KR100293181B1 - Lead free solder - Google Patents

Lead free solder Download PDF

Info

Publication number
KR100293181B1
KR100293181B1 KR1019950048488A KR19950048488A KR100293181B1 KR 100293181 B1 KR100293181 B1 KR 100293181B1 KR 1019950048488 A KR1019950048488 A KR 1019950048488A KR 19950048488 A KR19950048488 A KR 19950048488A KR 100293181 B1 KR100293181 B1 KR 100293181B1
Authority
KR
South Korea
Prior art keywords
lead
free solder
solder
lead free
present
Prior art date
Application number
KR1019950048488A
Other languages
Korean (ko)
Other versions
KR970033400A (en
Inventor
유충식
김미연
이도재
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Priority to KR1019950048488A priority Critical patent/KR100293181B1/en
Publication of KR970033400A publication Critical patent/KR970033400A/en
Application granted granted Critical
Publication of KR100293181B1 publication Critical patent/KR100293181B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PURPOSE: Provided is Sn-Ag-Al-Bi based lead free solder, which has superior mechanical strength at high temperatures. This lead free solder has melting point applicable for wiring of electronic components as well as is suitable to automatic welding due to its narrow solidification temperature ranges. CONSTITUTION: The lead free solder comprises Ag 2.5-3.5wt.%, Al 0.1-1wt.%, Bi 5-10wt.%, and a balance of Sn, wherein solidus curve is 200 to 215deg.C and liquidus temperature is 220 to 240deg.C.

Description

고온용 무연땜납Lead-free Solder for High Temperature

제1도는 종래의 땜납과 본 발명에 의한 무연땜납에 대한 기계적 특성을 나타내는 그래프1 is a graph showing the mechanical properties of the conventional solder and the lead-free solder according to the present invention

제2도는 본 발명에 의한 무연땜납에 대한 시간에 따른 젖음성을 나타내는 그래프2 is a graph showing the wettability with time for the lead-free solder according to the present invention.

제3도는 본 발명에 의한 무연땜납에 대한 미세조직 사진을 나타낸다.3 shows a microstructure photograph of a lead-free solder according to the present invention.

본 발명은 전자부품의 전자기기 배선용으로 사용되는 무연땜납에 관한 것으로서, 보다 상세하게는 고온에서 우수한 기계적 특성을 갖는 주석-은-알루미늄-비스무스계 무연땜납에 관한 것이다.The present invention relates to a lead-free solder used for electronic device wiring of electronic components, and more particularly to a tin-silver-aluminum-bismuth-based lead-free solder having excellent mechanical properties at high temperatures.

납땜에 사용되는 땜납은 그 사용용도에 적합하도록 고유한 특성을 갖는데, 통상의 땜납에서는 그 용융온도 및 응고온도범위가 중요하다.Solders used for soldering have inherent characteristics to be suitable for their use. In conventional soldering, the melting temperature and the solidification temperature range are important.

즉, 특정용도에 따라 선택된 땜납은 인접한 부품, 특히 온도에 민감한 부품에 손상을 주지 않을 정도로 낮은 용융온도를 가져야 할 뿐만 아니라 납땜 후에는 사용중 접합상태가 열적으로 안정되도록 높은 용융온도 범위를 갖는 것이 필요하다.That is, the solder selected according to a particular application must not only have a low melting temperature that will not damage adjacent parts, especially temperature sensitive parts, but also have a high melting temperature range after soldering so that the bonding state is thermally stable during use. Do.

또한, 땜납은 대부분 공정반응이 일어나는 성분계로 이루어지므로 공정조성 이외의 특정조성을 갖게 되는 경우 납땜후 용융상태에서 응고가 시작되는 액상선을 통과하게 되어 액상과 고상이 공존하게 되고 이어서 완전히 응고가 종료되는 고상선에 이르는 응고 온도범위를 갖는다. 만일 땜납의 응고 온도범위가 큰 경우에는 납땜후 응고시간이 길어지고 수축현상이 생길수 있으므로 가급적 적은 응고 온도범위를 갖는 것이 필요하다. 응고구간이 적은 범위를 갖는 땜납의 경우에는 연속적인 자동납땜시 단계적인 납땜에 보다 유리한 점이 있다.In addition, since most of the solder is composed of a component system in which a process reaction occurs, if a specific composition other than the process composition is obtained, the solder passes through a liquid line where solidification starts in the molten state after soldering, so that the liquid phase and the solid phase coexist, and then the solidification ends completely. It has a solidification temperature range up to a solidus line. If the solidification temperature range of the solder is large, it is necessary to have a solidification temperature range as small as possible since the solidification time after soldering may be long and shrinkage may occur. In the case of solder having a low solidification section, there is an advantage in staged soldering in continuous automatic soldering.

상기한 특성을 갖는 종래의 땜납으로는 예를들면 Sn-Pb계 합금을 들 수 있다.Conventional solders having the above-mentioned characteristics include, for example, Sn-Pb-based alloys.

이 Sn-Pb계 합금은 여러 가지 기계적, 물리적 특성이 또한 우수하여 주로 배관, 열교환기와 같은 구조용과 일반전자 산업용으로 다양하게 사용되고 있다.This Sn-Pb-based alloy is also excellent in various mechanical and physical properties, and is mainly used for structural and general electronic industries such as piping and heat exchangers.

그러나, Sn-Pb계 합금은 납을 함유하고 있고, 납은 분해되지 않는 금속으로 일단 섭취하면 방출되지 않고 체내에 축적된다. 납의 독성은 혈중 농도 10㎍/dl 이상이 되면 치명적이고 특히 어린이에게는 지능의 저하를 유발시킬 수 있을 뿐만 아니라 또한 납의 폐기물은 토양을 오염시키는 문제가 있다.However, Sn-Pb-based alloys contain lead, and lead is a metal that does not decompose, and once ingested, is not released and accumulates in the body. Toxicity of lead is fatal if blood concentrations of 10 µg / dl or more are not only fatal, especially in children, but also lead waste can contaminate the soil.

특히, 50 Sn-50 Pb나 70 Sn030 Pb 등과 같은 전통적인 배관용 땜납은 넓은 온도범위에서 사용이 가능하고 강한 기계적 연결부위를 형성하며, 동파이프 용접에 매우 유용하지만, 납이 물에 녹아들어가 오랜시간 후에는 건강에 치명적인 해를 준다는 것이 발견되어 식수를 운반하는 파이프와 같은 배관용 땜납에서도 납사용이 규제되기 시작하였다.In particular, traditional piping solders, such as 50 Sn-50 Pb or 70 Sn030 Pb, can be used over a wide temperature range, form strong mechanical connections and are very useful for copper pipe welding, but lead is dissolved in water for a long time. Later, it was found to be fatal to health, and the use of lead was also regulated in plumbing solder, such as pipes that carry drinking water.

한편, 이러한 납에 대한 규제조치가 대두됨에 따라 무연땜납이 개발되기 시작하였는데, 종래의 Sn-37Pb 공정합금이 갖는 용융온도(183℃)와 가장 유사한 용융온도를 갖는 2원계 무연땜납으로는 Sn-9Zn(198℃) 합금을 들 수 있다. 대표적인 예로서, 미국특허 제 1,947,938 호에 제시된 Sn-Zn 합금은 알루미늄 납땜을 위한 용도로 개발되어 주로 배관용으로 사용되고 있다. 그러나, 미국특허 제1,947,938 호에 제시된 Sn-Zn 합금은 납땜시 강산성 플럭스를 필요로 하며 이로 인해 산화 및 부식이 발생되어 전자부품의 기판 등에 사용하기에는 곤란한 점이 있다.On the other hand, lead-free solders have begun to be developed as regulations on lead have arisen. Sn-37Pb is a binary lead-free solder having a melting temperature most similar to that of a conventional Sn-37Pb process alloy. 9Zn (198 degreeC) alloy is mentioned. As a representative example, the Sn-Zn alloy described in US Pat. No. 1,947,938 has been developed for use in aluminum soldering and is mainly used for piping. However, the Sn-Zn alloy disclosed in US Pat. No. 1,947,938 requires strong acid flux during soldering, which causes oxidation and corrosion, which makes it difficult to use for substrates of electronic components.

상기한 땜납 이외에도 미국특허 제4,778,733 호에는 Sn-Ag(0.05-3%)-Cu(0.7-6%) 합금이 또한, 미국특허 제4,929,423 호에는 Sn-Bi(0.08-20%)-Ag(0.01-1.5%)-Cu(0.02-1.5%)-P(0.1% 이하)-회토류 혼합물 등으로 조성되는 무연땜납이 제시되어 있으나 이들은 주로 배관용으로 사용되기 때문에 일반 전자부품의 기판등에는 사용하기가 곤란하다.In addition to the solders described above, U.S. Patent No. 4,778,733 has Sn-Ag (0.05-3%)-Cu (0.7-6%) alloys, while U.S. Patent No. 4,929,423 has Sn-Bi (0.08-20%)-Ag (0.01). Lead-free solders composed of -1.5%)-Cu (0.02-1.5%)-P (0.1% or less) -occurrence earth mixtures are suggested, but they are mainly used for piping, so they can be used for substrates of general electronic parts. Is difficult.

상기한 무연땜납과는 달리 일반전자부품의 기판에 사용되는 무연땜납으로서는 미국특허 제5,256,370 호에 제시된 Su-Ag(1-6%)-In(4-35%)로 조성되는 합금이 알려져 있는데, 이 합금은 주로 저온용 납땜에 사용되고 있다.Unlike the lead-free solder described above, an alloy composed of Su-Ag (1-6%)-In (4-35%) as disclosed in U.S. Patent No. 5,256,370 is known as a lead-free solder used for a substrate of a general electronic component. This alloy is mainly used for low temperature soldering.

이에 반하여 고온용 무연 납땜의 대표적인 예를들면, 일본 특개평 5-228,685 호에 제시된 Ag:3.0-5.0%, Bi:1.2-3.0% 및 잔부 Sn 으로 조성된 합금이 있다. 그러나, 상기 고온용 무연땜납은 납땜후 균일한 강도가 미흡한 단점이 있다.In contrast, representative examples of high-temperature lead-free solders include alloys composed of Ag: 3.0-5.0%, Bi: 1.2-3.0% and the balance Sn presented in Japanese Patent Laid-Open No. 5-228,685. However, the high temperature lead-free solder has a disadvantage in that uniform strength is insufficient after soldering.

따라서, 본 발명은 종래의 Sn-Ag계 고온용 무연땜납에 알루미늄과 비스무스를 첨가하므로써, 일반전자부품의 배선용으로 사용가능한 융점을 갖는 한편 응고온도범위가 좁을 뿐만 아니라 균일한 기계적 특성이 우수한 무연땜납을 제공하고자 하는데, 그 목적이 있다.Therefore, the present invention adds aluminum and bismuth to conventional Sn-Ag-based high-temperature lead-free solders, and has a melting point that can be used for wiring of general electronic components, and has a narrow solidification temperature range and excellent uniform mechanical properties. It is intended to provide a purpose.

상기한 목적달성을 위한 본 발명은 중량%로, 은(Ag):2.5-3.5%, 알루미늄(Al):0.1-1%, 비스무스(Bi): 5-10% 및 잔부 주석(Sn)으로 조성되는 고온용 무연땜납에 관한 것이다.The present invention for achieving the above object by weight, silver (Ag): 2.5-3.5%, aluminum (Al): 0.1-1%, bismuth (Bi): 5-10% and the balance tin (Sn) composition It relates to a lead-free solder for high temperature.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 무연땜납은 종래의 고온용으로 사용되는 Sn-Ag계 합금을 기본조성으로하며, 여기에 Al 및 Bi를 복합으로 함유시키므로써, 종래의 전자부품 배선용 땜납인 Sn-Pb계 합금과 유사한 융점 및 응고온도범위를 갖도록 하는 한편 그 조직을 미세화하고 강도를 개선할 수 있다. 또한, 통상적으로 납땜시 플럭스를 사용하는 경우 산화 및 부식방지에 효과적인데, 본 발명의 무연땜납은 통상의 플럭스를 사용하여 납땜이 가능하기 때문에 산화 및 부식 방지에도 유리하다.The lead-free solder of the present invention is based on the Sn-Ag-based alloy used for high temperature in the conventional composition, and by containing Al and Bi in combination, similar to the Sn-Pb-based alloy, which is a solder for wiring of electronic components It can have a melting point and a solidification temperature range while minimizing its structure and improving its strength. In addition, in the case of using a flux during the soldering is effective to prevent oxidation and corrosion, the lead-free solder of the present invention is also advantageous in the oxidation and corrosion prevention because it can be soldered using a conventional flux.

우선, 본 발명에 의한 무연땜납중에 함유되는 은은 고온용 무연땜납의 강도향상을 위해 2.5-3.5% 로 제한함이 좋다.First, the silver contained in the lead-free solder according to the present invention is preferably limited to 2.5-3.5% to improve the strength of the high-temperature lead-free solder.

상기 알루미늄은 무연땜납중에 함유되어 그 조직을 미세화하여 강도를 증가시키는 역할을 한다. 만일 알루미늄의 함유량을 0.1% 이하로 하면, 그 효과가 미흡하여 1% 이상이 되면 무연땜납 자체가 취약하기 때문에 바람직하지 않다.The aluminum is contained in the lead-free solder to serve to increase the strength by miniaturizing the structure. If the content of aluminum is 0.1% or less, the effect is insufficient, and if it is 1% or more, it is not preferable because the lead-free solder itself is fragile.

또한, 상기 비스무스는 무연땜납의 용융온도 및 젖음성(납땜성)을 개선하는 작용을 한다. 비스무스 단독으로 첨가하는 경우에는 무연땜납중에 석출되는 Bi 석출물의 모양이 침상형이 되지만 알루미늄과 복합 첨가하면 Bi 석출물이 입자형태로 전체 조직상에 균일하게 분포되며, 특히 120℃ 부근에서의 연성이 증가되어 열피로 특성등을 개선할 수 있다. 이를 위해 Bi 는 5-10% 로 함유함이 바람직하다.In addition, the bismuth serves to improve the melting temperature and the wettability (solderability) of the lead-free solder. When bismuth is added alone, the shape of Bi precipitates precipitated in lead-free solder becomes needle-shaped. However, when added with aluminum, Bi precipitates are uniformly distributed throughout the entire structure in the form of particles. The thermal fatigue characteristics can be improved. For this purpose, Bi is preferably contained 5-10%.

상기 조성을 갖는 무연땜납은 금속원재료를 계량하여 대기중에서 포트(pot)나 도가니를 사용하여 가열, 교반하면서 용해하는 통상의 방법에 의해 주조되어 제조될 수 있다. 이때, 대기중에서 용해하는 경우 금속 원료중의 불순물 또는 비금속 개재물과 합금용탕이 대기와 반응하여 땜납 합금중에 용존질소나 용존산소와 같은 용존가스가 잔류하게 되어 이로인해 모재표면에 젖음성을 방해하여 납땜성이 저하되거나 땜납 접합부에 기공(void)가 발생되기 때문에 젖음성 뿐만 아니라 열전도도, 열피로특성 및 제품신뢰성에 문제가 발생될 소지가 있다.The lead-free solder having the above composition can be cast and manufactured by a conventional method of measuring a metal raw material and dissolving it by heating and stirring using a pot or crucible in the air. At this time, when dissolved in the atmosphere, impurities in the metal raw materials or non-metallic inclusions and alloy molten metal react with the atmosphere, so that dissolved gases such as dissolved nitrogen and dissolved oxygen remain in the solder alloy, thereby disturbing the wettability on the surface of the base material, thereby causing solderability. Due to this deterioration or voids in the solder joint, there is a possibility of problems in not only wettability but also thermal conductivity, thermal fatigue characteristics and product reliability.

본 발명에서는 대기중에서 합금 제조시 발생되는 불순물 또는 비금속 개재물과 합금 중의 용존가스를 최소화하여 납땜성을 향상시키고 열피로 특성 및 제품신뢰성을 개선하고자 본 발명의 땜납 제조시에는 진공 상태 또는 불활성 분위기에서 용해하여 원료중 특히 Bi 등의 산화를 억제하여 드로스(dross) 발생을 최소화하는 용해방법이 보다 바람직하다.In the present invention, in order to minimize the impurities or non-metallic inclusions and dissolved gases in the alloy produced in the air to improve the solderability and to improve the thermal fatigue characteristics and product reliability in the manufacture of the solder of the present invention dissolved in vacuum or inert atmosphere Therefore, a dissolution method for minimizing dross generation by inhibiting oxidation of Bi and the like, in particular, is more preferable.

이러한 방법에 의해 제조되는 본 발명의 무연땜납은 여러 가지 형태(ingot, rectangular, circular 등)로 제조될 수 있으며, 또한 다양한 크기의 구형의 분말로도 제조될 수 있다. 또한, 분말 형태의 땜납의 경우 적당한 플럭스(flux)와 혼합하여 페이스트(solder paste)로도 제조가 가능하다.The lead-free solder of the present invention produced by this method may be produced in various forms (ingot, rectangular, circular, etc.), and may also be made of spherical powders of various sizes. In addition, in the case of powder solder, it is possible to prepare a solder paste by mixing with a suitable flux.

이렇게 제조된 본 발명의 무연땜납은 일반전자 부품의 전자기기 배선용으로 사용가능한 융점을 갖을 뿐만 아니라 응고 온도 범위가 좁아 단계적인 자동 납땜에 매우 유리하고, 종래의 Sn-Zn 계 합금보다도 기계적 강도가 증가되는 한편, 젖음성(납땜성)이 우수한 특징이 있다.The lead-free solder of the present invention thus prepared not only has a melting point that can be used for electronic device wiring of general electronic components, but also has a narrow solidification temperature range, which is very advantageous for step-by-step automatic soldering, and has higher mechanical strength than conventional Sn-Zn-based alloys. On the other hand, it is characterized by excellent wettability (solderability).

이하, 본 발명을 실시예를 통하여 구체적으로 설명하는데 본 발명은 이들 대표적인 실시예로 국한되지 않는다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Representative Examples.

(실시예 1)(Example 1)

하기표 1과 같은 조성을 갖도록 고주파 유도로를 사용하여 대기중에서 용해하여 주조하고, 주조된 합금에 대하여 고상선 온도와 액상선 온도를 측정하고, 그 결과를 하기표 1에 나타내었다.To melt and cast in the air using a high frequency induction furnace to have a composition as shown in Table 1, and measured the solidus temperature and liquidus temperature for the cast alloy, the results are shown in Table 1 below.

상기 표 1에 나타난 바와같이, Sn-Ag-Al-Bi 로 조성되는 발명예(1-4)의 경우 고상선 온도가 약 200-215℃, 액상선온도가 약 220-240℃, 응고온도범위가 약 13-25℃로서, 본 발명에 의한 무연땜납은 전자부품의 배선 납땜중에서도 특히 고온용으로 적합함을 알 수 있다.As shown in Table 1, Inventive Example (1-4) composed of Sn-Ag-Al-Bi, the solidus temperature is about 200-215 ℃, the liquidus temperature is about 220-240 ℃, the solidification temperature range It is found that the lead-free solder according to the present invention is about 13-25 DEG C, and is particularly suitable for high temperature even during the soldering of wires for electronic components.

(실시예 2)(Example 2)

본 발명에 의한 무연땜납과 종래의 땜납에 대한 기계적 특성을 살펴보기 위해 Sn-40Pb 땜납과 발명예(2)에 대한 기계적 특성을 측정하고 그 결과를 제1도에 나타내었다.In order to examine the mechanical properties of the lead-free solder and the conventional solder according to the present invention, the mechanical properties of Sn-40Pb solder and Inventive Example (2) were measured and the results are shown in FIG.

제1도에 나타난 바와같이, 발명예(2)의 경우 종래의 땜납에 비하여 인장강도가 극히 우수함을 알 수 있었다.As shown in FIG. 1, in the invention example (2), it was found that the tensile strength was extremely superior to the conventional solder.

또한, 발명예(2)에 대하여, 젖음성 정도를 측정하고 그 결과를 제2도에 나타내었다.In addition, about the invention example (2), the wettability degree was measured and the result is shown in FIG.

제2도에 나타난 바와같이, 발명예(2)의 경우 단시간 내에 양호한 젖음성을 나타내고 있는 바, 특히 우수한 납땜성을 갖고 있음을 알 수 있었다.As shown in Fig. 2, in the case of invention example (2), good wettability was exhibited within a short time, and it was found that it had particularly excellent solderability.

이상의 기계적 특성 및 물성을 고려해볼 때 본 발명에 의한 무연땜납의 경우 종래의 Sn-Pb 땜납에 비하여 최종 접합강도가 우수함을 알 수 있다.In view of the above mechanical properties and physical properties, it can be seen that the lead-free solder according to the present invention has superior final joint strength as compared to conventional Sn-Pb solder.

이러한 사실을 미세조직을 통해 살펴보기 위해, 발명예(2)에 대하여 미세조직을 관찰하고, 그 결과를 제3도에 나타내었다.In order to examine this fact through the microstructure, the microstructure of the invention example (2) was observed, and the results are shown in FIG.

제3도에 나타난 바와같이, 발명예(2)의 무연땜납의 경우 Bi 첨가에 의해 Al 석출물이 미세하고 균일하게 분포되어 결국 본 발명에 의한 무연땜납이 종래의 무연땜납에 비하여 우수한 기계적 특성을 나타낸다는 것이 확인되었다.As shown in FIG. 3, in the case of the lead-free solder of Inventive Example (2), Al precipitates were finely and uniformly distributed by adding Bi, so that the lead-free solder according to the present invention exhibited superior mechanical properties as compared to the conventional lead-free solder. It was confirmed.

상술한 바와같이, 본 발명에 의한 고온용 무연땜납은 종래의 Sn-Pb계 땜납과 거의 동등한 납땜 특성을 갖을 뿐만 아니라 기계적 성질이 우수하여 특히 고온에서 전자부품의 배선용으로 사용할 때 최종 접합강도가 우수한 효과가 있는 것이다.As described above, the lead-free solder for high temperature according to the present invention not only has almost the same soldering properties as the conventional Sn-Pb-based solder, but also has excellent mechanical properties, particularly when used for wiring electronic components at high temperatures, and thus has excellent final bonding strength. It works.

Claims (2)

중량%로, 은(Ag):2.5-3.5%, 알루미늄(Al): 0.1-1%, 비스무스(Bi): 5-10% 및 잔부 주석(Sn)으로 조성되는 고온용 무연땜납High-temperature lead-free solder composed of silver (Ag): 2.5-3.5%, aluminum (Al): 0.1-1%, bismuth (Bi): 5-10%, and balance tin (Sn) 고상선 온도가 200-215℃이고, 액상선 온도가 220-240℃이며, 은, 알루미늄, 비스무수 및 주석을 포함함을 특징으로 하는 고온용 무연땜납High temperature lead-free solder characterized by a solidus temperature of 200-215 ° C., a liquidus temperature of 220-240 ° C and containing silver, aluminum, bismuth anhydride and tin
KR1019950048488A 1995-12-11 1995-12-11 Lead free solder KR100293181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950048488A KR100293181B1 (en) 1995-12-11 1995-12-11 Lead free solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048488A KR100293181B1 (en) 1995-12-11 1995-12-11 Lead free solder

Publications (2)

Publication Number Publication Date
KR970033400A KR970033400A (en) 1997-07-22
KR100293181B1 true KR100293181B1 (en) 2001-11-22

Family

ID=37527166

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048488A KR100293181B1 (en) 1995-12-11 1995-12-11 Lead free solder

Country Status (1)

Country Link
KR (1) KR100293181B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406174B1 (en) * 2007-06-18 2014-06-12 엠케이전자 주식회사 Lead free solder containing Sn, Ag and Bi

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406174B1 (en) * 2007-06-18 2014-06-12 엠케이전자 주식회사 Lead free solder containing Sn, Ag and Bi

Also Published As

Publication number Publication date
KR970033400A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
US5580520A (en) Lead-free alloy containing tin, silver and indium
US5455004A (en) Lead-free alloy containing tin, zinc, indium and bismuth
KR0168964B1 (en) Pb free solder
EP1273384A1 (en) Lead-free solder alloy
US5242658A (en) Lead-free alloy containing tin, zinc and indium
WO1997012719A1 (en) Lead-free solder
WO1998034755A1 (en) Lead-free solder
JPH11221695A (en) Lead-free solder alloy
KR0158600B1 (en) The solder for pb-free
KR100293181B1 (en) Lead free solder
JPH11221694A (en) Packaging structural body using lead-free solder and packaging method using the same
KR0151999B1 (en) Lead free solder
CN1139607A (en) Non-lead solder with fine mechanical property
KR100293180B1 (en) Lead free solder paste
JP2638759B2 (en) Lead-free solder
KR0177681B1 (en) Lead-free soldering flux
KR100327768B1 (en) Lead-Free Alloys for Soldering
KR100328242B1 (en) Lead-free solder alloy for high temperature
KR100333401B1 (en) Lead-Free Alloys for Soldering
KR19980041034A (en) Solder for Electronic Parts with Low Lead Content
CN1139605A (en) Non-lead solder with fine weldability
KR100337498B1 (en) Lead-Free Alloys for Soldering
KR19990042544A (en) Lead-Free Solder for Electronic Components
CN1040303C (en) Universal non-lead solder
KR100337497B1 (en) Lead-Free Alloys for Soldering

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140325

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee