面、即ちフィン42を含
んでいる。再凝縮器のヒート・シンクは、ヘリウム容器
4より上方に配置されている第2の段のヒート・シンク
22に可撓性の銅組み紐線23、24及び26を介して
熱的に接続されている。
給する際の液体ヘリウムの沸騰により、冷却剤、即ち液
体ヘリウムの供給源6の表面レベル7より上方に形成さ
れるヘリウム・ガス5は、ヘリウム容器4内の伝熱板4
2と直接接触しており、低温冷却器12の第2の段16
への前述した熱接続により冷却されて、4Kに戻る。ヘ
リウム・ガス5は、伝熱板42上で再凝縮して液体ヘリ
ウムとなり、重力によって落下してヘリウム容器内の液
体ヘリウム供給源に戻る。
の動作の間に、液体ヘリウム6はMRIの分野では周知
のようにして、全体が参照番号50で表されていると共
にヘリウム容器4内に配置されている超伝導マグネット
・コイル・アセンブリを冷却しており、この冷却全体が
矢印52で表されている。その結果、液体ヘリウム6は
沸騰して、液体ヘリウムの表面レベル7より上方にヘリ
ウム・ガス5が発生する。しかしながら、ヘリウム・ガ
ス5は、多くのMRI装置において通常行われているよ
うに大気に排出される代わりに、ヘリウム容器4内のヘ
リウム再凝縮伝熱板、即ち表面42と接触する。ヘリウ
ム再凝縮伝熱板、即ち表面42は、低温冷却器12の第
2の段16によって4Kの温度に維持される。これによ
り、ヘリウム・ガスは再凝縮して液体ヘリウムに戻り、
この液体ヘリウムは、重力によって落下して、液体ヘリ
ウム供給源6へ直接戻る。このようにして、ヘリウム・
ガスは再凝縮して、液体ヘリウムとして液体ヘリウム供
給源に戻り、しかも加熱又はヘリウムの流れを妨害する
おそれのある接続が最小限になる。
縁するために、低温冷却器12の第1の段14による放
射シールド10の冷却の他に、放射シールド10と真空
容器2との間の空間に超熱絶縁体35が設けられてい
る。超熱絶縁体35は、超伝導マグネット産業で使用さ
れているアルミニウムで処理されたマイラ(Myler)多
層絶縁体である。
は、それぞれのジョイント(接合部)で銀はんだ付けさ
れており、マグネット・システム1の正規の動作中に、
真空内の低温冷却器12の第1の段及び第2の段の周り
に可動スリーブを形成している。スリーブ17、38、
20及び22を含んでいる外側の固定スリーブ・アセン
ブリは、超伝導マグネット1を取り囲んでいる大気、即
ち循環する空気45から真空容器2の内部を分離するも
う1つの空洞を形成している。これにより、ねじ山が切
られた棒47でナット48を緩めるときに伸縮自在なベ
ローズ28を使用して、真空の健全性を破ることなく低
温冷却器12及び可動スリーブを一緒に機械的に移動さ
せて固定スリーブから離すことにより、低温冷却器12
の第1の段14の周りで熱ジョイント13及び38を分
割すると共に、低温冷却器12の第2の段の周りで熱ジ
ョイント25及び22を分割することが可能になる。こ
れにより、ヒート・シンク13は参照番号38から及び
ヒート・シンク22は参照番号25から、それらの間の
真空空間によって熱絶縁され、その結果、超伝導マグネ
ット1の超伝導動作を損なうおそれのあるヘリウム容器
4の過大な熱漏れを生じることなく、低温冷却器12を
取り外して、保守作業を行うことができる。
替え部品が入手できて、再組み立て、並びに可動スリー
ブ15、18、13、21及び25への挿入の用意がで
きたときに、ヒート・シンク又はヒート・ステーション
13及び25を室温まで暖め、拭いて、清浄にすること
ができる。そして全体を参照番号56で表した外部のヘ
リウム・ガス供給源からヒート・シンク上に室温のヘリ
ウム・ガス54を吹き付けてヒート・シンクを暖めた後
に、どんな凝縮体も取り除くことができる。
25は、二重の全体的に同心状のスリーブ・アセンブリ
によってヘリウム6から熱絶縁されており、低温冷却器
12の再挿入及び再組み立て時にジョイント13及び1
4、並びにジョイント25及び16での良好な熱接続を
妨害するおそれのある低温冷却器12の取り外し時のヒ
ート・シンク13及び25の着氷を防止する。このよう
にして、液体ヘリウム6のボイルオフが無いマグネット
1の継続的な超伝導動作、着氷の防止、及び低温冷却器
12の再挿入の前にヒート・シンク13及び25を清浄
にする機能が可能となる。
このようにして、真空容器2とヘリウム容器4との間に
シールされたチャンバ、即ち空洞44を形成しており、
分離されたジョイント13とジョイント38との間及び
ジョイント22とジョイント25との間の真空を維持し
つつ、且つMRIマグネット・システム1の超伝導動作
を中断することなく、低温冷却器アセンブリ12をスリ
ーブから取り外すことができる。構成要素25、22、
23、24、26及び30を介するヘリウム容器4内の
再凝縮器32との直接の熱的接触による大量の液体ヘリ
ウム6のボイルオフを生じるおそれのあるMRIマグネ
ット・システムの超伝導動作を中断することなく、MR
Iマグネット・システム1の外部での低温冷却器12の
保守作業及び低温冷却器の交換が行われる。MRI動作
が中断すると、装置のダウン時間がかなり長くなって、
ダウン時間の間に装置を使用することができなくなり、
その後、液体ヘリウム供給源6に補給し、マグネット・
システム1を超伝導動作までランプアップすると共に、
マグネット・システム1を所要の磁界の均一度となるよ
うにシム作用を施さなければならず、これらはすべて、
かなりの時間及び著しい費用を必要とする。これらの時
間及び費用が、本発明を使用することにより回避され
る。このように本発明によれば、定期的な所要の保守及
び交換のための低温冷却器12の取り外しが容易になる
と共にその取り外し時間が容易に得られると同時に、熱
ジョイントの改善された接触、及びヘリウム容器4内に
直接配置されている再凝縮器32を介したヘリウムの再
凝縮が得られる。
を清浄にして、低温冷却器12を再取り付けした後に、
スリーブ・フランジ15が低温冷却器12を定位置に固
定することにより、低温冷却器とヒート・シンクとの間
に良好な熱表面接触が得られる。低温冷却器12の以後
の動作により、伝熱板42はほぼ4Kに冷却されて、低
温冷却器の保守又は交換の時間の間に蓄積されたヘリウ
ム・ガスを含んだヘリウム・ガス40の再凝縮が再開さ
れる。
12を使用しているヘリウム容器4内に再凝縮器32の
再凝縮フィン42を配置することにより、マグネット1
の正規の超伝導動作の間のボイルオフによるヘリウムの
喪失を無くすことができると共に、低温冷却器の保守及
び交換の間のヘリウムのボイルオフの量を減少させる
か、又は無くすこともできる。更に、超伝導マグネット
1の内部構成要素を大気45にさらすことなく、そして
保守作業中にシステムを汚染する危険性を低減させて、
低温冷却器12を低温冷却器の可動スリーブ18及び2
1から完全なシステムとして取り外すことができる。
て説明してきたが、本発明の要旨から逸脱することな
く、構成の細部、部品の配置及び組み合わせ、並びに使
用される材料の形式に多くの変更を加え得ることが理解
されるはずである。
グネットの断面図である。
Claims (10)
- 【請求項1】 冷却剤ガス再凝縮装置を含んでおり、磁
気共鳴イメージングに適した液体冷却剤冷却形の超伝導
マグネット・アセンブリ(1)であって、 超伝導動作のために前記超伝導マグネット・アセンブリ
に低温を供給して冷却剤ガスを形成するように、液体冷
却剤貯蔵器(6)を収容するための液体冷却剤容器
(4)と、 該冷却剤容器を取り囲んでいると共に、該冷却剤容器か
ら隔設されている閉じた真空容器(2)と、 該真空容器の外側の大気(45)から前記再凝縮装置を
熱的に絶縁する二重壁の空洞を前記閉じた真空容器内に
形成するように、前記ヘリウム容器と前記真空容器との
間の空間内に延在している少なくとも1つの選択的に分
離可能な熱ジョイント(13、38;22、25)を含
んでいる二重壁の低温冷却器スリーブ・アセンブリであ
って、前記壁は、固定スリーブ(17、38、20、2
2)と、可動スリーブ(18、13、21、25)とを
形成しており、該スリーブの移動が、前記選択的に分離
可能な熱ジョイントを遮断している、低温冷却器スリー
ブ・アセンブリと、 該スリーブ・アセンブリに設けられた前記空洞内の低温
冷却器(12)と、 前記冷却剤容器内に配置されていると共に、前記低温冷
却器に熱的に接続されている(30、23、24、2
6、22)冷却剤再凝縮器(32)であって、該冷却剤
再凝縮器は、前記冷却剤ガスを再凝縮して液体冷却剤と
し、前記液体冷却剤貯蔵器に戻すように十分に低温にさ
れており、前記空洞は、前記真空容器の一部を通って延
在しており、前記選択的に分離可能な熱ジョイントは、
前記マグネット・アセンブリの動作の間に、前記低温冷
却器を前記再凝縮器に熱的に接続している、冷却剤再凝
縮器(32)と、 前記選択的に分離可能なジョイントを含んでいる前記熱
ジョイントを遮断すると共に、前記再凝縮器と可動な前
記スリーブとの間の熱接続を開放する手段を含んでお
り、前記低温冷却器を前記空洞から選択的に取り外すた
めに前記マグネット・アセンブリの外側に選択的に開放
可能な手段(46、48)とを備えた超伝導マグネット
・アセンブリ(1)。 - 【請求項2】 前記再凝縮器のチャンバは、前記低温冷
却器が前記空洞内に位置決めされたときに前記低温冷却
器に熱的に接続されている複数の再凝縮表面(42)を
含んでいる請求項1に記載の超伝導マグネット・アセン
ブリ。 - 【請求項3】 前記低温冷却器を前記空洞内の前記超伝
導マグネットに取り外し可能なように固定すると共に、
前記真空容器内の真空を維持しつつ前記低温冷却器の選
択的な取り外しを可能にする結合手段(48)が設けら
れており、更にベローズ(28)を含んでおり、該ベロ
ーズの膨張が、前記二重壁のスリーブ・アセンブリの健
全性を維持しつつ前記選択的に分離可能な熱ジョイント
の遮断を可能にしている請求項2に記載の超伝導マグネ
ット・アセンブリ。 - 【請求項4】 前記ヘリウム容器と前記真空容器との間
の前記空間に放射シールド(10)を含んでおり、前記
低温冷却器は、2段低温冷却器であり、該2段低温冷却
器の第1の段(14)は、前記放射シールドに熱的に接
続されており、前記2段低温冷却器の第2の段(16)
は、冷却剤ガスの前記形成を最小にするように前記再凝
縮器に接続可能である請求項3に記載の超伝導マグネッ
ト・アセンブリ。 - 【請求項5】 前記液体冷却剤は、前記超伝導マグネッ
トの動作の間に前記冷却剤容器を部分的に満たしてお
り、前記再凝縮器は、再凝縮された前記冷却剤が重力に
より落下して前記液体冷却剤貯蔵器に戻れるように、前
記冷却剤容器内で前記液体冷却剤の表面レベル(7)よ
り上方に配置されている請求項2に記載の超伝導マグネ
ット・アセンブリ。 - 【請求項6】 前記液体冷却剤は、前記超伝導マグネッ
トの動作の間に前記冷却剤容器を部分的に満たしてお
り、前記冷却剤ガスは、前記再凝縮器の領域内で前記液
体冷却剤の表面レベルより上方に上昇している請求項4
に記載の超伝導マグネット・アセンブリ。 - 【請求項7】 ヘリウム・ガス再凝縮装置(32)を含
んでおり、磁気共鳴イメージングに適したヘリウム冷却
形の超伝導マグネット・アセンブリ(1)であって、 超伝導動作のために前記磁気共鳴イメージング用のマグ
ネット・アセンブリに低温を供給する液体ヘリウム貯蔵
器(6)を収容するためのヘリウム容器(4)と、 該ヘリウム容器を取り囲んでいると共に、該ヘリウム容
器から隔設されている真空容器(2)と、 該真空容器内に延在している低温冷却器(12)と、 前記ヘリウム容器内で前記液体ヘリウム貯蔵器より上方
に配置されていると共に、前記低温冷却器に熱的に接続
されている(30、23、24、26、22)再凝縮器
であって、前記ヘリウム・ガスを再凝縮して液体とする
ように十分に低温にされている再凝縮器と、 前記真空容器内の真空を維持しつつ前記低温冷却器の挿
入及び取り外しを行うために前記真空容器の外側に選択
的に開放可能な部分(46)を有している前記真空容器
を通っている実質的に閉じた二重壁の空洞(17、3
8、20、22及び18、13、21、25)と、 前記外側から離れた前記空洞内のヒート・シンク(2
2)であって、該ヒート・シンクは、前記真空容器の内
側で前記再凝縮器に熱的に接続されていると共に、前記
低温冷却器が前記空洞内に位置しているときに前記低温
冷却器の低温端(25)と直接熱的に接触するように配
置されており、前記二重壁の空洞は、前記低温冷却器を
取り外したときに遮断される該二重壁の空洞内の熱ジョ
イント(13、38;22、25)により前記マグネッ
ト・アセンブリの外側の大気(45)及び周囲温度から
前記ヘリウム容器を熱的に絶縁している、ヒート・シン
ク(22)とを備えた超伝導マグネット・アセンブリ。 - 【請求項8】 前記ヘリウム容器と前記真空容器との間
に放射シールド(10)を含んでおり、前記低温冷却器
は、2段低温冷却器であり、該2段低温冷却器の第1の
段(14)は、可撓性の熱組み紐(34、36)により
前記放射シールドに熱的に接続されており、前記2段低
温冷却器の第2の段(16)は、前記ヒート・シンクを
介して前記ヘリウム再凝縮器に熱的に接続されている請
求項6に記載の超伝導マグネット・アセンブリ。 - 【請求項9】 前記再凝縮器は、複数の再凝縮表面(4
2)を含んでいる請求項7に記載の超伝導マグネット・
アセンブリ。 - 【請求項10】 前記液体ヘリウムは、前記超伝導マグ
ネットの動作の間に前記ヘリウム容器を部分的に満たし
ており、前記再凝縮器は、前記ヘリウム容器内で前記液
体ヘリウムの表面レベル(7)より上方に配置されてい
る請求項6に記載の超伝導マグネット・アセンブリ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/580359 | 1995-12-28 | ||
US08/580,359 US5613367A (en) | 1995-12-28 | 1995-12-28 | Cryogen recondensing superconducting magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09283321A true JPH09283321A (ja) | 1997-10-31 |
JP3824283B2 JP3824283B2 (ja) | 2006-09-20 |
Family
ID=24320756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34229896A Expired - Fee Related JP3824283B2 (ja) | 1995-12-28 | 1996-12-24 | 超伝導マグネット・アセンブリ |
Country Status (3)
Country | Link |
---|---|
US (1) | US5613367A (ja) |
EP (1) | EP0781955A3 (ja) |
JP (1) | JP3824283B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005210015A (ja) * | 2004-01-26 | 2005-08-04 | Kobe Steel Ltd | 極低温装置 |
US7155930B2 (en) | 2003-03-11 | 2007-01-02 | Mayekawa Mfg. Co., Ltd. | Apparatus for producing slush nitrogen and method for producing the same |
CN113375359A (zh) * | 2020-02-25 | 2021-09-10 | 住友重机械工业株式会社 | 超低温制冷机及超低温系统 |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5864273A (en) * | 1997-03-12 | 1999-01-26 | General Electric Company | Cryocooler vibration isolation and noise reduction in magnetic resonance imaging |
US5936499A (en) * | 1998-02-18 | 1999-08-10 | General Electric Company | Pressure control system for zero boiloff superconducting magnet |
US6029458A (en) * | 1998-05-07 | 2000-02-29 | Eckels; Phillip William | Helium recondensing magnetic resonance imager superconducting shield |
US6038867A (en) * | 1998-07-31 | 2000-03-21 | General Electric Company | Wide multilayer insulating blankets for zero boiloff superconducting magnet |
JP2000161827A (ja) | 1998-11-27 | 2000-06-16 | Sumitomo Electric Ind Ltd | 冷媒容器及びその製造方法 |
US6333775B1 (en) | 1999-01-13 | 2001-12-25 | Euv Llc | Extreme-UV lithography vacuum chamber zone seal |
US6144274A (en) * | 1999-11-16 | 2000-11-07 | General Electric Company | Magnetic resonance imaging cryocooler positioning mechanism |
JP4520676B2 (ja) * | 2001-08-31 | 2010-08-11 | アイシン精機株式会社 | 冷却装置 |
US6484516B1 (en) | 2001-12-07 | 2002-11-26 | Air Products And Chemicals, Inc. | Method and system for cryogenic refrigeration |
AU2002353408A1 (en) * | 2001-12-21 | 2003-07-09 | Koninklijke Philips Electronics N.V. | Cooling of a mri system |
GB2395252B (en) | 2002-11-07 | 2005-12-14 | Oxford Magnet Tech | A pulse tube refrigerator |
JP4040626B2 (ja) * | 2002-12-16 | 2008-01-30 | 住友重機械工業株式会社 | 冷凍機の取付方法及び装置 |
US6807812B2 (en) * | 2003-03-19 | 2004-10-26 | Ge Medical Systems Global Technology Company, Llc | Pulse tube cryocooler system for magnetic resonance superconducting magnets |
US6923009B2 (en) * | 2003-07-03 | 2005-08-02 | Ge Medical Systems Global Technology, Llc | Pre-cooler for reducing cryogen consumption |
JP5248854B2 (ja) * | 2004-04-01 | 2013-07-31 | リポサイエンス,インコーポレイテッド | 臨床nmr体外診断解析器の作動方法及び臨床nmr体外診断解析器 |
GB0411607D0 (en) * | 2004-05-25 | 2004-06-30 | Oxford Magnet Tech | Recondenser interface |
JP4925826B2 (ja) * | 2004-07-02 | 2012-05-09 | 株式会社日立メディコ | 磁気共鳴イメージング装置及びその保守方法 |
DE102004034729B4 (de) * | 2004-07-17 | 2006-12-07 | Bruker Biospin Ag | Kryostatanordnung mit Kryokühler und Gasspaltwärmeübertrager |
DE102004037173B3 (de) * | 2004-07-30 | 2005-12-15 | Bruker Biospin Ag | Vorrichtung zur kryogenverlustfreien Kühlung einer Kryostatanordnung |
DE102004037172B4 (de) * | 2004-07-30 | 2006-08-24 | Bruker Biospin Ag | Kryostatanordnung |
GB0424713D0 (en) * | 2004-11-09 | 2004-12-08 | Council Cent Lab Res Councils | Cryostat |
GB0424725D0 (en) * | 2004-11-09 | 2004-12-08 | Oxford Instr Superconductivity | Cryostat assembly |
DE102005002011B3 (de) * | 2005-01-15 | 2006-04-20 | Bruker Biospin Ag | Quenchverschluß |
US7497086B2 (en) * | 2005-03-23 | 2009-03-03 | Siemens Magnet Technology Ltd. | Method and apparatus for maintaining apparatus at cryogenic temperatures over an extended period without active refrigeration |
DE102005029151B4 (de) * | 2005-06-23 | 2008-08-07 | Bruker Biospin Ag | Kryostatanordnung mit Kryokühler |
US20070101742A1 (en) * | 2005-11-10 | 2007-05-10 | Laskaris Evangelos T | A cooling system for superconducting magnets |
GB2453734B (en) * | 2007-10-16 | 2009-10-28 | Siemens Magnet Technology Ltd | Method for cooling superconductive joints |
CN102099640B (zh) * | 2008-05-21 | 2013-03-27 | 布鲁克机械公司 | 线性驱动低温冷冻机 |
US20090293505A1 (en) * | 2008-05-29 | 2009-12-03 | Cryomech, Inc. | Low vibration liquid helium cryostat |
US20090301129A1 (en) * | 2008-06-08 | 2009-12-10 | Wang Nmr Inc. | Helium and nitrogen reliquefying apparatus |
JP2012503323A (ja) * | 2008-09-22 | 2012-02-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 磁気共鳴システムの液体ヘリウムに対するネック除氷装置 |
US8746008B1 (en) | 2009-03-29 | 2014-06-10 | Montana Instruments Corporation | Low vibration cryocooled system for low temperature microscopy and spectroscopy applications |
US9234691B2 (en) * | 2010-03-11 | 2016-01-12 | Quantum Design International, Inc. | Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas |
US8973378B2 (en) * | 2010-05-06 | 2015-03-10 | General Electric Company | System and method for removing heat generated by a heat sink of magnetic resonance imaging system |
CN103077797B (zh) * | 2013-01-06 | 2016-03-30 | 中国科学院电工研究所 | 用于头部成像的超导磁体系统 |
JP6276033B2 (ja) * | 2013-01-15 | 2018-02-07 | 株式会社神戸製鋼所 | 極低温装置及び被冷却体に対する冷凍機の接続及び切り離し方法 |
CN109612193B (zh) * | 2013-04-24 | 2021-04-02 | 西门子医疗有限公司 | 包括两级低温制冷机及相关联的安装装置的组件 |
DE102013213020A1 (de) | 2013-07-03 | 2015-01-08 | Bruker Biospin Ag | Verfahren zum Umrüsten einer Kryostatanordnung auf Umlaufkühlung |
GB201400201D0 (en) * | 2014-01-07 | 2014-02-26 | Siemens Plc | Exchange of a cold head in a superconducting magnet system |
KR101630616B1 (ko) * | 2014-10-14 | 2016-06-15 | 삼성전자 주식회사 | 자기공명영상장치 |
US10775285B1 (en) | 2016-03-11 | 2020-09-15 | Montana Intruments Corporation | Instrumental analysis systems and methods |
US11125663B1 (en) | 2016-03-11 | 2021-09-21 | Montana Instruments Corporation | Cryogenic systems and methods |
US10451529B2 (en) | 2016-03-11 | 2019-10-22 | Montana Instruments Corporation | Cryogenic systems and methods |
JP6602716B2 (ja) * | 2016-03-30 | 2019-11-06 | ジャパンスーパーコンダクタテクノロジー株式会社 | 超電導マグネット装置 |
JP6546115B2 (ja) * | 2016-03-30 | 2019-07-17 | ジャパンスーパーコンダクタテクノロジー株式会社 | 超電導マグネット装置 |
WO2020076988A1 (en) | 2018-10-09 | 2020-04-16 | Montana Instruments Corporation | Cryocooler assemblies and methods |
US20230010217A1 (en) * | 2020-03-04 | 2023-01-12 | Mitsubishi Electric Corporation | Superconducting electromagnet device |
US11956924B1 (en) | 2020-08-10 | 2024-04-09 | Montana Instruments Corporation | Quantum processing circuitry cooling systems and methods |
JP2022161154A (ja) * | 2021-04-08 | 2022-10-21 | 住友重機械工業株式会社 | 超伝導磁石装置およびサイクロトロン |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270461U (ja) * | 1985-10-21 | 1987-05-02 | ||
JPS62258977A (ja) * | 1986-05-02 | 1987-11-11 | 株式会社東芝 | 極低温装置 |
JPS6375765U (ja) * | 1986-11-07 | 1988-05-20 | ||
JPH0286106A (ja) * | 1988-07-05 | 1990-03-27 | General Electric Co <Ge> | 電流導体を極低温冷却器に接続する熱継手 |
JPH0394483A (ja) * | 1989-06-21 | 1991-04-19 | Hitachi Ltd | 冷却手段付きクライオスタット |
JPH04306472A (ja) * | 1991-04-01 | 1992-10-29 | Hitachi Ltd | 液化冷凍機付きクライオスタット |
JPH05275231A (ja) * | 1992-03-27 | 1993-10-22 | Mitsubishi Electric Corp | 超電導マグネットおよびその組み立て方法 |
JPH05332628A (ja) * | 1992-06-03 | 1993-12-14 | Daikin Ind Ltd | 冷凍機の熱伝達装置 |
WO1995002284A1 (en) * | 1993-07-09 | 1995-01-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Device and antenna for cordless radio communication |
JPH07283022A (ja) * | 1994-04-15 | 1995-10-27 | Mitsubishi Electric Corp | 超電導マグネット並びに該マグネット用の蓄冷型冷凍機 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4223540A (en) * | 1979-03-02 | 1980-09-23 | Air Products And Chemicals, Inc. | Dewar and removable refrigerator for maintaining liquefied gas inventory |
DE3344046A1 (de) * | 1983-12-06 | 1985-06-20 | Brown, Boveri & Cie Ag, 6800 Mannheim | Kuehlsystem fuer indirekt gekuehlte supraleitende magnete |
JPS62185383A (ja) * | 1986-02-12 | 1987-08-13 | Toshiba Corp | 極低温容器 |
JPH0730963B2 (ja) * | 1986-05-06 | 1995-04-10 | 株式会社東芝 | ヘリウム冷却装置 |
JPH0629635Y2 (ja) * | 1986-09-09 | 1994-08-10 | 古河電気工業株式会社 | 低温保持装置 |
JPS63129280A (ja) * | 1986-11-18 | 1988-06-01 | 株式会社東芝 | ヘリウム冷却装置 |
EP0275114A3 (en) * | 1987-01-16 | 1990-05-30 | Pieter Wynand Le Roux Murray | Cryogenic apparatus and cryogenic methods |
US4796433A (en) * | 1988-01-06 | 1989-01-10 | Helix Technology Corporation | Remote recondenser with intermediate temperature heat sink |
US5092130A (en) * | 1988-11-09 | 1992-03-03 | Mitsubishi Denki Kabushiki Kaisha | Multi-stage cold accumulation type refrigerator and cooling device including the same |
JPH0334404A (ja) * | 1989-06-30 | 1991-02-14 | Mitsubishi Electric Corp | 極低温冷凍装置 |
US4986078A (en) * | 1989-08-17 | 1991-01-22 | General Electric Company | Refrigerated MR magnet support system |
US5111665A (en) * | 1991-02-19 | 1992-05-12 | General Electric Company | Redundant cryorefrigerator system for a refrigerated superconductive magnet |
US5442928A (en) * | 1994-08-05 | 1995-08-22 | General Electric | Hybrid cooling system for a superconducting magnet |
DE69523883T2 (de) * | 1994-12-29 | 2002-08-29 | General Electric Co., Schenectady | Supraleitender Magnet mit Helium-Rekondensierung |
US5563566A (en) * | 1995-11-13 | 1996-10-08 | General Electric Company | Cryogen-cooled open MRI superconductive magnet |
-
1995
- 1995-12-28 US US08/580,359 patent/US5613367A/en not_active Expired - Fee Related
-
1996
- 1996-12-17 EP EP96309192A patent/EP0781955A3/en not_active Withdrawn
- 1996-12-24 JP JP34229896A patent/JP3824283B2/ja not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270461U (ja) * | 1985-10-21 | 1987-05-02 | ||
JPS62258977A (ja) * | 1986-05-02 | 1987-11-11 | 株式会社東芝 | 極低温装置 |
JPS6375765U (ja) * | 1986-11-07 | 1988-05-20 | ||
JPH0286106A (ja) * | 1988-07-05 | 1990-03-27 | General Electric Co <Ge> | 電流導体を極低温冷却器に接続する熱継手 |
JPH0394483A (ja) * | 1989-06-21 | 1991-04-19 | Hitachi Ltd | 冷却手段付きクライオスタット |
JPH04306472A (ja) * | 1991-04-01 | 1992-10-29 | Hitachi Ltd | 液化冷凍機付きクライオスタット |
JPH05275231A (ja) * | 1992-03-27 | 1993-10-22 | Mitsubishi Electric Corp | 超電導マグネットおよびその組み立て方法 |
JPH05332628A (ja) * | 1992-06-03 | 1993-12-14 | Daikin Ind Ltd | 冷凍機の熱伝達装置 |
WO1995002284A1 (en) * | 1993-07-09 | 1995-01-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Device and antenna for cordless radio communication |
JPH07283022A (ja) * | 1994-04-15 | 1995-10-27 | Mitsubishi Electric Corp | 超電導マグネット並びに該マグネット用の蓄冷型冷凍機 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7155930B2 (en) | 2003-03-11 | 2007-01-02 | Mayekawa Mfg. Co., Ltd. | Apparatus for producing slush nitrogen and method for producing the same |
US7370481B2 (en) | 2003-03-11 | 2008-05-13 | Mayekawa Mfg. Co., Ltd. | Apparatus and method for cooling super conductive body |
JP2005210015A (ja) * | 2004-01-26 | 2005-08-04 | Kobe Steel Ltd | 極低温装置 |
JP4494027B2 (ja) * | 2004-01-26 | 2010-06-30 | 株式会社神戸製鋼所 | 極低温装置 |
CN113375359A (zh) * | 2020-02-25 | 2021-09-10 | 住友重机械工业株式会社 | 超低温制冷机及超低温系统 |
JP2021134951A (ja) * | 2020-02-25 | 2021-09-13 | 住友重機械工業株式会社 | 極低温冷凍機および極低温システム |
CN113375359B (zh) * | 2020-02-25 | 2022-11-22 | 住友重机械工业株式会社 | 超低温制冷机及超低温系统 |
Also Published As
Publication number | Publication date |
---|---|
EP0781955A3 (en) | 1998-10-21 |
US5613367A (en) | 1997-03-25 |
EP0781955A2 (en) | 1997-07-02 |
JP3824283B2 (ja) | 2006-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3824283B2 (ja) | 超伝導マグネット・アセンブリ | |
EP0392771B1 (en) | Cryogenic precooler for superconductive magnet | |
EP0720024B1 (en) | Helium recondensing superconducting magnet | |
JPH0629635Y2 (ja) | 低温保持装置 | |
US5782095A (en) | Cryogen recondensing superconducting magnet | |
KR101422231B1 (ko) | 고온 연결 부재 및 저온 연결 부재를 구비하고 상기 연결 부재들에 연결되는 열교환 튜브를 구비하는 냉각 설비 | |
US20070051116A1 (en) | Device for loss-free cryogen cooling of a cryostat configuration | |
US20070089432A1 (en) | Cryostat configuration with cryocooler | |
US20060021355A1 (en) | Cryostat configuration | |
US20080115510A1 (en) | Cryostats including current leads for electronically powered equipment | |
US9958520B2 (en) | Introducing an NMR apparatus comprising cooled probe components via a vacuum lock | |
US5235818A (en) | Cryostat | |
US9732907B2 (en) | Cooling apparatus comprising a thermal interface and method for recondensing a cryogen gas | |
US7500366B2 (en) | Refrigerator with magnetic shield | |
US5113165A (en) | Superconductive magnet with thermal diode | |
JPH0743178B2 (ja) | 二段熱カツプリング | |
US5176003A (en) | Cryostat | |
US20080271467A1 (en) | Refrigerator Interface for Cryostat | |
US8448455B2 (en) | Method for cooling a cryostat configuration during transport and cryostat configuration with transport cooler unit | |
JP5594934B2 (ja) | クライオスタット用の冷凍装置インターフェース | |
US4926646A (en) | Cryogenic precooler for superconductive magnets | |
JP3843186B2 (ja) | 極低温冷凍機のオーバーホール装置およびオーバーホ−ル方法 | |
WO2005116515A1 (en) | Cooling apparatus comprising a thermal interface and method for recondensing a cryogen gas | |
US11959845B1 (en) | Cryogenic analysis systems and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050816 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060127 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060626 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |