JP2012227201A - Inspection device and inspection method for semiconductor light-emitting device - Google Patents

Inspection device and inspection method for semiconductor light-emitting device Download PDF

Info

Publication number
JP2012227201A
JP2012227201A JP2011090872A JP2011090872A JP2012227201A JP 2012227201 A JP2012227201 A JP 2012227201A JP 2011090872 A JP2011090872 A JP 2011090872A JP 2011090872 A JP2011090872 A JP 2011090872A JP 2012227201 A JP2012227201 A JP 2012227201A
Authority
JP
Japan
Prior art keywords
semiconductor light
probe card
collective substrate
light emitting
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011090872A
Other languages
Japanese (ja)
Inventor
Megumi Horiuchi
恵 堀内
Kazumi Miyamoto
一美 宮本
Kenji Imazu
健二 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2011090872A priority Critical patent/JP2012227201A/en
Publication of JP2012227201A publication Critical patent/JP2012227201A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem that, when an integration hemisphere is used to measure the total light flux of a light source such as an LED element and the like, because the measurement is performed by arranging the light source to an opening of a planar mirror one by one, throughput is low, and thus, it is not suitable for total inspection in mass production.SOLUTION: An inspection device has an integration hemisphere 11, an optical detector 12, a probe card 13, and an XYZ table 14. An aggregate substrate 17 in which LED elements 30 are coupled and arranged is arranged to an opening at the center part of the integration hemisphere 11, and the respective LED elements 30 are lightened individually by the probe card 13 attached to the XYZ table 14 to measure the total light flux. At this time, a plurality of probes 13a are provided to the probe card 13. The probe card 13 is simultaneously connected with the plurality of LED elements 30 via the probes 13a.

Description

本発明は、半導体発光装置に対する全光束測定のスループットが向上した半導体発光装置の検査装置及び検査方法に関する。   The present invention relates to an inspection apparatus and an inspection method for a semiconductor light emitting device in which the throughput of total luminous flux measurement for the semiconductor light emitting device is improved.

半導体発光素子(以後とくに断らない限りLED素子と呼ぶ)を出荷するときには、全てのLED素子の電気的特性を測るとともに限定的な光学的特性検査を行なうことが多い。この光学的特性検査とは、例えば特定の方位角における輝度・色度を測定するようなものである。これに対し、ふつう製品仕様書には積分球を使って計測するLED素子の全光束を示している。しかしながら全光束の測定はスループットが低いので量産時には抜き取り検査となる。   When shipping semiconductor light-emitting elements (hereinafter referred to as LED elements unless otherwise noted), it is often the case that the electrical characteristics of all LED elements are measured and limited optical characteristic inspections are performed. The optical characteristic inspection is, for example, a method for measuring luminance and chromaticity at a specific azimuth angle. In contrast, the product specifications usually show the total luminous flux of the LED element measured using an integrating sphere. However, since the total luminous flux measurement has a low throughput, it is a sampling inspection in mass production.

積分球を使った測定は次のようになる。先ず内壁に光拡散材料を塗布した積分球内に被測定光源を配し、この被測定光源を点灯する。被測定光源が発する光束は、光拡散材料によって多重反射し、被測定光源の配光特性を積分して内壁を均一な照度とする。その照度を積分球に接続した受光器で測定する。この測定値と全光束が既知の全光束標準電球の出力とを比較し被測定光源の全光束を求める。   Measurement using an integrating sphere is as follows. First, a light source to be measured is placed in an integrating sphere having a light diffusing material applied to the inner wall, and the light source to be measured is turned on. The luminous flux emitted from the light source to be measured is multiple-reflected by the light diffusing material, and the light distribution characteristics of the light source to be measured are integrated to make the inner wall have uniform illuminance. The illuminance is measured with a light receiver connected to an integrating sphere. This measured value is compared with the output of a standard total luminous flux bulb with a known total luminous flux to determine the total luminous flux of the light source to be measured.

この測定方法は、被測定光源を測定するたびに被測定光源を積分球の内部に一個ずつ配置せざるを得ず、スループットが低くなるため、前述のように量産に際し全数検査に適用できない。被測定光源を積分球の外部に設置した冶具に入れ、この冶具から光ファイバーで被測定光源の全光束を積分球内に導くようにするとある程度スループットが改善するが、やはりLED素子を一個ずつ冶具に収納するため工数が多くなる。   This measuring method must be arranged one by one in the integrating sphere each time the light source to be measured is measured, and the throughput is low, so that it cannot be applied to 100% inspection in mass production as described above. If the light source to be measured is placed in a jig installed outside the integrating sphere, and the total light flux of the light source to be measured is guided into the integrating sphere from the jig using an optical fiber, the throughput will be improved to some extent. Man-hours increase because of storage.

以上の方法は全光束の測定毎に被測定光源を容器内に収納するからスループットが悪くなっていた。このようななかで被測光源が一方の方向だけに光を放射する場合には積分半球を使うと被測定光源の設置を容易にできる(特許文献1)。そこで積分半球を使った光束計を図4を使って説明する。   In the above method, since the light source to be measured is accommodated in the container every time the total luminous flux is measured, the throughput is deteriorated. In such a case, when the light source to be measured emits light only in one direction, using the integrating hemisphere makes it easy to install the light source to be measured (Patent Document 1). Therefore, a flux meter using an integrating hemisphere will be described with reference to FIG.

図4は特許文献1の図1を転写したもので、積分半球2の中心を通るようにして描いた光束計の断面図である。この光束計は、半球状の内壁に光拡散材料1を塗布した積分半球2と、積分半球2の内部半球面に受光窓を持つ光検出器6とを備えている。さらに積分半球2の曲率中心を通り、積分半球2の開口部をおおうように平面ミラー3を組み合わせる。この平面ミラー3の中心に被測定光源4を設置できるよう開口5を設ける。開口部5に被測定光源6を点灯冶具8で固定し、被測定光源6を点灯させて全光束を測定する。なお被測定光源4から光検出器6に向う直接光は遮光板7で遮っている。   FIG. 4 is a cross-sectional view of a photometer drawn as passing through the center of the integrating hemisphere 2, which is a copy of FIG. This luminous meter includes an integrating hemisphere 2 in which a light diffusing material 1 is applied to a hemispherical inner wall, and a photodetector 6 having a light receiving window on the inner hemisphere of the integrating hemisphere 2. Further, the plane mirror 3 is combined so as to pass through the center of curvature of the integrating hemisphere 2 and cover the opening of the integrating hemisphere 2. An opening 5 is provided at the center of the plane mirror 3 so that the light source 4 to be measured can be installed. The light source 6 to be measured is fixed to the opening 5 with a lighting jig 8, and the light source 6 to be measured is turned on to measure the total luminous flux. The direct light from the light source 4 to be measured toward the light detector 6 is blocked by the light shielding plate 7.

このとき平面ミラー3と積分半球2は、あたかも点灯治具8又は支持具なしに被測定光源4が積分球内の空間で点灯したような状態を実現している。また、被測定光源4の半分は、積分空間の外すなわち平面ミラー3の外側に出ているため、開口部5に被測定光源4を配置するだけで良く、前述のような容器内に収納する工程がない。同時に被測定光源4の発熱も適切なヒートシンク等で積分半球2の外に放出できる。   At this time, the flat mirror 3 and the integrating hemisphere 2 realize a state in which the measured light source 4 is lit in the space in the integrating sphere without the lighting jig 8 or the support. Since half of the light source 4 to be measured is outside the integration space, that is, outside the plane mirror 3, it is only necessary to place the light source 4 to be measured in the opening 5, and it is housed in the container as described above. There is no process. At the same time, the heat of the light source 4 to be measured can be emitted outside the integrating hemisphere 2 with an appropriate heat sink or the like.

特開平6−167388号公報 (図1)JP-A-6-167388 (FIG. 1)

特許文献1に示したような積分半球を使う方法では、全光束を測定するごとに平面ミラーの開口部にLED素子を一個ずつ配置していた。このようなやりかたで量産ラインに導入しようとすると、搬送系が複雑になるうえ、スループットの大きな改善が望めない。   In the method using an integrating hemisphere as shown in Patent Document 1, LED elements are arranged one by one in the opening of the plane mirror every time the total luminous flux is measured. If it is attempted to introduce it into a mass production line in this way, the conveyance system becomes complicated and a large improvement in throughput cannot be expected.

そこで本発明は、これらの課題に鑑み、量産ラインにおいて全LED素子の全光束を効率よく測定しながらLED素子の搬送が簡単な検査装置及び検査方法を提供することを目的とする。   In view of these problems, an object of the present invention is to provide an inspection apparatus and an inspection method in which the LED elements can be easily conveyed while efficiently measuring the total luminous flux of all the LED elements in a mass production line.

上記課題を解決するため本発明の半導体発光装置の検査方法は、半導体発光素子から出射する光束を光拡散材料により均一化して測る半導体発光装置の検査方法において、
複数の前記半導体発光素子を配列し連結させた集合基板を積分半球の曲率中心付近又は積分球の周辺部にセットし、
前記集合基板の半導体発光素子にプローブカードの探針を接触させ、
前記半導体発光素子を順次発光させて各半導体発光素子の全光束を測ることを特徴とする。
In order to solve the above problems, a semiconductor light emitting device inspection method of the present invention is a semiconductor light emitting device inspection method in which a light beam emitted from a semiconductor light emitting element is uniformly measured by a light diffusion material.
A set substrate in which a plurality of the semiconductor light emitting elements are arranged and connected is set near the center of curvature of the integrating hemisphere or around the integrating sphere,
The probe of the probe card is brought into contact with the semiconductor light emitting element of the collective substrate,
The semiconductor light emitting elements are caused to emit light sequentially, and the total luminous flux of each semiconductor light emitting element is measured.

上記課題を解決するため本発明の半導体発光装置の検査装置は、半導体発光素子から出射する光束を光拡散材料により均一化して測る半導体発光装置の検査装置において、
複数の半導体発光素子を配列し連結させた集合基板を配置するための開口部が、曲率中心に形成された積分半球又は周辺部に形成された積分球と、
前記積分半球又は積分球に取り付けた前記光検出器と、
可動台と、
前記可動台に取り付けられ、複数の探針を備えたプローブカードと、
前記可動台を移動させて前記プローブカーの前記探針を前記集合基板上の複数の前記半導体発光素子と電気的に接続し、前記半導体発光素子を個別に点灯させる手段と、
を備えることを特徴とする。
In order to solve the above problems, a semiconductor light-emitting device inspection apparatus of the present invention is a semiconductor light-emitting device inspection device that uniformly measures a light beam emitted from a semiconductor light-emitting element with a light diffusion material.
An integrating hemisphere formed at the center of curvature, or an integrating sphere formed at the periphery, an opening for arranging a collective substrate in which a plurality of semiconductor light emitting elements are arranged and connected; and
The photodetector attached to the integrating hemisphere or integrating sphere;
A movable base,
A probe card attached to the movable base and provided with a plurality of probes;
Means for moving the movable base to electrically connect the probe of the probe car with the plurality of semiconductor light emitting elements on the collective substrate, and individually lighting the semiconductor light emitting elements;
It is characterized by providing.

前記プローブカードが前記集合基板の一部の領域に接触した後、別の領域と接触するのが好ましい。   It is preferable that after the probe card contacts a partial area of the collective substrate, it contacts another area.

本発明の半導体発光装置の検査装置は、多数の半導体発光装置が連結して配列する集合基板を測定対象としている。この集合基板を積分半球又は積分球の開口部に設置したら、可動台に取り付けたプローブカードが移動し、プローブカードが所望の位置に来たらプローブカードの探針と集合基板を接触させ、各半導体発光素子の全光束を測定する。   The inspection apparatus for a semiconductor light emitting device according to the present invention uses a collective substrate on which a large number of semiconductor light emitting devices are connected and arranged as a measurement target. Once this collective substrate is installed in the integrating hemisphere or the opening of the integrating sphere, the probe card attached to the movable base moves. The total luminous flux of the light emitting element is measured.

この際、プローブカードに含まれる複数の探針は、集合基板に含まれる複数の半導体発光素子と電気的に接続する。この状態で第一のLED素子を点灯させ全光束を測定したら、次にプローブカードの探針を集合基板に接触させたまま第2のLED素子を点灯させ全光束を測定する。これを繰り返しプローブカードの探針と接続する全てのLED素子の測定が完了したら、可動台を使ってブローブカードを集合基板の第2の領域に移動し前述と同様の測定を繰り返す。   At this time, the plurality of probes included in the probe card are electrically connected to the plurality of semiconductor light emitting elements included in the collective substrate. When the first LED element is turned on and the total luminous flux is measured in this state, the second LED element is turned on and the total luminous flux is measured while the probe card probe is in contact with the collective substrate. When the measurement of all the LED elements connected to the probe of the probe card is completed by repeating this, the probe card is moved to the second area of the collective substrate using the movable table, and the same measurement as described above is repeated.

以上のようにして本発明の半導体発光装置の検査装置はLED素子に係わる搬送を簡単化でき、さらにプローブカードの移動回数を減らすことでスループットを向上させている。   As described above, the semiconductor light-emitting device inspection apparatus according to the present invention can simplify the transportation related to the LED elements and further improve the throughput by reducing the number of times the probe card is moved.

同様に本発明の半導体発光装置の検査方法は、多数の半導体発光装置が配列する集合基板を測定対象としている。集合基板を積分半球又は積分球の開口部に設置したら、プローブカードの探針を集合基板の第1の領域に接触させる。このときプローブカードに含まれる複数の探針は、第1の領域に含まれる複数の半導体発光素子と電気的に接続する。この状態で第1のLED素子を点灯させ全光束を測定したら、次にプローブカードの探針を集合基板の第1の領域に接触させたまま第2のLED素子を点灯させ全光束を測定する。これを繰り返し第1の領域に含まれる全てのLED素子の全光束を測定する。これが完了したら、ブローブカードを集合基板の第2の領域に移動し前述と同様の測定を繰り返す。   Similarly, the inspection method for a semiconductor light emitting device of the present invention uses a collective substrate on which a large number of semiconductor light emitting devices are arranged as a measurement target. When the collective substrate is installed in the integrating hemisphere or the opening of the integrating sphere, the probe of the probe card is brought into contact with the first region of the collective substrate. At this time, the plurality of probes included in the probe card are electrically connected to the plurality of semiconductor light emitting elements included in the first region. When the first LED element is turned on and the total luminous flux is measured in this state, the second LED element is turned on and the total luminous flux is measured while the probe card probe is in contact with the first region of the collective substrate. . This is repeated to measure the total luminous flux of all the LED elements included in the first region. When this is completed, the probe card is moved to the second area of the collective substrate and the same measurement as described above is repeated.

以上のようにして本発明の半導体発光装置の検査方法はLED素子に係わる搬送を簡単化でき、さらにプローブカードの移動回数を減らすことでスループットを向上させている。   As described above, the inspection method of the semiconductor light emitting device of the present invention can simplify the transportation related to the LED element and further improve the throughput by reducing the number of times the probe card is moved.

本発明の第1実施形態における検査システムの説明図。Explanatory drawing of the test | inspection system in 1st Embodiment of this invention. 図1のプローブカードに係わる検査システムの説明図。Explanatory drawing of the test | inspection system concerning the probe card of FIG. 本発明の第2実施形態における検査システムの説明図。Explanatory drawing of the test | inspection system in 2nd Embodiment of this invention. 従来例における検査システムの説明図。Explanatory drawing of the inspection system in a prior art example.

以下、添付図1〜3を参照しながら本発明の好適な実施形態について詳細に説明する。なお図面において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また説明のため部材の縮尺は適宜変更している。さらに特許請求の範囲に記載した発明特定事項との関係をカッコ内に記載している。
(第1実施形態)
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. In the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. For the sake of explanation, the scale of the members is changed as appropriate. Furthermore, the relationship with the invention specific matter described in the claims is described in parentheses.
(First embodiment)

図1により本発明の第1実施形態における検査装置を説明する。図1は本実施形態における検査システムの説明図である。図1に示した検査システムは、積分半球11、光検出器12、プローブカード13、XYZテーブル14(可動台)とともに点線で示した制御ブロック20を備えている。   An inspection apparatus according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram of an inspection system according to this embodiment. The inspection system shown in FIG. 1 includes a control block 20 indicated by a dotted line together with an integrating hemisphere 11, a photodetector 12, a probe card 13, and an XYZ table 14 (movable table).

積分半球11は、内面に光拡散材料15が塗布されており、図中右上部に光検出器12が取り付けられている。また積分半球11の開口部を塞ぐように平面ミラー16が取り付けられている。平面ミラー16の下面は鏡面となっており、積分半球11を積分球と等価なものとしている。平面ミラー16は、中心部が開口し、ここに多数のLED素子が連結して配列した集合基板17が配置される。なお平面ミラー16の下部には遮光板18が取り付けられ、遮光板18により集合基板17に含まれるLED素子から光検出器12に向う直接光を遮っている。   The integrating hemisphere 11 is coated with a light diffusion material 15 on the inner surface, and a photodetector 12 is attached to the upper right part in the figure. A flat mirror 16 is attached so as to close the opening of the integrating hemisphere 11. The lower surface of the flat mirror 16 is a mirror surface, and the integrating hemisphere 11 is equivalent to an integrating sphere. The flat mirror 16 has an opening at the center, and a collective substrate 17 in which a large number of LED elements are connected and arranged is disposed. A light shielding plate 18 is attached to the lower part of the plane mirror 16, and direct light from the LED elements included in the collective substrate 17 toward the photodetector 12 is blocked by the light shielding plate 18.

プローブカード13は、XYZテーブル14の下面に取り付けられ、多数の探針13a(プローブともいう)を備えている。XYZテーブル14が下がり、プローブカード13の探針13aが集合基板17の上面に触れると、プローブカード13に含まれる多数の探針13aが集合基板17に含まれる多数のLED素子と電気的に接続する。   The probe card 13 is attached to the lower surface of the XYZ table 14 and includes a large number of probes 13a (also referred to as probes). When the XYZ table 14 is lowered and the probe 13 a of the probe card 13 touches the upper surface of the collective substrate 17, many probes 13 a included in the probe card 13 are electrically connected to many LED elements included in the collective substrate 17. To do.

制御ブロック20は、XYZテーブル制御ブロック21、点灯制御ブロック22、計測制御ブロック23及び中央制御ブロック24を含んでいる。XYZテーブル制御ブロック21はXYZテーブル14の上下左右方向の動作を制御する。点灯制御ブロック22は、集合基板17に含まれる一個のLED素子に、プローブカード13に含まれる探針13aの対を介して電流を供給し、このLED素子を点灯する。なおこのとき探針13a間の電圧も測っておく。計測制御ブロック23は、光検出器12へ電力を供給するとともに、光
検出器12から測定データを受け取る。中央制御ブロック24は、XYZテーブル制御ブロック21、点灯制御ブロック22及び計測制御ブロック23との間で制御信号及びデータをやり取りし、検査システム全体の動作を制御する。
The control block 20 includes an XYZ table control block 21, a lighting control block 22, a measurement control block 23 and a central control block 24. The XYZ table control block 21 controls the operation of the XYZ table 14 in the vertical and horizontal directions. The lighting control block 22 supplies a current to one LED element included in the collective substrate 17 via a pair of probe 13 a included in the probe card 13 to light this LED element. At this time, the voltage between the probes 13a is also measured. The measurement control block 23 supplies power to the photodetector 12 and receives measurement data from the photodetector 12. The central control block 24 exchanges control signals and data with the XYZ table control block 21, the lighting control block 22, and the measurement control block 23, and controls the operation of the entire inspection system.

次に図1の検査システムにより本実施形態の検査方法を説明する。まず集合基板17を積分半球11の曲率中心、すなわち平面ミラー16の開口部に配置する。続いてXYZテーブル14を使って集合基板17の第1の領域にプローブカード13に含まれる複数の探針13aを接触させる。なお集合基板17の領域とは、LED素子が配列して連結する平面の一区画に対応し、それぞれの区画はプローブカード13の探針13aが同時に接続する複数のLED素子からなるものである。この第1の領域に含まれる第1のLED素子に探針13aを介して点灯制御ブロック22から所定の電流を供給する。これで第1のLED素子が点灯するので電気特性とともに、光検出器12を使って照度を測定する。制御ブロック20は、予め標準光源から得ておいたデータにもとづき、この照度から全光束を換算し、LED素子の座標とともに記憶する。   Next, the inspection method of this embodiment will be described with reference to the inspection system of FIG. First, the collective substrate 17 is arranged at the center of curvature of the integrating hemisphere 11, that is, at the opening of the plane mirror 16. Subsequently, a plurality of probes 13 a included in the probe card 13 are brought into contact with the first region of the collective substrate 17 using the XYZ table 14. The area of the collective substrate 17 corresponds to one section of the plane where the LED elements are arranged and connected, and each section is composed of a plurality of LED elements to which the probe 13a of the probe card 13 is connected simultaneously. A predetermined current is supplied from the lighting control block 22 to the first LED element included in the first region via the probe 13a. Since the first LED element is turned on, the illuminance is measured using the photodetector 12 together with the electrical characteristics. Based on the data obtained from the standard light source in advance, the control block 20 converts the total luminous flux from this illuminance and stores it together with the coordinates of the LED elements.

第1のLED素子の全光束を測り終えたら、プローブカード13を固定したまま点灯制御ブロック22で探針13aからなる対を切り替え、第2のLED素子に電流を供給し、第1のLED素子と同様に照度を測定し全光束を得る。   After measuring the total luminous flux of the first LED element, the lighting control block 22 switches the pair consisting of the probe 13a while the probe card 13 is fixed, and supplies current to the second LED element. The illuminance is measured in the same manner as in to obtain the total luminous flux.

これを繰り返し第1の領域に含まれる全てのLED素子を測定する。この測定が完了したら、XYZテーブル14を上昇させプローブカード13を集合基板17から離し、プローブカード13を集合基板17の第2の領域に移動させる。そしてXYZテーブル14を下降しプローブカード13の探針13aを集合基板17に接触させ、第1の領域と同様に第2の領域に含まれるLED素子の全光束を測定する。さらに集合基板17の他の領域でも同様の操作を行い、集合基板17に含まれる全てのLED素子について全光束を測定する。制御ブロック20は、測定データとLED素子の座標に基づいて特性マップを作成する。   This is repeated and all LED elements included in the first region are measured. When this measurement is completed, the XYZ table 14 is raised, the probe card 13 is moved away from the collective substrate 17, and the probe card 13 is moved to the second region of the collective substrate 17. Then, the XYZ table 14 is lowered, the probe 13a of the probe card 13 is brought into contact with the collective substrate 17, and the total luminous flux of the LED elements included in the second area is measured as in the first area. Further, the same operation is performed on other regions of the collective substrate 17 to measure the total luminous flux of all the LED elements included in the collective substrate 17. The control block 20 creates a characteristic map based on the measurement data and the coordinates of the LED elements.

その後、集合基板17を交換し同様の工程を繰り返す。集合基板17には多数のLED素子が含まれているので交換は手作業であっても大きな負荷とならない。自動供給としても比較的単純な搬送系で済む。LED素子の電極は数100μm角程度あるので、集合基板17の外形を基準としてプローブカード13の位置合わせができる。またこの位置合わせに画像認識を採用すると合わせ位置精度が向上するので好ましい。   Thereafter, the collective substrate 17 is replaced and the same process is repeated. Since the collective substrate 17 includes a large number of LED elements, replacement is not a heavy load even if it is a manual operation. A relatively simple transport system is sufficient for automatic supply. Since the electrode of the LED element is about several hundred μm square, the probe card 13 can be aligned based on the outer shape of the collective substrate 17. In addition, it is preferable to use image recognition for the alignment because the alignment accuracy is improved.

次に図2を用いて本実施形態における集合基板17、プローブカード13及び点灯制御ブロック22の関係をさらに詳しく説明する。図2は図1のプローブカード13に係わる検査システムの説明図である。なお図1とは上下を逆にして図示している。このため集合基板17の下にプローブカード13がある。一般に集合基板17は10cm角程度にすることが多く、このとき集合基板17上には数100から数1000個のLED素子が連結して配列している。図2では簡単のため3個のLED素子30を備えるものとして集合基板17の断面を示した。個別のLED素子30は幅がAであり、幅Bのブレードで集合基板17を切断して得ることができる。なお説明を簡単化するため、図1で述べてきた第2の領域については省いている。   Next, the relationship among the collective substrate 17, the probe card 13, and the lighting control block 22 in this embodiment will be described in more detail with reference to FIG. FIG. 2 is an explanatory diagram of an inspection system related to the probe card 13 of FIG. Note that FIG. 1 is shown upside down. Therefore, the probe card 13 is under the collective substrate 17. In general, the collective substrate 17 is often about 10 cm square, and at this time, several hundred to several thousand LED elements are connected and arranged on the collective substrate 17. In FIG. 2, for the sake of simplicity, the cross section of the collective substrate 17 is shown as including three LED elements 30. The individual LED elements 30 have a width A, and can be obtained by cutting the aggregate substrate 17 with a blade having a width B. In order to simplify the explanation, the second region described in FIG. 1 is omitted.

LED素子30ごとに板材38の上面に二個の電極35、下面に2個の電極37が形成され、電極35と電極37とはスルーホール36で接続している。これらの電極35(又は電極37)はカソードとアノードに相当する。電極35上には、サファイア基板の下面に発光層を含む半導体層を備えたLEDダイ33がフリップチップ実装され、LEDダイ33の電極(図示せず)と電極35はバンプ34を介して接続している。LEDダイ33、電極35及び板材38の表面は封止樹脂32で封止されている。さらに封止樹脂32の
側面を反射性樹脂31が取り囲んでいる。反射性樹脂31を点線に沿って切断すると所望のLED素子30が得られる。
For each LED element 30, two electrodes 35 are formed on the upper surface of the plate member 38, and two electrodes 37 are formed on the lower surface, and the electrodes 35 and 37 are connected by a through hole 36. These electrodes 35 (or electrodes 37) correspond to a cathode and an anode. An LED die 33 having a semiconductor layer including a light emitting layer on the lower surface of the sapphire substrate is flip-chip mounted on the electrode 35, and the electrode (not shown) of the LED die 33 and the electrode 35 are connected via bumps 34. ing. The surfaces of the LED die 33, the electrode 35, and the plate material 38 are sealed with a sealing resin 32. Further, the reflective resin 31 surrounds the side surface of the sealing resin 32. When the reflective resin 31 is cut along the dotted line, a desired LED element 30 is obtained.

プローブカード13の上面に配列している探針13は、コストと性能のバランスから数10〜100本程度になるが、図2では説明のため6本だけで示している。探針13aの対のピッチは集合基板17に含まれるLED素子30の配列ピッチaと等しい。このようにして複数の探針13aの対は各LED素子30の電極対と同時に接続する。なお探針13aは垂直方向にバネ性を有するが、図2では省略して描いている。   The number of the probes 13 arranged on the upper surface of the probe card 13 is about several tens to 100 from the balance between cost and performance, but in FIG. 2, only six are shown for explanation. The pitch of the pair of probes 13 a is equal to the arrangement pitch a of the LED elements 30 included in the collective substrate 17. In this way, the plurality of pairs of probes 13 a are connected simultaneously with the electrode pairs of the LED elements 30. The probe 13a has a spring property in the vertical direction, but is omitted from FIG.

探針13aの対に含まれる一方の探針13aは、一方の共通配線と接続している。これに対し探針13aの対に含まれる他方の探針13aは、スイッチ41,42,43の一方の端子と接続している。またスイッチ41,42,43の他方の端子は、他方の共通配線に接続している。そして定電流源44と電圧計45は一方の共通配線と他方の共通配線の間に挿入されている。なおスイッチ41,42,43、定電流源44及び電圧計45は点灯制御ブロック22に含まれる。   One probe 13a included in the pair of probe 13a is connected to one common wiring. On the other hand, the other probe 13a included in the pair of probes 13a is connected to one terminal of the switches 41, 42, and 43. The other terminals of the switches 41, 42 and 43 are connected to the other common wiring. The constant current source 44 and the voltmeter 45 are inserted between one common wiring and the other common wiring. The switches 41, 42, 43, the constant current source 44 and the voltmeter 45 are included in the lighting control block 22.

本実施形態の検査方法では最初に集合基板17の電極37とプローブカード13に含まれる探針13aを接触させる。続いてスイッチ41を導通させ図の左側のLED素子30(第1の半導体発光素子)に所定の電流を印加する。このときLED素子30が発光するので、図1における説明の通り全光束を測定する。同時に電圧計45で電極37間の電圧を測定する。この電圧はLED素子30の順方向電圧と呼ばれ、予め電圧値の範囲(ランクという)を数とおり設定しておき、LED素子30の示す電圧値に応じてランク分けされることがある。順方向電圧と全光束を測ったら、スイッチ41を開放し、スイッチ42を導通させる。図左のLED素子30と同様に図中央のLED素子30(第2の半導体発光素子)にも電流を印加し、同様の測定を行なう。以下、同様のステップでプローブカード13の探針13aと接続するLED素子30全てについて測定を繰り返す。図2には描いていないが、第1の領域に含まれるLED素子30の測定が完了したら、プローブカード13を移動し集合基板17の第2の領域のLED素子30の測定を行なう。
(第2実施形態)
In the inspection method of this embodiment, first, the electrode 37 of the collective substrate 17 and the probe 13a included in the probe card 13 are brought into contact. Subsequently, the switch 41 is turned on to apply a predetermined current to the LED element 30 (first semiconductor light emitting element) on the left side of the drawing. Since the LED element 30 emits light at this time, the total luminous flux is measured as described in FIG. At the same time, the voltage between the electrodes 37 is measured by the voltmeter 45. This voltage is called a forward voltage of the LED element 30, and several voltage value ranges (referred to as ranks) are set in advance, and may be ranked according to the voltage value indicated by the LED element 30. When the forward voltage and the total luminous flux are measured, the switch 41 is opened and the switch 42 is turned on. Similarly to the LED element 30 on the left of the figure, a current is applied to the LED element 30 (second semiconductor light emitting element) in the center of the figure, and the same measurement is performed. Thereafter, the measurement is repeated for all the LED elements 30 connected to the probe 13a of the probe card 13 in the same step. Although not drawn in FIG. 2, when the measurement of the LED elements 30 included in the first region is completed, the probe card 13 is moved and the LED elements 30 in the second region of the collective substrate 17 are measured.
(Second Embodiment)

第1実施形態では、集合基板17が一方の面で発光し他方の面で電気的に接続できることを利用し、積分半球11の開口を覆う平面ミラー16の中央に設けた開口部において他方の面を露出させて集合基板17を配置した。同時に、集合基板17には多数のLED素子30が含まれることから設置回数を大幅に削減できることにより、LED素子30に係わる集合基板17の搬送を簡略化した。さらにプローブカード13に含まれる複数の探針13aが同時に集合基板17に含まれる複数のLED素子30と接続し、このときスイッチ41〜43を切り替えて個別のLED素子30に電流を印加し点灯させ、機械的な移動を極めて少なくしたので検査を高速化できた。しかしながらLED素子30のように上部にしか光を放射しない光源の場合、集合基板17の非発光側を外部に露出させ全光束を測るとき積分半球11に限られず積分球を用いても良い。積分球を使う例として図3により本発明の第2実施形態の検査システムを説明する。   In the first embodiment, utilizing the fact that the collective substrate 17 emits light on one surface and can be electrically connected on the other surface, the other surface in the opening provided in the center of the flat mirror 16 covering the opening of the integrating hemisphere 11 is used. And the collective substrate 17 was disposed. At the same time, since the collective substrate 17 includes a large number of LED elements 30, the number of installations can be greatly reduced, thereby simplifying the transport of the collective substrate 17 related to the LED elements 30. Further, the plurality of probes 13a included in the probe card 13 are simultaneously connected to the plurality of LED elements 30 included in the collective substrate 17, and at this time, the switches 41 to 43 are switched to apply current to the individual LED elements 30 to light them. Since the mechanical movement is extremely small, the inspection speed can be increased. However, in the case of a light source that emits light only at the top, such as the LED element 30, when measuring the total luminous flux by exposing the non-light emitting side of the collective substrate 17 to the outside, an integrating sphere may be used instead of the integrating hemisphere 11. As an example using an integrating sphere, an inspection system according to a second embodiment of the present invention will be described with reference to FIG.

図3は本発明の第2実施形態における検査システムの説明図である。図1に示した第1実施形態の検査システムと図3の検査システムとの違いは、図1において平面ミラー16等を含む積分半球11が、図3において積分球51に置き換わっただけである。なお積分球51及び集合基板17等は断面を示している。積分球51は内面に光拡散材料52が塗布され、側部に光検出器12が取り付けられている。また積分球51の上部が開口しており、ここに集合基板17を配置している。光検出器12の出力を全光束に換算する補正係数は第1実施形態の検査システムと異なるが、その他は第1実施形態と第2実施形態で同等である。   FIG. 3 is an explanatory diagram of an inspection system according to the second embodiment of the present invention. The difference between the inspection system of the first embodiment shown in FIG. 1 and the inspection system of FIG. 3 is that the integrating hemisphere 11 including the flat mirror 16 and the like in FIG. 1 is replaced with the integrating sphere 51 in FIG. The integrating sphere 51 and the collective substrate 17 are shown in cross section. The integrating sphere 51 is coated with a light diffusing material 52 on its inner surface, and the photodetector 12 is attached to the side. The upper part of the integrating sphere 51 is open, and the collective substrate 17 is disposed here. The correction coefficient for converting the output of the photodetector 12 into the total luminous flux is different from that of the inspection system of the first embodiment, but the other is the same in the first embodiment and the second embodiment.

なお第1及び第2実施形態では可動台としてXYZテーブル21を使用した。可動台はXYZテーブルに限られず、可動範囲が二次元的なXYテーブルであっても良い。この場合は、図1,3において集合基板17が上昇し、プローブカード13に含まれる探針13aと集合基板17に含まれるLED素子の電極を接触させる。またLED素子30について集合基板17上の位置の違いによって光検出器12に入射する照度が変化することがある。この場合、集合基板17上における個別のLED素子30ついて、その配置位置に基づき照度又は全光束を補正することが好ましい。   In the first and second embodiments, the XYZ table 21 is used as the movable table. The movable table is not limited to the XYZ table, and may be an XY table having a two-dimensional movable range. In this case, the collective substrate 17 rises in FIGS. 1 and 3, and the probe 13 a included in the probe card 13 and the electrode of the LED element included in the collective substrate 17 are brought into contact with each other. Further, the illuminance incident on the photodetector 12 may change depending on the position of the LED element 30 on the collective substrate 17. In this case, it is preferable to correct the illuminance or the total luminous flux based on the arrangement position of the individual LED elements 30 on the collective substrate 17.

11…積分半球、
12…光検出器、
13…プローブカード、
13a…探針、
14…XYZテーブル(可動台)、
15,52…光拡散材料、
16…平面ミラー、
17…集合基板、
18…遮光板、
20…制御ブロック、
21…XYZテーブル制御ブロック、
22…点灯制御ブロック、
23…計測制御ブロック、
24…中央制御ブロック、
30…LED素子(半導体発光素子)、
31…反射性樹脂、
32…封止樹脂、
33…LEDダイ、
34…バンプ、
35,37…電極、
36…スルーホール、
38…板材、
41,42,43…スイッチ、
44…定電流源、
45…電圧計、
51…積分球。


11 ... Integral hemisphere,
12 ... photodetector
13 ... Probe card,
13a ... probe,
14 ... XYZ table (movable stand),
15, 52 ... Light diffusing material,
16 ... plane mirror,
17 ... Collective board,
18 ... light shielding plate,
20 ... control block,
21 ... XYZ table control block,
22 ... lighting control block,
23: Measurement control block,
24 ... Central control block,
30 ... LED element (semiconductor light emitting element),
31 ... reflective resin,
32 ... sealing resin,
33 ... LED die,
34 ... Bump,
35, 37 ... electrodes,
36 ... through hole,
38 ... Plate material,
41, 42, 43 ... switches,
44 ... constant current source,
45 ... Voltmeter,
51 ... Integral sphere.


Claims (3)

半導体発光素子から出射する光束を光拡散材料により均一化して測る半導体発光装置の検査方法において、
複数の前記半導体発光素子を配列し連結させた集合基板を積分半球の曲率中心付近又は積分球の周辺部にセットし、
前記集合基板の半導体発光素子にプローブカードの探針を接触させ、
前記半導体発光素子を順次発光させて各半導体発光素子の全光束を測ることを特徴とする半導体発光装置の検査方法。
In an inspection method of a semiconductor light emitting device for measuring a light beam emitted from a semiconductor light emitting element by making it uniform with a light diffusing material,
A set substrate in which a plurality of the semiconductor light emitting elements are arranged and connected is set near the center of curvature of the integrating hemisphere or around the integrating sphere,
The probe of the probe card is brought into contact with the semiconductor light emitting element of the collective substrate,
A method for inspecting a semiconductor light-emitting device, wherein the semiconductor light-emitting elements are caused to emit light sequentially to measure the total luminous flux of each semiconductor light-emitting element.
半導体発光素子から出射する光束を光拡散材料により均一化して測る半導体発光装置の検査装置において、
複数の半導体発光素子を配列し連結させた集合基板を配置するための開口部が、曲率中心に形成された積分半球又は周辺部に形成された積分球と、
前記積分半球又は積分球に取り付けた前記光検出器と、
可動台と、
前記可動台に取り付けられ、複数の探針を備えたプローブカードと、
前記可動台を移動させて前記プローブカーの前記探針を前記集合基板上の複数の前記半導体発光素子と電気的に接続し、前記半導体発光素子を個別に点灯させる手段と、
を備えることを特徴とする半導体発光装置の検査装置。
In an inspection apparatus for a semiconductor light-emitting device that uniformly measures a light beam emitted from a semiconductor light-emitting element with a light diffusion material,
An integrating hemisphere formed at the center of curvature, or an integrating sphere formed at the periphery, an opening for arranging a collective substrate in which a plurality of semiconductor light emitting elements are arranged and connected; and
The photodetector attached to the integrating hemisphere or integrating sphere;
A movable base,
A probe card attached to the movable base and provided with a plurality of probes;
Means for moving the movable base to electrically connect the probe of the probe car with the plurality of semiconductor light emitting elements on the collective substrate, and individually lighting the semiconductor light emitting elements;
An inspection apparatus for a semiconductor light emitting device, comprising:
前記プローブカードが前記集合基板の一部の領域に接触した後、別の領域と接触する請求項2に記載の半導体発光装置の検査装置。   The inspection apparatus for a semiconductor light-emitting device according to claim 2, wherein the probe card contacts a part of the collective substrate and then contacts another area.
JP2011090872A 2011-04-15 2011-04-15 Inspection device and inspection method for semiconductor light-emitting device Pending JP2012227201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090872A JP2012227201A (en) 2011-04-15 2011-04-15 Inspection device and inspection method for semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090872A JP2012227201A (en) 2011-04-15 2011-04-15 Inspection device and inspection method for semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2012227201A true JP2012227201A (en) 2012-11-15

Family

ID=47277068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090872A Pending JP2012227201A (en) 2011-04-15 2011-04-15 Inspection device and inspection method for semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2012227201A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411885A (en) * 2013-07-18 2013-11-27 江苏大学 Diffuse reflection illumination apparatus of multispectral imaging system
KR101343598B1 (en) 2013-07-18 2013-12-19 에이티시스템 주식회사 Inspeting method of led flash module
KR101447716B1 (en) 2013-04-23 2014-10-06 포톤데이즈(주) Device for Investigating Epiwafer and Method for Investigating the Same
WO2015045222A1 (en) * 2013-09-26 2015-04-02 シャープ株式会社 Inspection system, inspection method, and readable recording medium
JP2018037502A (en) * 2016-08-31 2018-03-08 日亜化学工業株式会社 Inspection method of light-emitting device
WO2018211839A1 (en) * 2017-05-17 2018-11-22 浜松ホトニクス株式会社 Spectrometry device and spectrometry method
JP2019507953A (en) * 2016-02-11 2019-03-22 ツェットカーヴェー グループ ゲーエムベーハー Method and ICT apparatus for inspecting a module of a lighting device comprising at least two LEDs
CN110261755A (en) * 2019-05-28 2019-09-20 常州纵慧芯光半导体科技有限公司 A kind of probe card, detection device and wafer detection method
WO2020246339A1 (en) * 2019-06-07 2020-12-10 株式会社ブイ・テクノロジー Bonding device, bonding method, and display device production method
CN113687504A (en) * 2021-09-03 2021-11-23 浙江理工大学绍兴柯桥研究院有限公司 Uniform lighting device for observing tiny objects and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246599A (en) * 1996-03-08 1997-09-19 Sharp Corp Apparatus for measuring electrooptic characteristic
JP2004031460A (en) * 2002-06-21 2004-01-29 Technologue:Kk Light quantity measuring method and light quantity measurement device of light emitting diode
JP2009103654A (en) * 2007-10-25 2009-05-14 Otsuka Denshi Co Ltd Integrating photometer and measuring method
JP2012159457A (en) * 2011-02-02 2012-08-23 Unitec Co Ltd Integrating sphere device and light measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246599A (en) * 1996-03-08 1997-09-19 Sharp Corp Apparatus for measuring electrooptic characteristic
JP2004031460A (en) * 2002-06-21 2004-01-29 Technologue:Kk Light quantity measuring method and light quantity measurement device of light emitting diode
JP2009103654A (en) * 2007-10-25 2009-05-14 Otsuka Denshi Co Ltd Integrating photometer and measuring method
JP2012159457A (en) * 2011-02-02 2012-08-23 Unitec Co Ltd Integrating sphere device and light measuring method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447716B1 (en) 2013-04-23 2014-10-06 포톤데이즈(주) Device for Investigating Epiwafer and Method for Investigating the Same
KR101343598B1 (en) 2013-07-18 2013-12-19 에이티시스템 주식회사 Inspeting method of led flash module
CN103411885A (en) * 2013-07-18 2013-11-27 江苏大学 Diffuse reflection illumination apparatus of multispectral imaging system
CN105723208B (en) * 2013-09-26 2019-01-08 夏普株式会社 inspection system
WO2015045222A1 (en) * 2013-09-26 2015-04-02 シャープ株式会社 Inspection system, inspection method, and readable recording medium
CN105723208A (en) * 2013-09-26 2016-06-29 夏普株式会社 Inspection system, inspection method, and readable recording medium
JPWO2015045222A1 (en) * 2013-09-26 2017-03-09 シャープ株式会社 Inspection system
JP2019507953A (en) * 2016-02-11 2019-03-22 ツェットカーヴェー グループ ゲーエムベーハー Method and ICT apparatus for inspecting a module of a lighting device comprising at least two LEDs
JP2018037502A (en) * 2016-08-31 2018-03-08 日亜化学工業株式会社 Inspection method of light-emitting device
CN110621967B (en) * 2017-05-17 2022-03-08 浜松光子学株式会社 Spectroscopic measurement apparatus and spectroscopic measurement method
WO2018211839A1 (en) * 2017-05-17 2018-11-22 浜松ホトニクス株式会社 Spectrometry device and spectrometry method
JP2018194428A (en) * 2017-05-17 2018-12-06 浜松ホトニクス株式会社 Spectroscopic measurement device and spectroscopic measurement method
CN110621967A (en) * 2017-05-17 2019-12-27 浜松光子学株式会社 Spectroscopic measurement apparatus and spectroscopic measurement method
US10816402B2 (en) 2017-05-17 2020-10-27 Hamamatsu Photonics K.K. Spectrometry device and spectrometry method
TWI766980B (en) * 2017-05-17 2022-06-11 日商濱松赫德尼古斯股份有限公司 Spectroscopic measuring device and spectroscopic measuring method
CN110261755A (en) * 2019-05-28 2019-09-20 常州纵慧芯光半导体科技有限公司 A kind of probe card, detection device and wafer detection method
CN110261755B (en) * 2019-05-28 2022-04-19 常州纵慧芯光半导体科技有限公司 Probe card, detection device and wafer detection method
JP2020202252A (en) * 2019-06-07 2020-12-17 株式会社ブイ・テクノロジー Pasting device, pasting method and method for manufacturing display device
WO2020246339A1 (en) * 2019-06-07 2020-12-10 株式会社ブイ・テクノロジー Bonding device, bonding method, and display device production method
JP7343891B2 (en) 2019-06-07 2023-09-13 株式会社ブイ・テクノロジー Bonding device, bonding method, and display device manufacturing method
CN113687504A (en) * 2021-09-03 2021-11-23 浙江理工大学绍兴柯桥研究院有限公司 Uniform lighting device for observing tiny objects and using method thereof

Similar Documents

Publication Publication Date Title
JP2012227201A (en) Inspection device and inspection method for semiconductor light-emitting device
JP7245721B2 (en) Test equipment, test methods and programs
US8810271B2 (en) Method and apparatus for testing photovoltaic devices
WO2019116911A1 (en) Inspection device
US20120229801A1 (en) Integrating sphere photometer and measuring method of the same
TW200823443A (en) Light sensor inspection device with embedded light source, and the testing machine having the same
CN110261755B (en) Probe card, detection device and wafer detection method
US11940485B2 (en) Inspection apparatus and inspection method
US20180352619A1 (en) METHOD AND ICT DEVICE FOR INSPECTING MODULES OF A LIGHTING DEVICE CONTAINING AT LEAST TWO LEDs
US20150036128A1 (en) Inspection apparatus
TWI793091B (en) Led light source probe card technology for testing cmos image scan devices
KR100980837B1 (en) Apparatus for inspecting a characteristic of light device
JP2010217109A (en) Light emitting element measurement device
JP2011134932A (en) Light source unit, exposure light irradiating device, exposure device, method of manufacturing display panel substrate, device and method of inspecting semiconductor light emitting element section
CN107179177B (en) Optical detection device of light-emitting diode
JP2010238906A (en) Device and method of measuring output characteristics of solar cell
KR102479762B1 (en) Substrate for electrical element and manufacturing method thereof
KR20200054869A (en) Inspection apparatus and inspection method
TW202012059A (en) Systems, apparatus, and methods for sorting components using illumination
JP2012503758A (en) Light-emitting element measuring device including solar module and measuring method thereof
KR101015792B1 (en) Test jig for side luminescence type led array
TWI802164B (en) Test device, test method and computer readable storage medium
CN103411667A (en) Light-emitting element spot measurement machine
US20230228402A1 (en) Light source module, lighting device, and equipment system
KR101503142B1 (en) Apparatus for inspecting a light-emitting device

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20130531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924