JPH0919792A - Lead-free solder of which mechanical property is excellent - Google Patents

Lead-free solder of which mechanical property is excellent

Info

Publication number
JPH0919792A
JPH0919792A JP7352310A JP35231095A JPH0919792A JP H0919792 A JPH0919792 A JP H0919792A JP 7352310 A JP7352310 A JP 7352310A JP 35231095 A JP35231095 A JP 35231095A JP H0919792 A JPH0919792 A JP H0919792A
Authority
JP
Japan
Prior art keywords
lead
free solder
solder
composition
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7352310A
Other languages
Japanese (ja)
Inventor
Choong Sik Yoo
忠 植 劉
Mi Yeon Kim
美 延 金
Duk Yong Yoon
徳 龍 尹
Hyukkumo Ri
ヒュック 模 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansei Denki KK
Samsung Electro Mechanics Co Ltd
Original Assignee
Sansei Denki KK
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansei Denki KK, Samsung Electro Mechanics Co Ltd filed Critical Sansei Denki KK
Publication of JPH0919792A publication Critical patent/JPH0919792A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a lead free solder having a melting point and solidification temp. range usable for electronic equipment wiring as well as an increased mechanical strength by specifying a composition of lead free solder. SOLUTION: A lead free solder has a composition consisting of, by weight, 4-9% Zn, 2-5% indium, 1-24% bismuth and the balance Sn. By welting in vacuum atmosphere or inert gas atmosphere when producing a solder, a melting method to minimize generation of dross with suppressing oxidation of materials of Bi, Zn, etc., is desirable. By this method, the solder can be produced to various forms (ingot, rectangular shape, round shape, etc.), further to a spherical shaped powder of various sizes as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプリント基板、ハイ
ブリッド基板等の電子部品の電子機器の配線用として用
いられる無鉛半田に関するものであって、より詳しくは
機械的特性が優れた錫−亜鉛−インジュウム−ビスマス
系無鉛半田に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-free solder used for wiring electronic equipment such as printed circuit boards and hybrid boards, and more specifically, tin-zinc-indium having excellent mechanical properties. -It relates to bismuth-based lead-free solder.

【0002】[0002]

【従来の技術】半田の内従来から最も多く用いられて来
たSn−Pb系合金は、いろいろの機械的、物理的特性
が優れており、主に配管、熱交換器のような構造用と一
般電子産業用として多様に用いられている。しかし、S
n−Pb系合金のように鉛を含有している半田の場合、
鉛自体が分解しない金属で、一旦摂取すれば放出されず
体内に蓄積される問題を抱えている。実例として、米国
の疾病規制センター(Center for Dise
ase Control)において明示した鉛の毒性は
血中濃度10μg/dl以上となれば致命的で、特に幼
児には知能の低下を誘発させる。のみならず、更に鉛の
廃棄物は土壌を汚染させる。
2. Description of the Related Art Sn-Pb alloys, which have been used most often among solders, are excellent in various mechanical and physical properties and are mainly used for structures such as pipes and heat exchangers. Widely used for general electronics industry. However, S
In the case of solder containing lead such as n-Pb alloy,
Lead itself is a metal that does not decompose, and once it is ingested, it is not released and accumulates in the body. As an example, Center for Disease in the United States
The toxicity of lead specified in the case control is fatal at a blood concentration of 10 μg / dl or more, and particularly, it induces a decrease in intelligence in infants. Not only that, but also lead waste pollutes the soil.

【0003】特に、50Sn−50Pbや70Sn−3
0Pb等のような伝統的配管用の半田は、広い温度範囲
において使用が可能であり、強い機械的連結部位を形成
し、銅パイプ溶接に大変有用であるが、鉛が水に溶け込
み長い時間後には健康に致命的な害を与えると言う事が
発見されて、飲水を運搬するパイプのような配管用半田
においても鉛の使用が規制され始めた。
Particularly, 50Sn-50Pb and 70Sn-3
Traditional piping solders such as 0Pb can be used in a wide temperature range and form strong mechanical joints, which is very useful for copper pipe welding, but lead dissolves in water and after a long time Has been found to cause fatal damage to health, and the use of lead has begun to be regulated in solders for pipes such as pipes that carry drinking water.

【0004】このような、鉛についての規制措置が抬頭
するにつれて、最近では無鉛半田の開発が始められた。
例を挙げれば、米国特許第1,778,733号明細書
に提示されたところによると、Sn−Ag(0.005
〜3%)−Cu(0.7〜6%)の組成の無鉛半田が提
案されており、更に米国特許第4,929,423号明
細書にはSn−Bi(0.08〜20%)−Ag(0.
01〜1.5%)−Cu(0.02〜1.5%)−P
(0.01%)−稀土類混合物からなる組成の無鉛半田
が提案されている。しかしながら、上記無鉛半田等は配
管用として用いられるものであって、溶融温度が高いの
みならず、溶融温度の範囲が広いから、電子部品用に適
用するには困難である。何となれば電子部品用に用いら
れる無鉛半田はその使用温度に適合するように固有の特
性を有するが、電子部品用無鉛半田の場合には、特にそ
の溶融温度および凝固温度範囲が重要であるからであ
る。
[0004] With the advent of such lead control measures, the development of lead-free solder has recently started.
By way of example, Sn-Ag (0.005) is presented in US Pat. No. 1,778,733.
-3%)-Cu (0.7-6%) lead-free solder has been proposed. Further, U.S. Pat. No. 4,929,423 discloses Sn-Bi (0.08-20%). -Ag (0.
01-1.5%)-Cu (0.02-1.5%)-P
(0.01%)-A lead-free solder having a composition of a rare earth mixture has been proposed. However, the lead-free solder or the like is used for piping and has a high melting temperature and a wide melting temperature range, so that it is difficult to apply it to electronic parts. Lead-free solders used for electronic parts have unique characteristics so that they are suitable for the operating temperature. However, in the case of lead-free solders for electronic parts, its melting temperature and solidification temperature range are particularly important. Is.

【0005】即ち、特定の用途により選択された電子部
品用の無鉛半田は、隣接の部品、特に温度に敏感な部品
に損傷を与えない程度に低い溶融温度を有すべきのみな
らず、半田後には使用中接合状態が熱的に安定なるよう
に高い溶融温度範囲を有する必要がある。
That is, the lead-free solder for an electronic component selected according to a specific application should not only have a low melting temperature so as not to damage adjacent components, particularly temperature-sensitive components, but also after soldering. Must have a high melting temperature range so that the bonding state is thermally stable during use.

【0006】更に、無鉛半田は大部分共晶反応が生ずる
成分系から成るから、共晶組成以外の特定組成を持つよ
うになる場合、半田付け後溶融状態から凝固が始まる液
相線を通過するようになり液相と固相とが共存するよう
になり、次いで、完全に凝固が終了する固相線に至る凝
固温度範囲を持つが、万一電子部品用無鉛半田の凝固温
度の範囲が大きい場合には、半田付け後凝固時間が長引
いて収縮現象が生じ得るから、可及的に少ない凝固温度
範囲を有する無鉛半田である程、連続的な自動半田時段
階的な半田付けに、より有利な点があるからである。
Furthermore, since most lead-free solders are composed of component systems in which a eutectic reaction occurs, when they have a specific composition other than the eutectic composition, they pass through the liquidus line where solidification starts from the molten state after soldering. As a result, the liquid phase and the solid phase coexist, and then there is a solidification temperature range that reaches the solidus line at which solidification is completely completed, but the solidification temperature range of lead-free solder for electronic parts is large by any chance. In this case, since the solidification time after soldering may be prolonged and a shrinkage phenomenon may occur, a lead-free solder having a solidification temperature range that is as small as possible is more advantageous for stepwise soldering during continuous automatic soldering. Because there is a point.

【0007】一方、電子部品等に適合な無鉛半田として
最近開発されたSn−Zn−In系無鉛半田があるが、
その代表的な例を挙げれば、米国特許第5,242,6
58号明細書に提示の無鉛半田を挙げることができる。
米国特許第5,242,658号明細書に提示の無鉛半
田は、Sn:72.8〜89.4%,Zn:6.7〜1
9.2%,In:2.7〜19.4%の組成からなる
が、上記無鉛半田の場合、従来のSn−Zn合金にIn
を添加して溶融温度を低め、lnの酸化、腐食、湯あか
生成問題を解決して低溶融温度をもって狭い溶融温度範
囲を有している。しかし、上記無鉛半田にはInが添加
されながら不規則的な針状模様の樹枝状晶が形成される
微細構造を有することにより、相対的に機械的強度値が
減少され結局最終適合強度が劣化する短所がある。
On the other hand, there is a Sn-Zn-In lead-free solder recently developed as a lead-free solder suitable for electronic parts and the like.
A typical example thereof is US Pat. No. 5,242,6.
The lead-free solder presented in the specification of No. 58 can be mentioned.
The lead-free solder presented in US Pat. No. 5,242,658 is Sn: 72.8-89.4%, Zn: 6.7-1.
The composition is 9.2% and In: 2.7 to 19.4%. However, in the case of the lead-free solder, In is added to the conventional Sn-Zn alloy.
To reduce the melting temperature, solve the problems of ln oxidation, corrosion, and scale formation, and have a narrow melting temperature range with a low melting temperature. However, since the lead-free solder has a fine structure in which dendrites having an irregular needle-like pattern are formed while In is added, the mechanical strength value is relatively reduced and the final conforming strength deteriorates. There is a disadvantage

【0008】[0008]

【発明が解決しようとする課題】したがって、本発明は
上記の従来の無鉛半田の問題点を解決しようと提案され
たものであって、本発明の従来のSn−Zn−In系無
鉛半田に適切な量のBiを添加して、針状樹枝状晶生成
を抑制して他の微細構造を有するように成すことによっ
て、電子機器配線用に使用可能な融点および凝固温度範
囲を有するのみならず、殊に機械的強度が増加した無鉛
半田を提供することに、その目的がある。
Therefore, the present invention has been proposed to solve the above problems of the conventional lead-free solder, and is suitable for the conventional Sn-Zn-In lead-free solder of the present invention. By adding a sufficient amount of Bi so as to suppress the formation of needle-like dendrites and have another fine structure, not only has a melting point and a solidification temperature range usable for electronic device wiring, In particular, it is an object to provide a lead-free solder with increased mechanical strength.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の目的を
達成するためになされたものであり、本発明は重量%
で、Zn:4〜9%,In:2〜5%,Bi:1〜24
%および残部Snからなる組成の機械的性質が優れた無
鉛半田に関するものである。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and the present invention provides
Then, Zn: 4 to 9%, In: 2 to 5%, Bi: 1 to 24
% And the balance Sn, and lead-free solder having excellent mechanical properties.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳しく説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0011】先ず、本発明による無鉛半田中に含有され
る亜鉛の組成割合は、共晶組成近く(Sn−9Zn)に
保つようにするのが良い。万一亜鉛の含量が余り少なか
ったり、余り多ければ半田の溶融温度範囲が広くなるか
ら、本発明における無鉛半田中に含有される亜鉛の含量
は4〜9重量%(以下、単に%と称する。)に制限され
るべきである。
First, it is preferable that the composition ratio of zinc contained in the lead-free solder according to the present invention be maintained near the eutectic composition (Sn-9Zn). If the zinc content is too small or too large, the melting temperature range of the solder is widened. Therefore, the zinc content in the lead-free solder of the present invention is 4 to 9% by weight (hereinafter, simply referred to as%). ) Should be restricted to.

【0012】更に、インジュウム成分は無鉛半田の溶融
温度を下げる一方、湿潤性を改善する役割をするが、イ
ンジュウムの含量は2〜5%に制限されるべきである。
万一インジュウムの含量が2%未満となればその効果が
少なく、5%を超えるとγ−Sn相が常温において、析
出され上記γ−Sn相(Hcxagonal)がα−S
n相(face centered cubic)に相
変異を生じるようになり、結局接合部の熱疲労特性が低
下することになる。
Further, the indium component lowers the melting temperature of the lead-free solder while improving the wettability, but the indium content should be limited to 2 to 5%.
If the content of indium is less than 2%, the effect is small, and if it exceeds 5%, the γ-Sn phase is precipitated at room temperature and the γ-Sn phase (Hcxagonal) becomes α-S.
A phase change occurs in the n-phase (face centered cubic), and eventually the thermal fatigue property of the joint is deteriorated.

【0013】更に、上記インジュウムと共に複合添加さ
れるビスマスの場合、半田の溶融温度を下げる役割を成
すが、より重要なことはインジュウム添加による針状の
樹枝状晶形成を抑制して、機械的強度を増加させる役割
をする。このとき、ビスマスの場合少量の添加でも針状
の樹枝状晶を抑制することができるが、その添加量が余
り多ければ溶融温度を大いに下げ、かえって溶融温度範
囲を広げるためにこのような点を考慮すると、上記ビス
マスの含有量は1〜24%に定めなければならない。
Further, in the case of bismuth which is added in combination with the above indium, it plays a role of lowering the melting temperature of the solder, but more importantly, it suppresses the formation of needle-like dendrites due to the addition of indium to improve the mechanical strength. Play a role in increasing. At this time, in the case of bismuth, needle-like dendrites can be suppressed even if added in a small amount, but if the addition amount is too large, the melting temperature is greatly lowered, and in order to widen the melting temperature range, such a point is taken into consideration. Considering this, the content of bismuth should be set to 1 to 24%.

【0014】上記組成を有する半田は、金属原材料を秤
量し大気中においてポットやルツボを用いて加熱、攪拌
しながら溶解するという、通常の鋳造方法により製造す
ることができる。このとき、大気中において溶解する
と、金属原料中の不純物または非金属介在物と合金溶湯
が大気と反応して、半田合金中に溶存窒素や溶存酸素の
ような溶存ガスが残留するようになることにより、半田
母材の表面に湿潤性を妨げて半田付け性が低下したり、
半田の接合部に気孔を生じることから、熱伝導も、熱疲
労特性および製品信頼性に問題が生じる素地を有する。
したがって、大気中において合金製造時に生ずる不純物
または非金属介在物と合金中の溶存ガスを最少化して、
半田付け性を向上させ、熱疲労特性および成品の信頼性
を改善するために、本発明の半田製造時には真空状態ま
たは不活性雰囲気において溶解し、Bi,Zn等の原料
の酸化を抑制して、湯あかが生じるのを最少化する溶解
方法がより望ましい。
The solder having the above composition can be manufactured by a usual casting method in which a metal raw material is weighed and melted in the air while heating and stirring with a pot or a crucible. At this time, when dissolved in the atmosphere, impurities or non-metallic inclusions in the metal raw material and the molten alloy react with the atmosphere, and dissolved gases such as dissolved nitrogen and dissolved oxygen remain in the solder alloy. May impair the wettability on the surface of the solder base material and reduce the solderability,
Since the pores are generated in the solder joint, the heat conduction also has a problem that the thermal fatigue characteristics and the product reliability are problematic.
Therefore, impurities or non-metallic inclusions generated during alloy production in the atmosphere and dissolved gas in the alloy are minimized,
In order to improve the solderability and improve the thermal fatigue property and the reliability of the product, the solder of the present invention is melted in a vacuum state or an inert atmosphere to suppress the oxidation of raw materials such as Bi and Zn. More desirable is a dissolution method that minimizes the formation of scale.

【0015】このような方法により製造される本発明の
無鉛半田は、いろいろな形態(インゴット、長方形、円
形等)に製造することができ、更に多様な大きさの球形
の粉末にも製造することができる。更に、粉末形態の半
田の場合、適当なフラックスと混合してペーストを製造
することも可能である。
The lead-free solder of the present invention manufactured by such a method can be manufactured in various forms (ingot, rectangle, circle, etc.), and also in spherical powders of various sizes. You can Furthermore, in the case of solder in powder form, it is possible to prepare a paste by mixing with a suitable flux.

【0016】このように製造した本発明の無鉛半田は、
一般電子部品の電子機器配線用として使用可能な融点を
有するのみならず、凝固範囲が狭いから段階的な自動半
田付けに大変有利であり、従来のSn−Zn系、Sn−
Zn−In系半田よりも機械的強度が増加される特徴が
ある。特に、本発明の無鉛半田は、その組成がZn:5
〜9%,In:2〜5%,Bi:1〜10%および残部
Snの場合尚更望ましい。
The lead-free solder of the present invention thus manufactured is
Not only does it have a melting point that can be used for wiring electronic devices of general electronic parts, but it is also very advantageous for stepwise automatic soldering because it has a narrow solidification range.
It has a feature that mechanical strength is increased as compared with Zn-In based solder. In particular, the lead-free solder of the present invention has a composition of Zn: 5.
-9%, In: 2-5%, Bi: 1-10%, and the balance Sn is even more desirable.

【0017】[0017]

【実施例】以下、本発明を実施例により説明するが、こ
れらは代表的な例であり、本発明はこれらの実施例に制
限されない。
EXAMPLES The present invention will be described below with reference to examples, but these are representative examples and the present invention is not limited to these examples.

【0018】(実施例1〜11)(比較例1,2) 下記表1のような組成を有するようにSn,Zn,In
およびBi金属原料を秤量後、大気中において高周波誘
導炉を用いて溶解した後、鋳造した。
(Examples 1 to 11) (Comparative Examples 1 and 2) Sn, Zn, In having the composition shown in Table 1 below.
The Bi metal raw material was weighed, melted in the atmosphere using a high frequency induction furnace, and then cast.

【0019】さらに、比較のため従来のSn,Zn,I
n含有半田を鋳造した。
Further, for comparison, conventional Sn, Zn, I
An n-containing solder was cast.

【0020】鋳造したそれぞれの合金について、凝固時
の液相線温度と固相線温度とを測定し、その結果を表1
に示した。
For each of the cast alloys, the liquidus temperature and the solidus temperature during solidification were measured, and the results are shown in Table 1.
It was shown to.

【0021】[0021]

【表1】 上記表1に示したように、本発明に係る実施例1〜11
の場合,従来のSn−Zn−In無鉛半田に比して,殆
んど同等の水準の凝固温度範囲を有することができ、更
に低融点化が可能になることを知ることができる。これ
は、本発明のSn−Zn−In−Bi無鉛半田が、従来
の無鉛半田と同じように電子部品等に利用することので
きる半田付け特性を有することを意味する。
[Table 1] As shown in Table 1 above, Examples 1 to 11 according to the present invention
In the case of, it can be seen that compared with the conventional Sn-Zn-In lead-free solder, the solidification temperature range of almost the same level can be provided, and the melting point can be further lowered. This means that the Sn-Zn-In-Bi lead-free solder of the present invention has soldering characteristics that can be used for electronic parts and the like, like the conventional lead-free solder.

【0022】機械的特性 本発明の無鉛半田と従来の半田についての機械的特性を
考察するために、Sn−40Pb,Sn−8Zn−5I
n半田と実施例1,5について機械的特性を測定し、そ
の結果を図1に示した。
Mechanical Properties In order to consider the mechanical properties of the lead-free solder of the present invention and the conventional solder, Sn-40Pb, Sn-8Zn-5I.
Mechanical properties of n solder and Examples 1 and 5 were measured, and the results are shown in FIG.

【0023】図1に示したように、実施例1,5の場
合,従来の半田に比して引張強度が極めて優れることが
判った。
As shown in FIG. 1, it was found that the tensile strength of Examples 1 and 5 was extremely superior to that of the conventional solder.

【0024】更に、従来のSn−9Zn,Sn−8Zn
−5In半田と実施例1,5について、応力−変形関係
を測定し、その結果を図2に示した。
Further, conventional Sn-9Zn, Sn-8Zn
The stress-deformation relationship was measured for -5In solder and Examples 1 and 5, and the results are shown in FIG.

【0025】図2に示したように、実施例1,5の場
合、従来の半田のSn−9ZnおよびSn−8Zn−5
In無鉛半田に比して、変形に対して大きな応力が必要
であることが判った。
As shown in FIG. 2, in the case of Examples 1 and 5, Sn-9Zn and Sn-8Zn-5 of the conventional solder were used.
It has been found that a large stress is required for deformation as compared with In lead-free solder.

【0026】以上の機械的特性を考慮して見るに、本発
明の無鉛半田の場合、従来のSn−Pb,Sn−Znま
たはSn−Zn−In半田に比して最終の接合強度が優
れることを知ることができる。
In consideration of the above mechanical characteristics, the lead-free solder of the present invention is excellent in final joint strength as compared with the conventional Sn-Pb, Sn-Zn or Sn-Zn-In solder. You can know.

【0027】このような事実を微細組織を通じて考察す
るため、上記Sn−8Zn−5In合金および実施例1
に対して微細組織を観察し、その結果を図3に示した。
In order to consider such a fact through the microstructure, the above Sn-8Zn-5In alloy and Example 1 were used.
On the other hand, the microstructure was observed and the result is shown in FIG.

【0028】図3に示したように、従来の無鉛半田であ
るSn−8Zn−5In合金の場合、針状形態の樹枝状
晶が観察される反面、実施例1の無鉛半田の場合、Bi
の添加により不規則的な針状の樹枝状晶が抑制されるこ
とを知り得る。結局このような組織上の差で、本発明の
無鉛半田が従来の無鉛半田に比して優れた機械的特性を
表わすという事が確認された。
As shown in FIG. 3, in the case of Sn-8Zn-5In alloy, which is a conventional lead-free solder, dendrites in the form of needles are observed, while in the case of the lead-free solder of Example 1, Bi
It can be seen that the addition of is suppressed by irregular needle-like dendrites. After all, it has been confirmed that the lead-free solder of the present invention exhibits excellent mechanical properties as compared with the conventional lead-free solder due to such structural difference.

【0029】[0029]

【発明の効果】上述のように、本発明の無鉛半田は、従
来のSn−An−In系無鉛半田と殆んど同等な半田特
性を有するのみならず、機械的性質が優れており、電子
部品の配線用として使用時最終接合強度が優秀であると
いう効果がある。
As described above, the lead-free solder of the present invention not only has almost the same soldering characteristics as the conventional Sn-An-In lead-free solder but also has excellent mechanical properties, There is an effect that the final joint strength is excellent when used for wiring parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の半田と本発明の無鉛半田についての機械
的特性を示すグラフである。
FIG. 1 is a graph showing mechanical characteristics of a conventional solder and a lead-free solder of the present invention.

【図2】従来の半田と本発明の無鉛半田についての応力
−変形関係を示すグラフである。
FIG. 2 is a graph showing a stress-deformation relationship between a conventional solder and a lead-free solder of the present invention.

【図3】従来の無鉛半田と本発明の無鉛半田についての
微細組織写真である。
FIG. 3 is a microstructure photograph of a conventional lead-free solder and the lead-free solder of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尹 徳 龍 大韓民国 ソウル カンナム−ク チュン ダム−ドン 63 ヒョスンヴィラ 33− 203 (72)発明者 李 ヒュック 模 大韓民国 テジョン ユソン−ク イーウ ン−ドン 99 ハンビトアパートメント 101−1203 ─────────────────────────────────────────────────── ───Continued from the front page (72) Inventor Yongdeok Dragon South Korea Seoul Gangnam-Kuchun Dam-Don 63 Hyosun Villa 33-203 (72) Inventor Lee Hook Im Korea Daejon Yousung-Queun-Don 99 Humbit Apartment 101-1203

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Zn:4〜9%,In:2〜
5%,Bi:1〜24%および残部Snの組成からなる
ことを特徴とする機械的特性が優れた無鉛半田。
1. Zn: 4-9%, In: 2- by weight%
Lead-free solder with excellent mechanical properties, characterized in that the composition is 5%, Bi: 1 to 24%, and the balance Sn.
【請求項2】 重量%で、Zn:5〜9%,In:2〜
5%,Bi:1〜10%および残部Snの組成からなる
請求項1に記載の無鉛半田。
2. Zn: 5-9%, In: 2 by weight%
The lead-free solder according to claim 1, which has a composition of 5%, Bi: 1 to 10%, and the balance Sn.
【請求項3】 重量%で、Zn:7〜9%,In:2〜
3%,Bi:4〜9%および残部Snの組成からなる請
求項1に記載の無鉛半田。
3. Zn: 7-9% and In: 2 by weight%
The lead-free solder according to claim 1, which has a composition of 3%, Bi: 4 to 9%, and the balance Sn.
【請求項4】 重量%で、Zn:8〜9%,In:4〜
5%,Bi:6〜10%および残部Snの組成からなる
請求項1に記載の無鉛半田。
4. Zn: 8-9%, In: 4-
The lead-free solder according to claim 1, which has a composition of 5%, Bi: 6 to 10%, and the balance Sn.
【請求項5】 固相線温度が140〜193℃、液相線
温度が167〜196℃であり、Zn,In,Biおよ
びSnを含んで構成することを特徴とする機械的特性を
優れた無鉛半田。
5. A solidus temperature of 140 to 193 ° C., a liquidus temperature of 167 to 196 ° C., and excellent mechanical properties characterized by including Zn, In, Bi and Sn. Lead-free solder.
JP7352310A 1995-06-30 1995-12-28 Lead-free solder of which mechanical property is excellent Pending JPH0919792A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1995-19011 1995-06-30
KR1019950019011A KR0158600B1 (en) 1995-06-30 1995-06-30 The solder for pb-free

Publications (1)

Publication Number Publication Date
JPH0919792A true JPH0919792A (en) 1997-01-21

Family

ID=19419407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352310A Pending JPH0919792A (en) 1995-06-30 1995-12-28 Lead-free solder of which mechanical property is excellent

Country Status (2)

Country Link
JP (1) JPH0919792A (en)
KR (1) KR0158600B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234433A (en) * 2001-10-01 2003-08-22 Matsushita Electric Ind Co Ltd Semiconductor device, its mounting method, mounting block and its manufacturing method
KR100743240B1 (en) * 2006-03-16 2007-07-27 희성소재 (주) Low temperature lead-free solder alloy
CN108213767A (en) * 2018-02-28 2018-06-29 西安理工大学 A kind of preparation method of low melting point Sn-Zn-Bi-Ga brazing filler metal alloys
CN113084391A (en) * 2021-04-12 2021-07-09 哈尔滨理工大学 Low-melting-point green flexible 3D packaging alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366131B1 (en) * 2001-11-21 2002-12-31 이재옥 Lead-free solder with lower melting point and lower dross

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344181A (en) * 1993-04-30 1994-12-20 American Teleph & Telegr Co <Att> Solder having improved dynamic property and free from pb
JPH0751883A (en) * 1993-08-11 1995-02-28 Nippon Superia Shiya:Kk Unleaded solder alloy
JPH07155984A (en) * 1993-10-25 1995-06-20 Indium Corp Of America:The Alloy containing tin, zinc, indium and bismuth and free fromlead
JPH08132279A (en) * 1994-11-01 1996-05-28 Mitsui Mining & Smelting Co Ltd Solder alloy for heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344181A (en) * 1993-04-30 1994-12-20 American Teleph & Telegr Co <Att> Solder having improved dynamic property and free from pb
JPH0751883A (en) * 1993-08-11 1995-02-28 Nippon Superia Shiya:Kk Unleaded solder alloy
JPH07155984A (en) * 1993-10-25 1995-06-20 Indium Corp Of America:The Alloy containing tin, zinc, indium and bismuth and free fromlead
JPH08132279A (en) * 1994-11-01 1996-05-28 Mitsui Mining & Smelting Co Ltd Solder alloy for heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234433A (en) * 2001-10-01 2003-08-22 Matsushita Electric Ind Co Ltd Semiconductor device, its mounting method, mounting block and its manufacturing method
US6853077B2 (en) 2001-10-01 2005-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor device, semiconductor packaging method, assembly and method for fabricating the same
KR100743240B1 (en) * 2006-03-16 2007-07-27 희성소재 (주) Low temperature lead-free solder alloy
CN108213767A (en) * 2018-02-28 2018-06-29 西安理工大学 A kind of preparation method of low melting point Sn-Zn-Bi-Ga brazing filler metal alloys
CN113084391A (en) * 2021-04-12 2021-07-09 哈尔滨理工大学 Low-melting-point green flexible 3D packaging alloy

Also Published As

Publication number Publication date
KR0158600B1 (en) 1999-01-15
KR970000428A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP2665328B2 (en) Lead-free solder with excellent solderability
CN101380700B (en) Tin bismuth cuprum series leadless solder and preparation method thereof
JP2006255784A (en) Unleaded solder alloy
JP4718369B2 (en) Solder alloy
TW200302147A (en) Lead-free solder alloy
JPH0919792A (en) Lead-free solder of which mechanical property is excellent
JP3945915B2 (en) Zn alloy for solder
JP2006281318A (en) LEAD-FREE SOLDER ALLOY COMPOSITION BASICALLY CONTAINING TIN (Sn), SILVER (Ag), COPPER (Cu) AND PHOSPHORUS (P)
CN112077478A (en) Low-melting-point In-Sn-Zn alloy solder and preparation method thereof
JPH02225642A (en) Niobium-base alloy for high temperature
CN1139607A (en) Non-lead solder with fine mechanical property
KR100327768B1 (en) Lead-Free Alloys for Soldering
JP2638759B2 (en) Lead-free solder
KR0151999B1 (en) Lead free solder
JP2004330260A (en) LEAD-FREE SnAgCu SOLDER ALLOY
KR100293181B1 (en) Lead free solder
JP4525192B2 (en) How to increase the effectiveness of material components
KR100328242B1 (en) Lead-free solder alloy for high temperature
KR100333401B1 (en) Lead-Free Alloys for Soldering
KR100293180B1 (en) Lead free solder paste
CN1325680C (en) Sn-Ag-Cu-Cr alloy lead-free solder preparation method
KR0177681B1 (en) Lead-free soldering flux
KR100337497B1 (en) Lead-Free Alloys for Soldering
KR19990042544A (en) Lead-Free Solder for Electronic Components
KR100337498B1 (en) Lead-Free Alloys for Soldering