KR100743240B1 - Low temperature lead-free solder alloy - Google Patents
Low temperature lead-free solder alloy Download PDFInfo
- Publication number
- KR100743240B1 KR100743240B1 KR1020060024358A KR20060024358A KR100743240B1 KR 100743240 B1 KR100743240 B1 KR 100743240B1 KR 1020060024358 A KR1020060024358 A KR 1020060024358A KR 20060024358 A KR20060024358 A KR 20060024358A KR 100743240 B1 KR100743240 B1 KR 100743240B1
- Authority
- KR
- South Korea
- Prior art keywords
- lead
- weight
- solder
- alloy
- soldering
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
- C22C13/02—Alloys based on tin with antimony or bismuth as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
본 발명은 납땜용 무연합금에 관한 것으로서, 납을 함유하지 않는 합금에 의해 납땜이 이루어지도록 하여 납의 중독 등에 의한 피해를 방지하도록 설계된 무연합금에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-free alloy for soldering, and relates to a lead-free alloy designed to prevent damage caused by poisoning of lead by soldering by an alloy containing no lead.
일반적으로 납땜은 땜납을 용융하여 금속을 접합시키므로 접속할 금속보다 용융온도가 낮은 금속이 사용되는데, 납의 용융온도(327℃)보다 낮은 온도에서 용융되는 연납과, 용융온도가 대체적으로 450℃ 이상인 경납으로 대별된다. 연납의 성분은 납과 주석이며, 그 함유량에 따라서 인장강도 및 전단 강도가 각각 다르게 나타나게 된다. 한편 경납은 분말, 밴드, 와이어 등의 형상으로 형성되며 구리(Cu), 아연(Zn), 납(Pb)이 주성분인 황동납과 은(Ag)을 첨가하여 유동성을 개선한 은납 등이 있다.In general, soldering melts the solder to bond metals, and therefore metals having a lower melting temperature than the metal to be connected are used.Both solders melted at a temperature lower than the melting temperature of lead (327 ° C) and light solder having a melting temperature of generally 450 ° C or higher are used. It is rough. The lead components are lead and tin, and the tensile strength and shear strength are different depending on the content. On the other hand, braze is formed in the form of powder, band, wire, and the like, and copper (Cu), zinc (Zn), and lead (Pb) include brass lead and silver (Ag), which are added to improve flowability.
일반적으로 전자기기류는 고장 등의 이유로 폐기되면 소각처리 되지 않고, 재단 처리되어 안정형의 산업폐기물로서 땅속에 매립된다. 그런데 최근 땅속에 매립 처분된 전자기기류가 문제가 되고 있다. 즉 화석연료의 많은 사용으로 대기중에 유황산화물이나 질소산화물이 다량 발생되어, 산성상태로 된 대기를 비가 통과함으로서 산성비가 발생된다. 이러한 산성비가 땅속에 침투하고, 매립된 전자기기류로부터 납 등의 유해금속을 용출시켜 지하수를 오염, 이 지하수를 장기간 마시면 납중독 우려가 있으며, 또한 납땜 작업시 땜납의 용융으로 발생되는 가스 등에 작업자가 노출되면 호흡기를 통해 인체에 축적되어 납중독이라는 인체에 치명적인 영향을 미치는 문제점들이 있다.In general, when an electronic device is disposed of due to a failure, it is not incinerated, but is cut and embedded in the ground as a stable industrial waste. Recently, however, the landfilled electronic air has become a problem. In other words, a large amount of fossil fuel is used to generate a large amount of sulfur oxides and nitrogen oxides in the atmosphere, and acid rain is generated by rain passing through the acidic atmosphere. Such acid rain penetrates into the ground, elutes harmful metals such as lead from the buried electronics, and contaminates groundwater. If the groundwater is consumed for a long time, lead poisoning may occur, and workers may be exposed to gases generated by solder melting during soldering. If there is a problem that accumulates in the human body through the respiratory system has a deadly effect on the human body called lead poisoning.
현재까지 개발된 납 없는(Lead Free) 땜납은, 주석(Sn)을 주성분으로 Cu, Ag, Bi, Zn, Ni, P 등의 금속을 첨가한 것이다. 납 없는 땜납의 대표조성으로는 Sn-0.7 중량% Cu, Sn-3.5 중량% Ag, Sn-58 중량% Bi, Sn-3.0 중량% Ag-0.5 중량% Cu 합금 외에, 용도에 따라 첨가금속원소를 더 조합하여 사용하고 있다.Lead-free solders developed to date include tin (Sn) as a main component and metals such as Cu, Ag, Bi, Zn, Ni, and P. Representative compositions of lead-free solder include Sn-0.7 wt% Cu, Sn-3.5 wt% Ag, Sn-58 wt% Bi, Sn-3.0 wt% Ag-0.5 wt% Cu alloys. It is used in combination further.
이들 납이 들어있지 않은 땜납은 각각의 합금마다 문제점을 가지고 있다. 예를 들면 Sn-9 중량% Zn 등의 Sn-Zn계 땜납은 Zn이 대단히 산화하기 쉬운 금속이기 때문에 두터운 산화막을 형성하기 쉬우며, 대기 중의 납땜에 있어서는 젖음성이 나쁘다. 또한 Sn-58 중량% Bi등의 Sn-Bi계 땜납은 Bi의 특성으로 인하여 기계적강도가 약하고 땜납 접합부의 신뢰성 저하가 우려된다.These lead-free solders have problems with each alloy. For example, Sn-Zn-based solders such as Sn-9 wt% Zn tend to form a thick oxide film because Zn is a metal which is very easy to oxidize, and has poor wettability in air soldering. In addition, Sn-Bi-based solder, such as Sn-58 wt% Bi, is weak in mechanical strength due to the properties of Bi and there is a concern that the reliability of the solder joint is reduced.
현재, 납 없는 땜납에서 가장 실용적으로 생각되고 있는 것이, Sn-0.7 중량% Cu 등의 Sn-Cu계, Sn-3.5 중량% Ag등의 Sn-Ag계 및 Sn-Ag계 땜납에 Cu를 첨가한 Sn-Ag-Cu계 땜납이다.At present, the most practically conceived lead-free solders include the addition of Cu to Sn-Ag-based and Sn-Ag-based solders such as Sn-Cu-based, such as Sn-0.7% by weight Cu, and Sn-3.5% by weight Ag. Sn-Ag-Cu solder.
그러나 Sn-0.7 중량% Cu와 같은 Sn-Cu계는 코스트 측면에서는 저가이지만 납땜시의 젖음성 부족하다. 한편 Sn-3.5 중량% Ag와 같은 Sn-Ag계 및 Sn-Ag계 땜납에 Cu를 소량 첨가한 Sn-Ag-Cu계는 젖음성이 양호하나 고가인 Ag를 함유하고 있 어서 코스트가 높아지며 원가절하를 위하여 Ag함유량을 줄이면 젖음성과 땜납의 합금강도가 떨어진다. 또한, 기존 Sn-37Pb 합금의 유연솔더에 비해 융점이 50~100℃ 가량 높아져 접합설비 및 공정상에 변경이 불가피하며, 기존 PCB 사용시에 내열한계를 재검토할 필요가 있다.However, Sn-Cu system such as Sn-0.7 wt% Cu is low in cost but lacks wettability in soldering. On the other hand, Sn-Ag-Cu based Sn-Ag and Sn-Ag-based solders, such as Sn-3.5 wt% Ag, have a high wettability but contain expensive Ag, resulting in high cost and cost reduction. In order to reduce the Ag content, the wettability and the alloy strength of the solder are reduced. In addition, the melting point is about 50 ~ 100 ℃ higher than the conventional solder of Sn-37Pb alloy, so it is inevitable to change the bonding facilities and processes, and it is necessary to review the heat resistance limit when using the existing PCB.
본 발명은 이와 같은 종래의 문제점들을 해결하기 위해 발명된 것으로서, 땜납의 성분 중 납을 포함하지 않고도 납땜이 이루어지도록 하여 납에 의해 인체가 입는 피해를 예방하며, 별도의 설비변경 없이 유연솔더와 유사하게 적용할 수 있는 무연솔더에 관한 것이다. The present invention has been invented to solve such a conventional problem, to prevent the damage caused by the human body by the solder to be made without including the lead in the solder components, similar to the flexible solder without a separate equipment change It is about a lead-free solder that can be applied.
또한, 본 발명의 솔더는 뛰어난 점성과 점착성을 가지고 있어 EEFL 전극 접합 등의 유리재료 접합에 특성화 솔더로 사용이 가능하도록 하는데 그 목적이 있다.In addition, the solder of the present invention has an excellent viscosity and adhesiveness, and its purpose is to be used as a specialized solder for glass material bonding, such as EEFL electrode bonding.
따라서 본 발명은 주석(Sn)을 기본물질로 하고 여기에 융점강하의 목적으로 Bi를 첨가하였으며, 기계적 특성향상과 제조시 드로스되는 양을 최소화하고자 아연(Zn), 인듐(In), 구리(Cu), 알루미늄(Al), 게르마늄(Ge), 인(P), 갈륨(Ga)을 첨가하여 조성되는 것을 특징으로 한다.Therefore, the present invention is based on tin (Sn) and added Bi to the purpose of melting point drop, zinc (Zn), indium (In), copper ( Cu), aluminum (Al), germanium (Ge), phosphorus (P), gallium (Ga) is added and characterized in that the composition.
본 발명에 의한 무연합금은 주석(Sn)에 비스무쓰(Bi)가 10~30 중량%이고, 첨가제로 인듐(In), 아연(Zn), 구리(Cu), 알루미늄(Al), 게르마늄(Ge), 인(P), 갈륨(Ga) 중 적어도 1종류 이상을 첨가하는 것을 특징으로 하는 무연합금에 관한 것이 다.In the lead-free alloy according to the present invention, bismuth (Bi) is 10 to 30% by weight in tin (Sn), and indium (In), zinc (Zn), copper (Cu), aluminum (Al), and germanium (Ge) as additives. The present invention relates to a lead-free alloy characterized in that at least one of phosphorus (P) and gallium (Ga) is added.
본 발명에서 주석(Sn)은 자체 독성이 없고 접합모재에 대하여 젖음성을 제공하는 역할을 하는 땜납 기재의 필수 금속이다. In the present invention, tin (Sn) is an essential metal of a solder substrate which does not have self toxicity and serves to provide wettability to the bonded base material.
비스무쓰(Bi)는 첨가시 솔더 합금조성의 융점하강에 탁월한 효과가 있다. 따라서, 일찍부터 저융점 무연솔더 재료로 연구가 활발히 이루어졌다. 하지만, 조직이 공정 조성이라면 단순한 Bi/Sn 공정조직으로 되지만, Sn 매트릭스 중에 다량의 Bi가 고용되는 다른 합금계에서 찾아볼 수 없는 특징이 있다. 또한, 원래 깨지기 쉬운 취성의 성질을 가지고 있으므로, 다량첨가시 솔더의 접합신뢰성 저하가 우려된다. Bi량을 다량 첨가하는 것은 Bi가 10㎛ 이상의 조대한 형상으로 정출되어 솔더의 조직적 성질에 악영향을 미칠 것을 추측할 수 있다. 따라서, 본 발명에서는 융점하강 효과를 최대로 얻으면서, 취성을 줄일 수 있는 10~30 중량%가 함유된다. 30 중량%이상 함유시에는 취성이 너무 강하여 접합시 기계적 성질 및 퍼짐성을 제대로 얻을 수 없으며, 10 중량% 이하의 경우 첨가량 대비 융점 강하효과를 효과적으로 얻을 수 없다. Bismuth (Bi) has an excellent effect on the melting point of the solder alloy composition when added. Therefore, from early on, research has been actively conducted on low melting lead-free solder materials. However, if the structure is a process composition, it becomes a simple Bi / Sn process structure, but there is a feature not found in other alloy systems in which a large amount of Bi is dissolved in the Sn matrix. In addition, since it has a brittle property, which is fragile, it is feared that the soldering reliability of the solder will be lowered at a large amount. Adding a large amount of Bi can assume that Bi is crystallized in a coarse shape of 10 µm or more, which adversely affects the structure of the solder. Therefore, in the present invention, while obtaining the maximum melting point effect, it contains 10 to 30% by weight to reduce the brittleness. If more than 30% by weight, the brittleness is too strong to obtain a good mechanical properties and spreadability when bonding, less than 10% by weight can not effectively obtain the melting point drop effect compared to the added amount.
아연(Zn)은 유연솔더에 대응하는 낮은 융점을 얻고, 기계적 특성을 강화하기 위한 목적으로 투입하게 된다. 하지만, Sn-Zn계 합금은 Zn이 활성이고 표면에 노출되어 산화되기 쉬우며, 합금원소는 거의 고용되지 않고 Sn상과 Zn상으로 분리되기 때문에 젖음성이 떨어진다. 또한 Zn의 증가는 경도를 감소시키는 경향이 있다. 접합강도를 높이기 위해서는 반응층을 얇게 하는 것이 바람직하며, Zn량을 감소시키면 반응층 두께도 감소한다. 따라서, 본 발명에서는 0.01~2.0 중량% 로 함유된다. 2.0 중량% 이상이 되면, 솔더합금의 융점이 상승하며, 드로스량이 증가하고, 0.01 중량% 미만에서는 융점저하 및 기계적 특성향상에 별 효과가 없다. Zinc (Zn) is to obtain a low melting point corresponding to the flexible solder, and to input for the purpose of enhancing the mechanical properties. However, Sn-Zn-based alloys are inferior in oxidation because Zn is active and exposed to the surface, and alloying elements are hardly dissolved and are separated into Sn and Zn phases. In addition, the increase in Zn tends to decrease the hardness. In order to increase the bonding strength, it is preferable to thin the reaction layer, and reducing the amount of Zn reduces the thickness of the reaction layer. Therefore, in this invention, it contains 0.01 to 2.0 weight%. When it is 2.0 wt% or more, the melting point of the solder alloy is increased, the dross amount is increased, and when it is less than 0.01 wt%, there is little effect on lowering the melting point and improving the mechanical properties.
인듐(In)은 Bi의 첨가와 더불어 솔더합금의 융점을 유효하게 낮출 수 있다. Bi의 다량첨가는 경화가 심해 연성의 저하를 초래할 우려가 있으나, In의 첨가로 인한 기계적 노화는 Bi만큼 현저하지 않으며 크립특성의 개선효과를 볼 수 있다. 또한 In이 Sn 중에 균일하게 용해되기 쉽고 편석 등이 발생하기 어렵기 때문에 열피로 특성 등의 저하가 적다. 따라서, In의 첨가는 합금의 금속특성을 그다지 저하시키지 않고 저융점 솔더 합금을 설계하기 위한 목적이 있다. 그러나, In은 귀금속으로 분류되어 있어서 다량첨가에 따른 cost 상승부담이 크다. 따라서, 본 발명은 0.5~2.0 중량%가 함유된다. 0.5 중량% 미만의 경우 융점강하 및 특성향상에 별 효과가 없다.Indium (In) can effectively lower the melting point of the solder alloy with the addition of Bi. A large amount of Bi may be hardened to cause ductility deterioration, but mechanical aging due to the addition of In is not as remarkable as Bi, and an improvement in creep properties can be seen. In addition, since In easily dissolves uniformly in Sn and segregation hardly occurs, thermal fatigue characteristics and the like are reduced. Therefore, the purpose of adding In is to design a low melting point solder alloy without significantly deteriorating the metal properties of the alloy. However, since In is classified as a precious metal, the burden of cost increase due to the massive addition is high. Therefore, the present invention contains 0.5 to 2.0% by weight. If it is less than 0.5% by weight, there is little effect on melting point drop and improvement of properties.
구리(Cu)는 Sn중에 대부분 고용되지 않는 것이 특징적이며, Cu6Sn5 미세분산으로 전환된다. 합금의 조직을 미세화하여 접합강도를 향상시키는 동시에 점성증대를 기대할 수 있으며, 전자부품이나 인쇄회로 기판의 침식을 억제하는 역할을 하게 된다. Sn-Bi계 솔더는 계면에 Bi가 풍부한 얇은 층이 형성되어 접합강도가 감소시키기 때문에 Bi의 취성을 보완하기 위해 강도를 증가시켜주는 Cu를 첨가시켜 실험하였다. 본 발명에서는 0.01~2.0 중량%로 함유된다. Cu 함량이 2.0 중량%를 초과하면, 융점이 급격히 상승하여 본 발명의 저온특성효과를 기대할 수 없으며, 0.01 중량% 미만의 경우 솔더 특성향상에 별 효과가 없다.Copper (Cu) It is characteristic that most of it is not dissolved in Sn and is converted into Cu6Sn5 microdispersion. The structure of the alloy can be refined to improve the bonding strength and increase the viscosity, and to suppress the erosion of the electronic component or the printed circuit board. Sn-Bi-based solders were tested by adding Cu, which increased the strength to compensate for the brittleness of Bi, because a thin Bi-rich layer was formed at the interface to reduce the bonding strength. In the present invention, it is contained in 0.01 to 2.0% by weight. When the Cu content is more than 2.0% by weight, the melting point is sharply increased and the low temperature characteristic effect of the present invention cannot be expected, and when the Cu content is less than 0.01% by weight, there is little effect on improving solder properties.
알루미늄(Al)은 흔히 솔더합금계에서 불순물로 분류되나 미량 첨가되면 계면 반응층의 성장을 억제할 수 있다. 따라서 미량 원소의 첨가는 퍼짐성 개선보다는 땜납과 Cu간의 계면 반응에 따른 금속간 화합물의 생성과 성장의 제어 및 미세 조직 조절원소로 사용할 수 있을 것으로 판단된다. 그러나, 일반적으로 미량 첨가로도 솔더의 유동성이 저하되고 광택이 없어지며, 특히 산화성이 강하게 된다. 이는 Zn과 아주 유사한 증상이다. 본 발명에서는 0.01~0.5 중량%로 함유되며, 0.5 중량%를 초과하여 첨가하면, 산화성이 증대되어 미세조직 조절 원소로의 효용이 사라지고, 0.01 중량% 미만의 경우 미세조직 조절 효용이 미미하다. Aluminum (Al) is often classified as an impurity in the solder alloy system, but when added in a small amount, it is possible to suppress the growth of the interfacial reaction layer. Therefore, the addition of trace elements may be used to control the formation and growth of the intermetallic compound and the microstructure control element according to the interfacial reaction between the solder and Cu rather than to improve the spreadability. In general, however, even with a small amount of addition, the fluidity of the solder is lowered and the gloss is lost, and in particular, the oxidizing property is strong. This is very similar to Zn. In the present invention, it is contained in 0.01 to 0.5% by weight, when added in excess of 0.5% by weight, the oxidizing property is increased and the utility as a microstructure control element disappears, when less than 0.01% by weight microstructure control utility is insignificant.
게르마늄(Ge)의 첨가는 땜납의 산화방지에 효과가 있다. 본 발명에서는 0.005~0.5 중량% 이하로 함유된다. 0.5 중량% 초과 첨가시에는 원재료비 상승에 대비 산화방지 효과가 떨어지며, 0.005 중량% 미만의 경우 산화방지 효과가 없다.The addition of germanium (Ge) is effective in preventing the oxidation of the solder. In the present invention, it is contained at 0.005 to 0.5% by weight or less. If it is added more than 0.5% by weight, the antioxidant effect is lowered compared to the increase in raw material costs, and less than 0.005% by weight has no antioxidant effect.
인(P)의 첨가는 땜납의 산화방지에 효과가 있다. 무연땜납의 제조시 용융상태에서 인이 상부층으로 떠올라 공기중의 산소와 접촉하는 피막이 형성되도록 하여 드로스량을 최소화할 수 있다. 본 발명에서는 0.001~0.5 중량%가 함유된다. 인의 첨가량이 0.001 중량% 미만에서는 산화방지 및 젖음성 향상에 효과가 없으며 0.5 중량% 이상에서는 땜납의 점성을 증가시켜 납땜시의 브리지(Bridge)등의 결함이 발생된다. The addition of phosphorus (P) is effective in preventing the oxidation of the solder. In the production of lead-free solder, phosphorus rises to the upper layer in the molten state so that a film is formed in contact with oxygen in the air, thereby minimizing the amount of dross. In the present invention, 0.001 to 0.5% by weight is contained. If the amount of phosphorus is less than 0.001% by weight, it is not effective in preventing oxidation and improving wettability. If the amount of phosphorus is more than 0.5% by weight, the viscosity of the solder is increased to cause defects such as bridges during soldering.
갈륨(Ga)의 첨가는 융점을 저하시켜 작업성을 개선하고 젖음성의 향상에 효과가 있다. 용융땜납에 갈륨을 첨가하면 용융땜납의 표면에 얇게 확산하기 때문에 납땜 시에 갈륨의 얇은 산화물이 용융땜납의 표면을 덮어 대기와의 접촉을 차단하고, 고온으로 용융된 무연땜납의 산화 방지에 일부 효과가 있다. 본 발명에서는 0.001~0.5 중량%가 함유된다. 0.001 중량% 이하에서는 첨가량이 미미하여 융점저하, 산화방지 및 젖음성의 개선에 효과가 미미하며, 0.5 중량% 이상에서는 용융땜납의 점성이 증가되어 작업이 곤란하게 되고, 제조원가의 상승에 따른 경제성이 떨어진다.The addition of gallium (Ga) lowers the melting point, thereby improving workability and improving wettability. The addition of gallium to the molten solder diffuses thinly on the surface of the molten solder, so that thin oxides of gallium cover the surface of the molten solder during soldering to block contact with the atmosphere, and have some effects on the prevention of oxidation of lead-free solder melted at high temperatures. There is. In the present invention, 0.001 to 0.5% by weight is contained. If the amount is less than 0.001% by weight, the addition amount is insignificant, so that the effect of lowering the melting point, the prevention of oxidation, and the improvement of the wettability is insignificant.
이하 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.
실시예 1Example 1
비스무쓰가 20 중량%, 인듐이 1.5 중량%, 인이 0.01 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, indium was 1.5% by weight, phosphorus was 0.01% by weight, and the balance was tin.
실시예 2Example 2
비스무쓰가 25 중량%, 구리가 1.0 중량%, 인이 0.01 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 25% by weight, copper was 1.0% by weight, phosphorus was 0.01% by weight, and the balance was tin.
비교예 1Comparative Example 1
주석이 63.0 중량%, 납이 37 중량%인 유연합금을 제조하였다.A flexible alloy having 63.0 wt% tin and 37 wt% lead was prepared.
상기 실시예 1, 2에 의하여 제조된 무연합금과 비교예 1에 의한 땜납과의 고상온도, 액상온도, 납땜강도 및 크리프수명을 비교하여 표 1에 나타내었다.Table 1 compares the solid-state temperature, liquid-phase temperature, soldering strength and creep life of the lead-free alloys prepared in Examples 1 and 2 and the solder according to Comparative Example 1.
상기 표 1에서와 같이 본 발명의 무연합금은 고상온도가 153~159 ℃이며 액상온도가 178~185 ℃로서 응고범위가 좁고, 융점이 낮아서 저온 특성이 필요한 특성화 전자부품의 배선용 무연땜납으로 사용이 가능하다. 또한 본 발명의 첨가원소의 첨가로 인하여 납땜강도 및 크리프 수명이 증가하여 기계적 특성이 향상된 것을 알 수 있다. As shown in Table 1, the lead-free alloy of the present invention has a solid phase temperature of 153 to 159 ° C. and a liquid phase temperature of 178 to 185 ° C., which has a narrow solidification range and low melting point. It is possible. In addition, it can be seen that due to the addition of the additive element of the present invention, the soldering strength and the creep life are increased to improve the mechanical properties.
실시예 3Example 3
비스무쓰가 20 중량%, 인듐이 1.5 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, indium was 1.5% by weight, phosphorus was 0.02% by weight, and the balance was tin.
실시예 4Example 4
비스무쓰가 20 중량%, 인듐이 1.5 중량%, 알루미늄이 0.5 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, indium was 1.5% by weight, aluminum was 0.5% by weight, phosphorus was 0.02% by weight, and the balance was tin.
실시예 5Example 5
비스무쓰가 20 중량%, 아연이 1.0 중량%, 인듐이 1.5 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, zinc was 1.0% by weight, indium was 1.5% by weight, phosphorus was 0.02% by weight, and the balance was tin.
실시예 6Example 6
비스무쓰가 20 중량%, 아연이 1.0 중량%, 인듐이 1.5 중량%, 알루미늄이 0.5 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, zinc was 1.0% by weight, indium was 1.5% by weight, aluminum was 0.5% by weight, phosphorus was 0.02% by weight, and the balance was tin.
실시예 7Example 7
비스무쓰가 20 중량%, 아연이 2.0 중량%, 인듐이 1.5 중량%, 게르마늄이 0.01 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, zinc was 2.0% by weight, indium was 1.5% by weight, germanium was 0.01% by weight, phosphorus was 0.02% by weight, and the balance was tin.
실시예 8Example 8
비스무쓰가 20 중량%, 아연이 2.0 중량%, 인듐이 1.5 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, zinc was 2.0% by weight, indium was 1.5% by weight, phosphorus was 0.02% by weight, and the balance was tin.
실시예 9Example 9
비스무쓰가 20 중량%, 아연이 2.0 중량%, 인듐이 2.0 중량%, 알루미늄 0.5 중량%, 인이 0.02 중량%, 갈륨 0.05 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 20% by weight, zinc was 2.0% by weight, indium was 2.0% by weight, aluminum was 0.5% by weight, phosphorus was 0.02% by weight, gallium 0.05% by weight, and the balance was tin.
실시예 10Example 10
비스무쓰가 25 중량%, 구리가 1.5 중량%, 알루미늄 0.1 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 25 wt%, copper 1.5 wt%, aluminum 0.1 wt%, phosphorus 0.02 wt%, and the balance tin.
실시예 11Example 11
비스무쓰가 25 중량%, 구리가 1.5 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 25% by weight, copper was 1.5% by weight, phosphorus was 0.02% by weight, and the balance was tin.
실시예 12Example 12
비스무쓰가 25 중량%, 구리가 0.5 중량%, 알루미늄 0.1 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 25 wt%, copper 0.5 wt%, aluminum 0.1 wt%, phosphorus 0.02 wt%, and the balance tin.
실시예 13Example 13
비스무쓰가 25 중량%, 인듐이 1.5 중량%, 구리가 0.5 중량%, 인이 0.02 중량%, 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which bismuth was 25 wt%, indium 1.5 wt%, copper 0.5 wt%, phosphorus 0.02 wt%, and the balance tin.
비교예 1Comparative Example 1
주석이 63 중량%, 납이 37 중량%인 유연합금을 제조하였다.A lead alloy of 63 wt% tin and 37 wt% lead was prepared.
상기 실시예 3 내지 13에 의하여 제조된 무연합금과 비교예 1에 의하여 제조된 유연합금을 소형 납땜 분류조에서 각 10kg용융을 하고 교반하였을 때의 한 시간 동안의 드로스 발생량을 표 2에 나타내었다. Table 2 shows the amount of dross generated for one hour when the lead-free alloys prepared in Examples 3 to 13 and the flexible alloys prepared in Comparative Example 1 were melted and stirred for 10 kg in a small solder fractionation tank. .
상기 표 2에서와 같이 종래의 유연합금에 비교하여 손색없는 드로스 발생량이 보이고 있으며, 비스무쓰와 기타 원소들의 조합에 따라서 드로스량을 급격히 줄일 수 있는 저온 납땜용 무연합금을 제조할 수 있다. As shown in Table 2, the amount of dross generated is comparable to that of the conventional flexible alloy, and a lead-free alloy for low temperature soldering can be manufactured which can drastically reduce the amount of dross according to a combination of bismuth and other elements.
상술한 바와 같이 본 발명의 무연합금은 종래 Sn-Pb계 땜납에 비하여 납이 함유되지 않아 작업환경을 개선시키고 환경오염을 방지하게 된다.As described above, the lead-free alloy of the present invention does not contain lead as compared to conventional Sn-Pb-based solders, thereby improving the working environment and preventing environmental pollution.
상기 실시예에서와 같이 기존의 Sn-Pb 공정솔더와 비교시에는 낮은 융점특성과 납땜강도 및 크리프 수명을 연장시키는 우수한 효과를 가지고 있다.Compared with the conventional Sn-Pb process solder as in the above embodiment, it has an excellent effect of extending the melting point, the solder strength and the creep life.
또한 기존 유연솔더와 비교하여도 손색없는 합금조합으로 인하여 작업성에 영향을 미치는 드로스 량의 저감을 향상시킬 수 있다.In addition, it is possible to improve the reduction of the dross amount affecting the workability due to the comparable alloy combination compared to the conventional flexible solder.
따라서, 납을 사용하지 않고도 기존의 땜납과 거의 유사한 융점을 가지게 되 므로 Sn-Pb계 땜납을 사용하던 장비를 그대로 사용할 수 있게 됨은 물론 젖음성 향상 및 드로스 발생량의 저감등으로 무연합금의 사용량을 최소화하므로 매우 경제적인 효과를 얻게 된다. 또한, 저온 특성 및 기계적 특성에 민감한 EEFL 전극 접합 등의 유리재료 접합에 특성화 솔더로 사용이 가능이 가능하다.Therefore, since the melting point is almost similar to that of the existing solder without using lead, the equipment using Sn-Pb-based solder can be used as it is, and the use of lead-free alloy is minimized by improving wettability and reducing dross generation. This is a very economical effect. In addition, it can be used as a characterization solder for glass material bonding, such as EEFL electrode bonding sensitive to low temperature properties and mechanical properties.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060024358A KR100743240B1 (en) | 2006-03-16 | 2006-03-16 | Low temperature lead-free solder alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060024358A KR100743240B1 (en) | 2006-03-16 | 2006-03-16 | Low temperature lead-free solder alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100743240B1 true KR100743240B1 (en) | 2007-07-27 |
Family
ID=38499690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060024358A KR100743240B1 (en) | 2006-03-16 | 2006-03-16 | Low temperature lead-free solder alloy |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100743240B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101345940B1 (en) * | 2011-01-31 | 2013-12-27 | 후지쯔 가부시끼가이샤 | Solder, soldering method, and semiconductor device |
CN116065080A (en) * | 2023-02-15 | 2023-05-05 | 江苏恒翊电子科技有限公司 | Metallic low-temperature solid-liquid phase change material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071178A (en) * | 1993-06-16 | 1995-01-06 | Internatl Business Mach Corp <Ibm> | Three component solder |
JPH07155984A (en) * | 1993-10-25 | 1995-06-20 | Indium Corp Of America:The | Alloy containing tin, zinc, indium and bismuth and free fromlead |
JPH0919792A (en) * | 1995-06-30 | 1997-01-21 | Samsung Electro Mech Co Ltd | Lead-free solder of which mechanical property is excellent |
KR19990073280A (en) * | 1999-06-29 | 1999-10-05 | 김성진 | Pb free solder reduced oxidation of Zn in Sn-Zn system |
KR20010110863A (en) * | 2000-06-08 | 2001-12-15 | 김경대 | Lead-Free Alloys for Soldering |
KR20010112869A (en) * | 2000-06-15 | 2001-12-22 | 유현식 | A catalyst for ethylene homo- and copolymerization |
-
2006
- 2006-03-16 KR KR1020060024358A patent/KR100743240B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071178A (en) * | 1993-06-16 | 1995-01-06 | Internatl Business Mach Corp <Ibm> | Three component solder |
JPH07155984A (en) * | 1993-10-25 | 1995-06-20 | Indium Corp Of America:The | Alloy containing tin, zinc, indium and bismuth and free fromlead |
JPH0919792A (en) * | 1995-06-30 | 1997-01-21 | Samsung Electro Mech Co Ltd | Lead-free solder of which mechanical property is excellent |
KR19990073280A (en) * | 1999-06-29 | 1999-10-05 | 김성진 | Pb free solder reduced oxidation of Zn in Sn-Zn system |
KR20010110863A (en) * | 2000-06-08 | 2001-12-15 | 김경대 | Lead-Free Alloys for Soldering |
KR20010112869A (en) * | 2000-06-15 | 2001-12-22 | 유현식 | A catalyst for ethylene homo- and copolymerization |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101345940B1 (en) * | 2011-01-31 | 2013-12-27 | 후지쯔 가부시끼가이샤 | Solder, soldering method, and semiconductor device |
US8673762B2 (en) | 2011-01-31 | 2014-03-18 | Fujitsu Limited | Solder, soldering method, and semiconductor device |
CN116065080A (en) * | 2023-02-15 | 2023-05-05 | 江苏恒翊电子科技有限公司 | Metallic low-temperature solid-liquid phase change material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5152150B2 (en) | Lead-free solder alloy | |
EP2589459B1 (en) | Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY | |
WO1997012719A1 (en) | Lead-free solder | |
JP2002018589A (en) | Lead-free solder alloy | |
US20020131887A1 (en) | Lead-free solder and soldered article | |
JP4392020B2 (en) | Lead-free solder balls | |
CN1651180A (en) | Sn-zn or Sn-AgBi series leadless parent metal containing trace doped metal and its preparation method | |
JP2007075836A (en) | Lead free alloy for soldering | |
KR100743240B1 (en) | Low temperature lead-free solder alloy | |
JPH11221695A (en) | Lead-free solder alloy | |
JP2019155467A (en) | Lead-free solder alloy | |
KR100756072B1 (en) | Lead-free solder alloy | |
KR100673194B1 (en) | SnCu-based lead-free soldering alloy | |
KR100445350B1 (en) | Lead-free solder alloy | |
KR100366131B1 (en) | Lead-free solder with lower melting point and lower dross | |
KR100333401B1 (en) | Lead-Free Alloys for Soldering | |
KR100509509B1 (en) | Lead-free solder alloy | |
CN109277721B (en) | Sn-Cu-Ni lead-free solder containing Ga and Nd | |
JP2004260147A (en) | Soldering method and method for manufacturing component-packaged substrate | |
KR100443230B1 (en) | Lead-free solder alloy | |
KR100903026B1 (en) | Leed-free alloy for soldering | |
KR20040063027A (en) | Alloy that there is no lead ingredient for soldering | |
JP2003126988A (en) | Solder, soldering method and soldered joint substrate | |
KR20040035458A (en) | Lead-free solder alloy | |
JP2007313519A (en) | Lead-free alloy for soldering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Publication of correction | ||
FPAY | Annual fee payment |
Payment date: 20130416 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140530 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150630 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160718 Year of fee payment: 10 |