JPH09246599A - Apparatus for measuring electrooptic characteristic - Google Patents

Apparatus for measuring electrooptic characteristic

Info

Publication number
JPH09246599A
JPH09246599A JP5142696A JP5142696A JPH09246599A JP H09246599 A JPH09246599 A JP H09246599A JP 5142696 A JP5142696 A JP 5142696A JP 5142696 A JP5142696 A JP 5142696A JP H09246599 A JPH09246599 A JP H09246599A
Authority
JP
Japan
Prior art keywords
measured
semiconductor
semiconductor element
contact
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5142696A
Other languages
Japanese (ja)
Other versions
JP3133938B2 (en
Inventor
Toshitaka Tamura
敏隆 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5142696A priority Critical patent/JP3133938B2/en
Publication of JPH09246599A publication Critical patent/JPH09246599A/en
Application granted granted Critical
Publication of JP3133938B2 publication Critical patent/JP3133938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate the position alignment for electric connection with a semiconductor element to be measured, and to make it possible to measure optical characteristics uniformly. SOLUTION: For a semiconductor element 21 to be measured, one electric connection is performed by the contact of contact members 24, which are distributed on the surface of a holding part 27, with upper electrodes 28 under the state, wherein the element 21 is not separated from a semiconductor s substrate 29. The other electric connection is performed from the lower surface of the semiconductor substrate 29 through a stage. The electric characteristics of the semiconductor element 21 to be measured are measured by using a power supply 22 and an electric-characteristic measuring device 23. The contact members 24 are distributed on the surface of the holding member 27, whose material is transparent such as an electric insulating elastomer. This conducting lines 31 are penetrated in the holding member 27 and electrically connected to the transparent electrode pattern of an upper glass substrate 32. When the semiconductor element to be measured 21 emits the light, the light is received by a light receiving element 25, and the optical characteristics are measured by an optical-characteristic measuring device 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子な
ど、半導体素子の電気特性および光学特性を測定するた
めの装置、特に半導体素子と電気的接続を行う部分に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring electric and optical characteristics of a semiconductor element such as a semiconductor light emitting element, and more particularly to a portion for electrically connecting with the semiconductor element.

【0002】[0002]

【従来の技術】従来から、図4に示すような方法で、発
光ダイオード(以下、「LED」と略称することがあ
る)などの半導体素子の電気特性および光学特性の測定
が行われている。被測定半導体素子1に対しては、測定
のための電源2および電気特性測定装置3が、金属針4
をプローブとして用いて電気的接続を行いながら、電気
的特性を測定する。電気特性としては、LEDの順電流
特性や、逆電流特性などがある。順電流特性は、LED
のアノード・カソード間を順方向に流れる順電流IF
それによる電圧降下VFとの関係を表す。逆電流特性
は、アノード・カソード間に逆方向の直流電圧である逆
電圧VRを加えたときに流れる直流電流である逆電流IR
の特性を表す。被測定半導体素子1の上方には、受光素
子5を配置し、被測定半導体素子1から発生される光を
受光して光学特性測定装置6による光学特性の測定を行
っている。光学特性としては、カンデラを単位とする光
度や、発光波長のピークであるピーク波長などがある。
複数の被測定半導体素子1に対して金属針4をそれぞれ
接触させ、切換スイッチ7によって各被測定半導体素子
1への通電状態を切換えて1チップ毎に測定する。
2. Description of the Related Art Conventionally, electrical characteristics and optical characteristics of semiconductor elements such as light emitting diodes (hereinafter sometimes abbreviated as "LED") have been measured by the method shown in FIG. For the semiconductor device 1 to be measured, the power supply 2 for measurement and the electrical characteristic measuring device 3 are connected to the metal needle 4.
Is used as a probe to measure electrical characteristics while making electrical connection. The electrical characteristics include forward current characteristics and reverse current characteristics of LEDs. Forward current characteristics are LED
The relationship between the forward current I F flowing in the forward direction between the anode and the cathode and the voltage drop V F due to the forward current I F. The reverse current characteristic is a reverse current I R which is a direct current flowing when a reverse voltage V R which is a reverse direct current voltage is applied between the anode and the cathode.
Represents the characteristics of. A light receiving element 5 is arranged above the semiconductor element to be measured 1 and the light generated from the semiconductor element 1 to be measured is received to measure the optical characteristics by the optical characteristic measuring device 6. The optical characteristics include luminous intensity in units of candela and peak wavelength which is a peak of emission wavelength.
The metal needles 4 are brought into contact with the plurality of semiconductor devices 1 to be measured, and the changeover switch 7 switches the energization state to each semiconductor device 1 to be measured to measure each chip.

【0003】被測定半導体素子1の上面には、外部接続
用の上部電極8が形成されており、金属針4先端部を上
方から押当て、個別の被測定半導体素子1に対する電気
的接続を行う。被測定半導体素子1の他方の電極は、被
測定半導体素子1が形成されている半導体基板9の下面
から、ステージ10に面接触させて行っている。
An upper electrode 8 for external connection is formed on the upper surface of the semiconductor element 1 to be measured, and the tip of the metal needle 4 is pressed from above to make an electrical connection to the individual semiconductor element 1 to be measured. . The other electrode of the semiconductor element to be measured 1 is brought into surface contact with the stage 10 from the lower surface of the semiconductor substrate 9 on which the semiconductor element to be measured 1 is formed.

【0004】図5は被測定半導体素子1の形状を示す。
被測定半導体素子1は、半導体基板9から完全には切離
さない状態で測定する。被測定半導体素子1の上部に
は、たとえばその大略的に中央部に上部電極8が形成さ
れ、半導体基板9の下面に下部電極が形成される。図5
に示すような半導体基板9から完全に切離さない状態で
は、下部電極は各被測定半導体素子1に対して共通に接
続された状態である。
FIG. 5 shows the shape of the semiconductor device 1 to be measured.
The semiconductor device 1 to be measured is measured in a state where it is not completely separated from the semiconductor substrate 9. An upper electrode 8 is formed on the upper part of the semiconductor device 1 to be measured, for example, at a substantially central portion thereof, and a lower electrode is formed on the lower surface of the semiconductor substrate 9. FIG.
In the state in which the lower electrode is not completely separated from the semiconductor substrate 9 as shown in, the lower electrode is in a state of being commonly connected to each semiconductor element to be measured 1.

【0005】図6は、金属針6の外形を示す。金属針6
は、タングステン(W)やオスミウム(Os)合金など
の高融点金属で形成され、径dが約10μm程度に細く
なっている先端部11と、径Dが600μm程度の太い
胴体12とを有する。胴体12から先端部11まで直径
が変化する部分は、円錐状であり、その頂角αは10°
である。このような金属針4は、半導体集積回路の試験
装置などに広く用いられている。
FIG. 6 shows the outer shape of the metal needle 6. Metal needle 6
Has a tip portion 11 formed of a refractory metal such as tungsten (W) or osmium (Os) alloy and having a diameter d that is thinned to about 10 μm, and a thick body 12 having a diameter D of about 600 μm. The part where the diameter changes from the body 12 to the tip 11 is conical, and the apex angle α is 10 °.
It is. Such a metal needle 4 is widely used in a semiconductor integrated circuit tester or the like.

【0006】図7は、図5に示すように、被測定半導体
素子1が、半導体基板上部で各素子間が電気的に分離さ
れた状態でマトリクス状に等間隔で並んでいる場合に、
金属針4を用いて測定を行う状態を示す平面図である。
被測定半導体素子1の配列ピッチが小さいときには、金
属針4を交互に異なる方向から被測定半導体素子1の上
部電極8に向けて接触させている。
As shown in FIG. 5, when the semiconductor elements to be measured 1 are arranged in a matrix form at equal intervals in a state where the respective elements are electrically separated from each other on the semiconductor substrate, as shown in FIG.
FIG. 7 is a plan view showing a state in which measurement is performed using the metal needle 4.
When the arrangement pitch of the semiconductor elements 1 to be measured is small, the metal needles 4 are alternately contacted from different directions toward the upper electrode 8 of the semiconductor element 1 to be measured.

【0007】図4に示すような測定方法では、複数、た
とえば3〜5チップ程度の金属針4を同時に複数の被測
定半導体素子1の上部電極8に接触させ、切換スイッチ
7で順次被測定半導体素子1を切換えながら、各被測定
半導体素子1について、電気特性測定装置3による電気
的特性の測定と、通電によって発光される光を受光素子
5が受光し、光学特性測定装置6による光学的特性の測
定とを行う。金属針4による電気的接続が行われた複数
個の被測定半導体素子1のすべてについて測定が終了す
ると、金属針4は被測定半導体素子1の上部電極8から
離れ、まだ測定が終了していない被測定半導体素子1上
に移動して、再度その上部電極8に金属針4の先端を押
当てて測定を行う。
In the measuring method as shown in FIG. 4, a plurality of, for example, about 3 to 5 chips of metal needles 4 are simultaneously brought into contact with the upper electrodes 8 of a plurality of semiconductor devices to be measured 1, and the changeover switch 7 sequentially operates the semiconductor devices to be measured. While switching the element 1, for each semiconductor element 1 to be measured, the electrical characteristic is measured by the electrical characteristic measuring device 3 and the light-receiving element 5 receives the light emitted by energization, and the optical characteristic is measured by the optical characteristic measuring device 6. And measurement. When the measurement is completed for all of the plurality of semiconductor elements 1 to be measured electrically connected by the metal needle 4, the metal needle 4 is separated from the upper electrode 8 of the semiconductor element 1 to be measured, and the measurement is not yet completed. After moving to the semiconductor element 1 to be measured, the tip of the metal needle 4 is pressed against the upper electrode 8 again to perform the measurement.

【0008】[0008]

【発明が解決しようとする課題】図4に示すような方法
で、被測定半導体素子1の光学特性を測定しようとする
と、被測定半導体素子1からの発光によって発生される
光は、被測定半導体素子1の上方に存在する金属針4に
よって遮光されてから受光素子5に入射する。金属針4
による遮光の状態は、厳密には各針毎に異なるので、被
測定半導体素子1から発光される光が均一であっても、
光学特定測定装置6の測定結果にばらつきが生じやすく
なる。また、複数本設けられた金属針4の先端部11
は、測定を繰返すことによって摩耗するけれども、種々
の要因で摩耗具合が金属針4毎に異なり、先端部11の
配列ピッチが被測定半導体素子1の配列ピッチからずれ
たり、高さがずれたりするようになってしまう。金属針
4を1本だけ使用すれば、複数本の金属針4間で生じる
ばらつきの問題は避けることができるけれども、被測定
半導体素子1を1個ずつ測定しなければならなので、測
定時間が極端に長くなり非効率的である。
When the optical characteristics of the semiconductor element to be measured 1 are measured by the method shown in FIG. 4, the light generated by the light emission from the semiconductor element to be measured 1 is the semiconductor to be measured. The light is shielded by the metal needle 4 existing above the element 1 and then enters the light receiving element 5. Metal needle 4
Strictly speaking, the state of light shielding by each needle is different, so that even if the light emitted from the semiconductor device under test 1 is uniform,
The measurement results of the optical specific measurement device 6 are likely to vary. In addition, the tip portion 11 of the metal needle 4 provided in plurality.
Wears due to repeated measurement, but the degree of wear differs for each metal needle 4 due to various factors, and the array pitch of the tip portions 11 deviates from the array pitch of the semiconductor elements 1 to be measured, or the height thereof deviates. It becomes like this. If only one metal needle 4 is used, the problem of variations occurring among a plurality of metal needles 4 can be avoided, but since the semiconductor device 1 to be measured must be measured one by one, the measurement time is extremely long. It becomes long and inefficient.

【0009】本発明の目的は、測定を繰返しても被測定
半導体素子の電極と安定な電気的接続を行うことがで
き、光特性測定の際に遮光の影響を与えないような半導
体素子の電気光学特性測定装置を提供することである。
An object of the present invention is to provide a stable electrical connection with an electrode of a semiconductor element to be measured even if the measurement is repeated, and to prevent the influence of light shielding from being exerted on the semiconductor element when measuring optical characteristics. An object is to provide an optical characteristic measuring device.

【0010】[0010]

【課題を解決するための手段】本発明は、半導体素子の
電極に電気的に接触するための導電性を有する突起状の
接触部材と、接触部材を表面で機械的に保持し、半導体
素子の光学的動作に関連する波長の範囲の光に対して透
明で、電気絶縁性を有する材料から成る保持部材と、保
持部材中を貫通し、接触部材と測定用機器とを電気的に
接続し、直径が200μm以下である導通線とを含むこ
とを特徴とする半導体素子の電気光学特性測定装置であ
る。本発明に従えば、保持部材によって表面に保持され
る接触部材が、半導体素子の電極に接触し、測定用機器
から導通線を介して電気的接触が行われる。保持部材
は、半導体素子の光学的動作に関連する波長の範囲の光
に対して透明で、電気絶縁性材料から成るので、半導体
素子の表面を覆うように配置されても、光学特性測定の
障害とはならない。保持部材中を貫通する導通線の直径
は10μm以上で200μm以下であるので、光学測定
結果に対して変動を与えるような遮光を行わない。
SUMMARY OF THE INVENTION According to the present invention, there is provided a protruding contact member having electrical conductivity for making electrical contact with an electrode of a semiconductor element, and the contact member is mechanically held on the surface of the semiconductor element. A holding member that is transparent to light in a wavelength range related to optical operation and that is made of a material having electrical insulation, penetrates through the holding member, and electrically connects the contact member and the measuring device, An electro-optical characteristic measuring device for a semiconductor element, comprising a conducting wire having a diameter of 200 μm or less. According to the present invention, the contact member held on the surface by the holding member comes into contact with the electrode of the semiconductor element, and the measuring device is electrically contacted via the conducting wire. Since the holding member is transparent to light in the wavelength range related to the optical operation of the semiconductor element and is made of an electrically insulating material, even if the holding member is arranged so as to cover the surface of the semiconductor element, it hinders measurement of optical characteristics. Does not mean Since the diameter of the conducting wire penetrating through the holding member is 10 μm or more and 200 μm or less, light shielding that gives fluctuation to the optical measurement result is not performed.

【0011】また本発明で前記保持部材の材料は、柔軟
性があるエラストマであることを特徴とする。本発明に
従えば、柔軟性あるエラストマを保持部材の材料として
使用するので、接触部材は半導体素子の電極に柔軟に接
触することができる。これによって接触部材から半導体
素子へは無理な力は加わらず、半導体素子や半導体基板
などが割れ不良などの機械的損傷を受けたり、半導体素
子上の接触用電極が変形したりする不良を低減すること
ができる。
Further, according to the present invention, the material of the holding member is a flexible elastomer. According to the present invention, since the flexible elastomer is used as the material of the holding member, the contact member can flexibly contact the electrode of the semiconductor element. As a result, an unreasonable force is not applied from the contact member to the semiconductor element, and it is possible to reduce defects such as mechanical damage such as defective cracking of the semiconductor element or the semiconductor substrate or deformation of the contact electrode on the semiconductor element. be able to.

【0012】また本発明で前記接触部材は、複数個が同
一の電極に接触可能なように、近接して分布するように
配置されることを特徴とする。本発明に従えば、半導体
素子の同一の電極に対して複数個の接触部材が接触可能
なように近接して分布するように配置されているので、
位置決めを必ずしも厳密に行わなくても確実な電気的接
触を行うことができる。
Further, according to the present invention, the plurality of contact members are arranged so as to be distributed in close proximity so that a plurality of contact members can contact the same electrode. According to the present invention, since a plurality of contact members are arranged in close proximity to each other so that they can contact the same electrode of the semiconductor element,
Reliable electrical contact can be made without the need for strict positioning.

【0013】また本発明で前記接触部材は、半導体基板
上に複数個配列された半導体素子の電極に、同時に接触
可能なように配置されていることを特徴とする。本発明
に従えば、半導体基板上に複数個配列された半導体素子
の電極に、接触部材が同時に接触することができるの
で、複数の半導体素子に対して同時に電気的接続を行
い、位置決めに要する時間を短縮することができる。
Further, according to the present invention, the contact member is arranged so as to be simultaneously contactable with electrodes of a plurality of semiconductor elements arranged on a semiconductor substrate. According to the present invention, since the contact member can simultaneously contact the electrodes of the semiconductor elements arranged on the semiconductor substrate, the time required for the electrical connection to the plurality of semiconductor elements at the same time and the positioning is required. Can be shortened.

【0014】また本発明は、前記各半導体素子の電極に
接触可能な範囲に配列されている接触部材は前記導通線
の先端部であって群を形成し、各群の導通線と測定用機
器との間の電気的接続を順次的に切換える切換手段を含
むことを特徴とする。本発明に従えば、複数の半導体素
子を群として電気的接続を同時に行い、個別的に切換え
ながら各半導体素子の特性を測定することができる。接
触部材は、各導通線の先端部であるので、密に配置し、
確実な電気的接続を行うことができる。
Further, according to the present invention, the contact members arranged in a range capable of contacting the electrodes of each of the semiconductor elements are a tip portion of the conducting wire to form a group, and the conducting wire of each group and the measuring device. And switching means for sequentially switching the electrical connection between and. According to the present invention, a plurality of semiconductor elements can be electrically connected at the same time, and the characteristics of each semiconductor element can be measured while individually switching. The contact member is the tip of each conducting wire, so it should be arranged closely.
A reliable electrical connection can be made.

【0015】[0015]

【発明の実施の形態】図1は、本発明の実施の一形態の
測定状態を側面から示す。被測定半導体素子21は、電
源22および電気特性測定装置23と接触部材24を介
して電気的接続を行う。被測定半導体素子21による光
学特性は、受光素子25に入射された光によって行われ
る。受光素子25の出力は光学特性測定装置26に入力
され、被測定半導体素子21の発光動作に関連する光学
測定が行われる。接触部材24は、保持部材27の表面
に配置され、被測定半導体素子21の上面に形成される
上部電極28に接触可能である。被測定半導体素子21
は、半導体基板29から上部のみ分離され、下方では切
離されていない。
1 is a side view showing a measurement state of an embodiment of the present invention. The semiconductor element 21 to be measured is electrically connected to the power supply 22 and the electrical characteristic measuring device 23 via the contact member 24. The optical characteristics of the semiconductor device under test 21 are obtained by the light incident on the light receiving device 25. The output of the light receiving element 25 is input to the optical characteristic measuring device 26, and the optical measurement related to the light emitting operation of the semiconductor element 21 to be measured is performed. The contact member 24 is arranged on the surface of the holding member 27 and can contact the upper electrode 28 formed on the upper surface of the semiconductor element 21 to be measured. Semiconductor element to be measured 21
Are separated from the semiconductor substrate 29 only in the upper part and are not separated in the lower part.

【0016】複数の被測定半導体素子21に対する共通
の電気的接続は、半導体基板29の下面からステージ3
0を介して行われる。各被測定半導体素子21に対する
電気的接続は、保持部材27中を貫通するたとえば直径
30μmの金(Au)線が導通線31として上下に貫通
して埋込まれ、保持部材24の表面から突出して接触部
材24に電気的に接続されて行われる。保持部材27
は、少なくとも被測定半導体素子21が発生する光の波
長領域では光学的に透明な絶縁材料の板状体である。保
持部材27の上面は、酸化インジウム(In23)に酸
化すずが5%ほど混合したITO(Indium Tin Oxide)
などの透明電極によって回路形成されたガラス基板32
に押当てられて電気的に接続されている。なお、特性測
定の結果、不良品と判定された被測定半導体素子21に
ついては、複数チップの測定後、保持部材24等を移動
させてから、メモリに記憶されたデータに基づいてイン
カーを作動させ、マーキングを行う。後工程ではマーキ
ングによって不良品であることを認識することができ
る。
The common electrical connection to the plurality of semiconductor devices 21 to be measured is made from the lower surface of the semiconductor substrate 29 to the stage 3
Through 0. For electrical connection to each semiconductor device 21 to be measured, a gold (Au) wire having a diameter of, for example, 30 μm penetrating through the holding member 27 is vertically embedded as a conductive wire 31 and is embedded, and protrudes from the surface of the holding member 24. It is performed by being electrically connected to the contact member 24. Holding member 27
Is a plate-like body of an insulating material that is optically transparent at least in the wavelength range of the light generated by the semiconductor device under test 21. The upper surface of the holding member 27 is made of ITO (Indium Tin Oxide), which is a mixture of indium oxide (In 2 O 3 ) with about 5% tin oxide.
Substrate 32 having a circuit formed of transparent electrodes such as
It is pressed against and electrically connected. As for the semiconductor device under test 21 determined to be defective as a result of the characteristic measurement, the holding member 24 and the like are moved after the measurement of a plurality of chips, and then the inker is operated based on the data stored in the memory. , Marking. In the subsequent process, it is possible to recognize that the product is defective by marking.

【0017】図2は、被測定半導体素子21上に保持部
材27およびガラス基板32を載置して接触部材24に
よって上部電極28との間で電気的接続を行っている状
態を示す。導通線31の直径は小さいので、図6に示す
金属針4の胴体12のように遮光することはなく、保持
部材27も光学的に透明であるので、被測定半導体素子
21から発生する光の特性を図1に示す受光素子25に
よって精度よく測定することができる。図1のガラス基
板32には、前述のITOなどによる透明電極回路パタ
ーン33が被測定半導体素子31の上方に形成される。
各透明電極回路パターン33内の下には、図1の導通線
31および接触部材24が分布するけれども、図2にお
いては図示を省略する。透明電極回路パターン33は、
被測定半導体素子上面の上部電極8の電極面積よりも大
きく、各導通線31に対する共通電極として形成され
る。透明電極回路パターン33の周囲には、斜線を施し
て示す引出回路パターン34が形成され、各被測定半導
体素子21間の間隙上方の部分を利用して外部に引出さ
れる。引出回路パターン34は、光学特性測定に影響を
与えない部分に形成されるので、必ずしも透明である必
要はなく、導電性の良好な銅などの金属で形成すること
ができる。
FIG. 2 shows a state in which the holding member 27 and the glass substrate 32 are placed on the semiconductor element 21 to be measured, and the contact member 24 makes an electrical connection with the upper electrode 28. Since the diameter of the conducting wire 31 is small, it does not block light unlike the body 12 of the metal needle 4 shown in FIG. 6, and the holding member 27 is also optically transparent, so that the light generated from the semiconductor element 21 to be measured is The characteristics can be accurately measured by the light receiving element 25 shown in FIG. On the glass substrate 32 of FIG. 1, the transparent electrode circuit pattern 33 made of ITO or the like is formed above the semiconductor element 31 to be measured.
Although the conductive line 31 and the contact member 24 of FIG. 1 are distributed under each transparent electrode circuit pattern 33, the illustration thereof is omitted in FIG. The transparent electrode circuit pattern 33 is
It is larger than the electrode area of the upper electrode 8 on the upper surface of the semiconductor element to be measured, and is formed as a common electrode for each conductive line 31. A lead-out circuit pattern 34 shown by hatching is formed around the transparent electrode circuit pattern 33, and the lead-out circuit pattern 34 is drawn out to the outside by utilizing a portion above the gap between the semiconductor elements 21 to be measured. Since the extraction circuit pattern 34 is formed in a portion that does not affect the optical characteristic measurement, it does not necessarily need to be transparent and can be formed of a metal such as copper having good conductivity.

【0018】図3は、被測定半導体素子21および上部
電極28に対する接触部材24および導通線31の配置
状態を示す。図3(a)は、接触部材24および導通線
31が被測定半導体素子21よりも広い範囲にわたって
ライン状に整列し、マトリクスを形成するように配置さ
れている状態を示す。図3(b)は、同じく被測定半導
体素子21よりも広い範囲に、接触部材24および導通
線31が、細かい点の分布として表すように、不規則に
配置されているランダム状配置を示す。図3(c)は、
同様にランダム状配置であるけれども、その範囲が上部
電極28の上方に限られる状態を示す。図3(d)は、
同様にランダム状の配置で、被測定半導体素子21の範
囲に合わせて配置されている状態を示す。図3(a)や
図3(b)のような被測定半導体素子21よりも広い範
囲の配置であれば、被測定半導体素子21を個別に測定
する場合などで、位置決めの精度が必ずしも厳密でなく
ても電気的接続を確実に行うことができる。図3(c)
に示すような上部電極28に対応する範囲で配置する場
合は、複数の上部電極に個別的に電気的接続を行うこと
ができる。図3(d)に示すように、各被測定半導体素
子21に対応するように配置する場合は、複数の被測定
半導体素子21に対して同時に接触しながら効率的に特
性測定を行う場合に好適である。
FIG. 3 shows an arrangement state of the contact member 24 and the conducting wire 31 with respect to the semiconductor element 21 to be measured and the upper electrode 28. FIG. 3A shows a state in which the contact member 24 and the conducting wire 31 are arranged in a line over a wider area than the semiconductor element 21 to be measured and are arranged so as to form a matrix. FIG. 3B shows a random arrangement in which the contact members 24 and the conducting lines 31 are also randomly arranged in a wider area than the semiconductor device 21 to be measured, as represented by the distribution of fine dots. FIG. 3 (c)
Similarly, although the arrangement is random, the range is limited to above the upper electrode 28. Figure 3 (d) shows
Similarly, the state is shown in which the semiconductor elements 21 to be measured are arranged in a random arrangement according to the range. When the semiconductor device 21 to be measured is arranged in a wider range as shown in FIGS. 3A and 3B, the positioning accuracy is not always strict when the semiconductor devices 21 to be measured are individually measured. Even without it, electrical connection can be surely made. Figure 3 (c)
In the case of arranging in a range corresponding to the upper electrode 28 as shown in (4), it is possible to individually make electrical connection to the plurality of upper electrodes. As shown in FIG. 3D, the case where the semiconductor elements 21 are arranged so as to correspond to the semiconductor elements 21 to be measured is suitable for efficiently measuring the characteristics while simultaneously contacting a plurality of semiconductor elements 21 to be measured. Is.

【0019】以上の各実施形態で、保持部材27は光学
的に透明な絶縁材料、たとえばガラスや合成樹脂であっ
てもよいけれども、シリコン樹脂のような柔らかいエラ
ストマを用いた方が、被測定半導体素子21の上部電極
28に対して、電気的接続を確実に行うことができるの
で好ましい。そのような保持部材27および接触部材2
4は、金線を固定した治具にエラストマのレジンおよび
硬化剤を加えてゲル化させ、必要な厚みにスライスした
後、エラストマの表面をエッチングして金線の一部を表
面から突出させて接触部材24として形成し、製造する
ことができる。また被測定半導体素子21を半導体基板
29から切離さない状態で測定するような場合に、強度
的に外力で比較的割れやすい半導体基板29が基板割れ
不良を生じることを抑制することもできる。同様の理由
で、被測定半導体素子21の上面だけではなく、下面も
柔らかいエラストマを用いた電気的接続手段を採用すれ
ば、さらに基板割れ不良を低減することができる。この
場合下面の電気接続は、個別の被測定半導体素子21の
チップに対応させる必要はなく、共通電極化することが
できる。
In each of the above embodiments, the holding member 27 may be an optically transparent insulating material such as glass or synthetic resin, but it is better to use a soft elastomer such as silicon resin as the semiconductor to be measured. This is preferable because electrical connection can be surely made to the upper electrode 28 of the element 21. Such holding member 27 and contact member 2
For No. 4, resin of elastomer and a curing agent were added to a jig to which the gold wire was fixed to make it gel, and after slicing to a required thickness, the surface of the elastomer was etched to project a part of the gold wire from the surface. It can be formed and manufactured as the contact member 24. In addition, when the semiconductor device to be measured 21 is measured in a state where it is not separated from the semiconductor substrate 29, it is possible to suppress the occurrence of substrate cracking defects in the semiconductor substrate 29 which is relatively easily broken by an external force in terms of strength. For the same reason, if the electrical connection means using a soft elastomer is adopted not only for the upper surface of the semiconductor device to be measured 21 but also for the lower surface, the substrate cracking defect can be further reduced. In this case, the electrical connection on the lower surface does not have to correspond to the individual chips of the semiconductor device 21 to be measured, but can be a common electrode.

【0020】半導体基板29から被測定半導体素子21
を切離さない状態で、複数個の被測定半導体素子21に
対して同時に電気的接触を行いながら、各被測定半導体
素子21に対する電流供給を電気的に切換えることによ
って、電気特性や光学特性を短時間で測定することがで
きる。さらに光学特性に関しては、被測定半導体素子2
1の上方に配置する受光素子25を、たとえば面上に複
数分布させ、各被測定半導体素子21の発光特性の面内
分布を測定可能にすれば、被測定半導体素子21へ個別
に電流を供給している配線を共通化して、瞬時に複数の
被測定半導体素子21の発光の面内分布を測定すること
ができ、半導体基板29の光学特性を効率的に判断する
ことができる。このようなことが可能であると、従来の
被測定半導体素子21の製造過程で、活性層等のエピタ
キシアル成長後、電極形成前の素子基板に溝を掘ってア
イソレートした部分の光学特性を測定して基板のでき具
合を中間検査する「グルービングテスト」に対しても、
溝を掘らずに行うことができ、作業の簡略化を図ること
ができる。
From the semiconductor substrate 29 to the semiconductor device 21 under test
The electrical characteristics and the optical characteristics are shortened by electrically switching the current supply to each of the semiconductor devices 21 to be measured while simultaneously making electrical contact with the plurality of semiconductor devices 21 to be measured without disconnecting them. It can be measured in time. Further, regarding the optical characteristics, the semiconductor element 2 to be measured
If a plurality of light receiving elements 25 arranged above 1 are distributed on the surface and the in-plane distribution of the light emission characteristics of each semiconductor element 21 to be measured can be measured, a current is individually supplied to the semiconductor element 21 to be measured. By using common wiring, it is possible to instantaneously measure the in-plane distribution of the light emission of the plurality of semiconductor devices 21 to be measured, and it is possible to efficiently determine the optical characteristics of the semiconductor substrate 29. If this is possible, in the conventional manufacturing process of the semiconductor device to be measured 21, after the epitaxial growth of the active layer or the like, the optical characteristics of the isolated portion of the device substrate before electrode formation are obtained by grooving grooves. Even for the "grooving test" that measures and inspects the condition of the substrate in the middle,
It can be performed without digging a groove, and the work can be simplified.

【0021】受光素子25は、測定する発光素子に対し
て従来と同様の位置合わせが必要となるけれども、従来
の金属針での位置合わせは、本実施形態によって簡素化
することができる。たとえば金線を50μmピッチで配
列させておけば、被測定半導体素子21の配列ピッチを
300μm、上部電極28の径を150μmとすると
き、容易に位置合わせを行うことができる。
Although the light receiving element 25 needs to be aligned with the light emitting element to be measured in the same manner as the conventional one, the conventional alignment with the metal needle can be simplified by this embodiment. For example, by arranging the gold wires at a pitch of 50 μm, the alignment can be easily performed when the pitch of the semiconductor elements 21 to be measured is 300 μm and the diameter of the upper electrode 28 is 150 μm.

【0022】[0022]

【発明の効果】以上のように本発明によれば、半導体素
子の電気光学特性を測定する際に、被測定半導体素子へ
の電気接続部分を、光学的に透明な絶縁材料から形成さ
れる保持部材で接触部材を保持することによって行い、
保持部材中を貫通する導通線の直径を200μm以下と
しているので、光学測定に対する遮光によるばらつきを
低減し、精度よく電気特性および光学特性を測定するこ
とができる。
As described above, according to the present invention, when measuring the electro-optical characteristics of a semiconductor element, a holding portion for electrically connecting a semiconductor element to be measured is formed of an optically transparent insulating material. By holding the contact member with the member,
Since the diameter of the conducting wire that penetrates through the holding member is 200 μm or less, it is possible to reduce variations due to light blocking in optical measurement and to accurately measure electrical characteristics and optical characteristics.

【0023】また本発明によれば、保持部材の材料とし
て、柔軟性があるエラストマを用いるので、半導体素子
へ過大な大圧力を加えることなく、半導体素子基板の割
れ不良などを低減することができる。
Further, according to the present invention, since the flexible elastomer is used as the material of the holding member, it is possible to reduce cracking defects of the semiconductor element substrate without applying excessive large pressure to the semiconductor element. .

【0024】また本発明によれば、半導体素子の同一の
電極に対して、複数の接触部材が接触可能であるので、
位置決め精度が必ずしも厳密でなくても電気的接続を確
実に行うことができる。
Further, according to the present invention, since a plurality of contact members can contact the same electrode of the semiconductor element,
Even if the positioning accuracy is not necessarily strict, electrical connection can be surely made.

【0025】また本発明によれば、半導体基板上に複数
個配列された半導体素子の電極に、接触部材が同時に接
触可能なように配置されているので、複数の半導体素子
を半導体基板から切離さない状態で効率的に特性測定を
行うことができる。
Further, according to the present invention, the plurality of semiconductor elements are separated from the semiconductor substrate because the contact members are arranged so that they can simultaneously contact the electrodes of the semiconductor elements arranged on the semiconductor substrate. Characteristic measurement can be performed efficiently in the absence of the condition.

【0026】また本発明によれば、同時に電気的接触を
行う複数の半導体素子を、効率的に個別に特性測定する
ことができる。
Further, according to the present invention, it is possible to efficiently and individually measure the characteristics of a plurality of semiconductor elements that make electrical contact at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態による測定状態を示す簡
略化した側面図である。
FIG. 1 is a simplified side view showing a measurement state according to an embodiment of the present invention.

【図2】図1の測定状態における被測定半導体素子21
に対する電気的接続状態についての平面図である。
2 is a semiconductor device to be measured 21 in the measurement state of FIG.
FIG. 6 is a plan view of an electrical connection state with respect to FIG.

【図3】図1の接触部材24および導通線31の配置状
態を示す簡略化した平面図である。
FIG. 3 is a simplified plan view showing an arrangement state of a contact member 24 and a conducting wire 31 of FIG.

【図4】従来からの測定装置の概略的な構成を示す側面
図である。
FIG. 4 is a side view showing a schematic configuration of a conventional measuring device.

【図5】測定の対象となる被測定半導体素子の配置状態
を示す斜視図である。
FIG. 5 is a perspective view showing an arrangement state of a semiconductor element to be measured which is an object of measurement.

【図6】従来の測定装置に用いる金属針4の側面図であ
る。
FIG. 6 is a side view of a metal needle 4 used in a conventional measuring device.

【図7】図6の金属針4を用いて図5の被測定半導体素
子1に電気的接触を行う状態を示す平面図である。
7 is a plan view showing a state in which the metal needle 4 of FIG. 6 is used to electrically contact the semiconductor device 1 to be measured of FIG.

【符号の説明】[Explanation of symbols]

21 被測定半導体素子 22 電源 23 電気特性測定装置 24 接触部材 25 受光素子 26 光学特性測定装置 27 保持部材 28 上部電極 29 半導体基板 30 ステージ 31 導通線 32 ガラス基板 33 透明電極回路パターン 34 引出回路パターン 21 semiconductor element to be measured 22 power supply 23 electric characteristic measuring apparatus 24 contact member 25 light receiving element 26 optical characteristic measuring apparatus 27 holding member 28 upper electrode 29 semiconductor substrate 30 stage 31 conducting wire 32 glass substrate 33 transparent electrode circuit pattern 34 extraction circuit pattern

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子の電極に電気的に接触するた
めの導電性を有する突起状の接触部材と、 接触部材を表面で機械的に保持し、半導体素子の光学的
動作に関連する波長の範囲の光に対して透明で、電気絶
縁性を有する材料から成る保持部材と、 保持部材中を貫通し、接触部材と測定用機器とを電気的
に接続し、直径が10μm以上で200μm以下である
導通線とを含むことを特徴とする半導体素子の電気光学
特性測定装置。
1. A conductive protrusion-shaped contact member for making electrical contact with an electrode of a semiconductor element, and a contact member that is mechanically held on a surface and has a wavelength of a wavelength related to an optical operation of the semiconductor element. A holding member made of a material that is transparent to light in the range and has an electrical insulating property, and penetrates through the holding member to electrically connect the contact member and the measuring device, and has a diameter of 10 μm or more and 200 μm or less. An electro-optical characteristic measuring device for a semiconductor element, comprising a certain conducting wire.
【請求項2】 前記保持部材の材料は、柔軟性があるエ
ラストマであることを特徴とする請求項1記載の半導体
素子の電気光学特性測定装置。
2. The device for measuring electro-optical characteristics of a semiconductor device according to claim 1, wherein the material of the holding member is a flexible elastomer.
【請求項3】 前記接触部材は、複数個が同一の電極に
接触可能なように、近接して分布するように配置される
ことを特徴とする請求項1または2記載の半導体素子の
電気光学特性測定装置。
3. The electro-optical device according to claim 1, wherein a plurality of the contact members are arranged in close proximity so that a plurality of the contact members can contact the same electrode. Characteristic measuring device.
【請求項4】 前記接触部材は、半導体基板上に複数個
配列された半導体素子の電極に、同時に接触可能なよう
に配置されていることを特徴とする請求項1〜3のいず
れかに記載の半導体素子の電気光学特性測定装置。
4. The contact member according to claim 1, wherein the contact member is arranged so as to be able to simultaneously contact electrodes of a plurality of semiconductor elements arranged on a semiconductor substrate. Electro-optical characteristic measuring device for semiconductor devices.
【請求項5】 前記各半導体素子の電極に接触可能な範
囲に配列されている接触部材は前記導通線の先端部であ
って群を形成し、各群の導通線と測定用機器との間の電
気的接続を順次的に切換える切換手段を含むことを特徴
とする請求項4記載の半導体素子の電気光学特性測定装
置。
5. A contact member arranged in a range capable of contacting an electrode of each of the semiconductor elements forms a group which is a tip end portion of the conducting wire, and is provided between the conducting wire of each group and the measuring device. 5. An electro-optical characteristic measuring device for a semiconductor element according to claim 4, further comprising switching means for sequentially switching the electrical connection of the device.
JP5142696A 1996-03-08 1996-03-08 Apparatus for measuring electro-optical characteristics of semiconductor devices Expired - Fee Related JP3133938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142696A JP3133938B2 (en) 1996-03-08 1996-03-08 Apparatus for measuring electro-optical characteristics of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142696A JP3133938B2 (en) 1996-03-08 1996-03-08 Apparatus for measuring electro-optical characteristics of semiconductor devices

Publications (2)

Publication Number Publication Date
JPH09246599A true JPH09246599A (en) 1997-09-19
JP3133938B2 JP3133938B2 (en) 2001-02-13

Family

ID=12886611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142696A Expired - Fee Related JP3133938B2 (en) 1996-03-08 1996-03-08 Apparatus for measuring electro-optical characteristics of semiconductor devices

Country Status (1)

Country Link
JP (1) JP3133938B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184556A (en) * 2005-12-09 2007-07-19 Mitsubishi Electric Corp Semiconductor laser, its fabrication process and evaluation device
JP2012084883A (en) * 2010-10-11 2012-04-26 Ind Technol Res Inst Detection method and detection device for wafer level light-emitting diode (led) chips and probe card thereof
JP2012227201A (en) * 2011-04-15 2012-11-15 Citizen Holdings Co Ltd Inspection device and inspection method for semiconductor light-emitting device
CN103176115A (en) * 2011-12-26 2013-06-26 夏普株式会社 Optical test device
CN103267628A (en) * 2012-01-27 2013-08-28 横河电机株式会社 Light-emittig property measuring apparatus and light-emitting property measuring method
TWI467141B (en) * 2012-12-19 2015-01-01 Ind Tech Res Inst Measurement device and measurement method
TWI485371B (en) * 2013-04-24 2015-05-21 Genesis Photonics Inc Inspection device
WO2018112267A1 (en) 2016-12-16 2018-06-21 Tesoro Scientific, Inc. Light emitting diode (led) test apparatus and method of manufacture
JP2019145584A (en) * 2018-02-16 2019-08-29 株式会社ディスコ Optical device inspection method and optical device inspection apparatus
JP2020524416A (en) * 2017-06-20 2020-08-13 テソロ・サイエンティフィック・インコーポレーテッド Light emitting diode (LED) test apparatus and manufacturing method
US10962586B2 (en) 2017-01-23 2021-03-30 Apple Inc. Light emitting diode (LED) test apparatus and method of manufacture

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184556A (en) * 2005-12-09 2007-07-19 Mitsubishi Electric Corp Semiconductor laser, its fabrication process and evaluation device
JP2012084883A (en) * 2010-10-11 2012-04-26 Ind Technol Res Inst Detection method and detection device for wafer level light-emitting diode (led) chips and probe card thereof
JP2012227201A (en) * 2011-04-15 2012-11-15 Citizen Holdings Co Ltd Inspection device and inspection method for semiconductor light-emitting device
CN103176115A (en) * 2011-12-26 2013-06-26 夏普株式会社 Optical test device
JP2013135074A (en) * 2011-12-26 2013-07-08 Sharp Corp Optical testing device
KR101473064B1 (en) * 2011-12-26 2014-12-15 샤프 가부시키가이샤 Optical test device
TWI481830B (en) * 2011-12-26 2015-04-21 Sharp Kk Optical test device
CN103267628A (en) * 2012-01-27 2013-08-28 横河电机株式会社 Light-emittig property measuring apparatus and light-emitting property measuring method
TWI467141B (en) * 2012-12-19 2015-01-01 Ind Tech Res Inst Measurement device and measurement method
TWI485371B (en) * 2013-04-24 2015-05-21 Genesis Photonics Inc Inspection device
WO2018112267A1 (en) 2016-12-16 2018-06-21 Tesoro Scientific, Inc. Light emitting diode (led) test apparatus and method of manufacture
CN110337712A (en) * 2016-12-16 2019-10-15 特索罗科技有限公司 Light emitting diode (LED) test equipment and manufacturing method
JP2020502825A (en) * 2016-12-16 2020-01-23 テソロ・サイエンティフィック・インコーポレーテッド Light emitting diode (LED) inspection apparatus and manufacturing method
US10600697B2 (en) 2016-12-16 2020-03-24 Tesoro Scientific, Inc. Light emitting diode (LED) test apparatus and method of manufacture
EP3555909A4 (en) * 2016-12-16 2020-09-16 Tesoro Scientific, Inc. Light emitting diode (led) test apparatus and method of manufacture
US11037841B2 (en) 2016-12-16 2021-06-15 Apple Inc. Light emitting diode (LED) test apparatus and method of manufacture
CN110337712B (en) * 2016-12-16 2023-11-07 苹果公司 Light Emitting Diode (LED) testing apparatus and method of manufacture
US10962586B2 (en) 2017-01-23 2021-03-30 Apple Inc. Light emitting diode (LED) test apparatus and method of manufacture
JP2020524416A (en) * 2017-06-20 2020-08-13 テソロ・サイエンティフィック・インコーポレーテッド Light emitting diode (LED) test apparatus and manufacturing method
EP3642879A4 (en) * 2017-06-20 2021-04-14 Tesoro Scientific, Inc. Light emitting diode (led) test apparatus and method of manufacture
US10989755B2 (en) 2017-06-20 2021-04-27 Apple Inc. Light emitting diode (LED) test apparatus and method of manufacture
JP2019145584A (en) * 2018-02-16 2019-08-29 株式会社ディスコ Optical device inspection method and optical device inspection apparatus

Also Published As

Publication number Publication date
JP3133938B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
KR100470970B1 (en) Probe needle fixing apparatus and method for semiconductor device test equipment
US7688088B2 (en) Inspection method and inspection apparatus for inspecting electrical characteristics of inspection object
US4951098A (en) Electrode structure for light emitting diode array chip
JP3133938B2 (en) Apparatus for measuring electro-optical characteristics of semiconductor devices
JPH05340964A (en) Tester for wafer and chip
US6249114B1 (en) Electronic component continuity inspection method and apparatus
KR102127728B1 (en) Probe having an improved gripping structure
KR102386932B1 (en) Led probe device and transport deveice
US11796567B2 (en) Method and device for electrically contacting components in a semiconductor wafer
KR102559566B1 (en) Led probe device and transport deveice
JP2009283776A (en) Semiconductor device, semiconductor device module and method for manufacturing semiconductor device module
JP2001024270A (en) Burn-in substrate and burn-in method employing it
JP2006510026A (en) Adapter for testing one or more conductor assemblies
US11276614B2 (en) Testing of LED devices during pick and place operations
KR20110139812A (en) Esd tester for light emitting diode chip and method of selecting good light emitting diode chip
JPH07302930A (en) Light emitting diode and manufacture thereof
KR100347863B1 (en) Probe card
KR20130122821A (en) Electricity source supply device of vertical type led chip tester
CN115356560B (en) Testing method of integrated Micro LED
JP2000121666A (en) Probe and probe card
US20230228807A1 (en) Semiconductor Wafer
WO2021193579A1 (en) Inspection probe and inspection device
CN109616034B (en) Method for efficiently detecting small-spacing COB display module pixel dead pixel
KR940009570B1 (en) Semiconductor test equipment
US20240008170A1 (en) Led circuit board structure, led testing and packaging method and led pixel package

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees