KR100756072B1 - Lead-free solder alloy - Google Patents

Lead-free solder alloy Download PDF

Info

Publication number
KR100756072B1
KR100756072B1 KR1020060112783A KR20060112783A KR100756072B1 KR 100756072 B1 KR100756072 B1 KR 100756072B1 KR 1020060112783 A KR1020060112783 A KR 1020060112783A KR 20060112783 A KR20060112783 A KR 20060112783A KR 100756072 B1 KR100756072 B1 KR 100756072B1
Authority
KR
South Korea
Prior art keywords
lead
silver
weight
bismuth
copper
Prior art date
Application number
KR1020060112783A
Other languages
Korean (ko)
Inventor
이주동
남기평
강종태
Original Assignee
희성소재 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성소재 (주) filed Critical 희성소재 (주)
Priority to KR1020060112783A priority Critical patent/KR100756072B1/en
Application granted granted Critical
Publication of KR100756072B1 publication Critical patent/KR100756072B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices

Abstract

A lead-free solder alloy which can obtain far improved mechanical properties and soldering strength as well as a dross reduction effect as compared with a conventional solder alloy even without using lead, and can minimize the influence on the human body due to gas and the like generated during soldering is provided. A lead-free solder alloy comprises 0.2 to 2.5 wt.% of silver(Ag), 0.1 to 2.0 wt.% of copper(Cu), 0.001 to 0.1 wt.% of nickel(Ni), 0.001 to 0.5 wt.% of phosphorous(P), 0.01 to 0.08 wt.% of bismuth(Bi), and the balance of tin(Sn).

Description

납땜용 무연합금{Lead-free solder alloy}Lead-free solder alloy

본 발명은 납땜용 무연합금에 관한 것으로서, 납을 함유하지 않는 합금에 의해 납땜이 이루어지도록 하여 납의 중독 등에 의한 피해를 방지하도록 설계된 무연합금에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-free alloy for soldering, and relates to a lead-free alloy designed to prevent damage caused by poisoning of lead by soldering by an alloy containing no lead.

일반적으로 납땜은 땜납을 용융하여 금속을 접합시키므로 접합할 금속보다 용융온도가 낮은 금속이 사용되는데, 납의 용융온도(327℃)보다 낮은 온도에서 용융되는 연납과, 용융온도가 대체적으로 450℃ 이상인 경납으로 대별된다. 연납의 성분은 납과 주석이며, 그 함유량에 따라서 인장강도 및 전단 강도가 각각 다르게 나타나게 된다. 한편 경납은 분말, 밴드, 와이어 등의 형상으로 형성되며 구리(Cu), 아연(Zn), 납(Pb)이 주성분인 황동납과 은(Ag)을 첨가하여 유동성을 개선한 은납 등이 있다.In general, soldering melts solder to bond metals, and therefore, metals having a lower melting temperature than metals to be joined are used, such as solders that are melted at a temperature lower than the melting temperature of lead (327 ° C) and light solders having a melting temperature of generally 450 ° C or higher. Is roughly divided into. The lead components are lead and tin, and the tensile strength and shear strength are different depending on the content. On the other hand, braze is formed in the form of powder, band, wire, and the like, and copper (Cu), zinc (Zn), and lead (Pb) include brass lead and silver (Ag), which are added to improve flowability.

일반적으로 전자기기류는 고장 등의 이유로 폐기되면 소각처리되지 않고, 재단 처리되어 안정형의 산업폐기물로서 땅속에 매립된다. 그런데 최근 땅속에 매립 처분된 전자기기류가 문제가 되고 있다. 즉, 화석연료의 많은 사용으로 대기중에 유황산화물이나 질소산화물이 다량 발생되어, 산성상태로 된 대기를 비가 통 과함으로서 산성비가 발생된다. 이러한 산성비가 땅속에 침투하고, 매립된 전자기기류로부터 납 등의 유해금속을 용출시켜 지하수를 오염, 이 지하수를 장기간 마시면 납중독 우려가 있으며, 또한 납땜 작업시 땜납의 용융으로 발생되는 가스등에 작업자가 노출되면 호흡기를 통해 인체에 축적되어 납중독이라는 인체에 치명적인 영향을 미치는 문제점들이 있다.In general, when an electronic device is disposed of due to a malfunction, it is not incinerated, but is cut and embedded in the ground as a stable industrial waste. Recently, however, the landfilled electronic air has become a problem. In other words, a large amount of fossil fuel is used to generate a large amount of sulfur oxides and nitrogen oxides in the air, and acid rain is generated by non-passing the air in an acidic state. Such acid rain penetrates into the ground, elutes harmful metals such as lead from buried electronics, and contaminates groundwater, and drinking this groundwater for a long time may lead to lead poisoning. If there is a problem that accumulates in the human body through the respiratory system has a deadly effect on the human body called lead poisoning.

현재까지 개발된 무연(Lead Free) 땜납은, 주석(Sn)을 주성분으로 구리(Cu), 은(Ag), 비스무쓰(Bi), 아연(Zn), 니켈(Ni), 인(P) 등의 금속을 첨가한 것이다. 무연 땜납의 대표조성으로는 Sn - 0.7중량%Cu, Sn - 3.5중량%Ag, Sn - 58중량%Bi, Sn - 3.0중량%Ag - 0.5중량%Cu 합금 외에, 용도에 따라 첨가금속원소를 더 조합하여 사용하고 있다.Lead-free solders developed to date include tin (Sn) as a main component, copper (Cu), silver (Ag), bismuth (Bi), zinc (Zn), nickel (Ni), phosphorus (P), etc. The metal of is added. Representative compositions of lead-free solders include Sn-0.7 wt% Cu, Sn-3.5 wt% Ag, Sn-58 wt% Bi, Sn-3.0 wt% Ag-0.5 wt% Cu alloys. It is used in combination.

그러나, 이들 납이 들어있지 않은 땜납은 각각의 합금마다 문제점을 가지고 있다. 예를 들면, Sn - 9중량%Zn 등의 Sn-Zn계 땜납은 아연(Zn)이 대단히 산화하기 쉬운 금속이기 때문에 두터운 산화막을 형성하기 쉬우며, 대기중의 납땜에 있어서는 젖음성이 나쁘다. 또한, Sn - 58중량%Bi 등의 Sn-Bi계 땜납은 비스무쓰(Bi)의 특성으로 인하여 기계적 강도가 약하고 땜납 접합부의 신뢰성 저하가 우려된다.However, these lead-free solders have problems with each alloy. For example, Sn-Zn-based solders such as Sn-9% by weight Zn tend to form a thick oxide film because zinc (Zn) is a very easy metal to oxidize, and poor wettability in air soldering. In addition, Sn-Bi-based solders such as Sn-58 wt% Bi have a weak mechanical strength due to the properties of bismuth (Bi), and there is a concern that the reliability of the solder joint is reduced.

현재, 무연 땜납에서 가장 실용적으로 생각되고 있는 것이, Sn - 0.7중량%Cu 등의 Sn-Cu계, Sn - 3.5중량%Ag 등의 Sn-Ag계 및 Sn-Ag계 땜납에 구리(Cu)를 첨가한 Sn-Ag-Cu계 땜납이다.Currently, lead-free solder is most practically considered to include copper (Cu) in Sn-Ag-based and Sn-Ag-based solders such as Sn-Cu-based, such as Sn-0.7% by weight Cu, and Sn-3.5% by weight-Ag. Sn-Ag-Cu-based solder was added.

그러나 Sn - 0.7중량%Cu와 같은 Sn-Cu계는 코스트 측면에서는 저가이지만 납 땜시의 젖음성이 부족하다. 한편, Sn-3.5중량%Ag과 같은 Sn-Ag계 및 Sn-Ag계 땜납에 구리(Cu)를 소량 첨가한 Sn-Ag-Cu계는 젖음성이 양호하나 고가인 은(Ag)을 함유하고 있어서 코스트가 높아지며 원가절하를 위하여 은(Ag) 함유량을 줄이면 젖음성과 땜납의 합금강도가 떨어진다. 또한, 기존 Sn-37Pb 합금의 유연 땜납에 비해 융점이 50 ~ 100℃ 가량 높아져 접합설비 및 공정상에 변경이 불가피하며, 기존 PCB 사용시에 내열한계를 재검토할 필요가 있다.However, Sn-Cu system such as Sn-0.7 wt% Cu is inexpensive in terms of cost but lacks wettability in soldering. On the other hand, the Sn-Ag-Cu system in which a small amount of copper (Cu) is added to Sn-Ag-based and Sn-Ag-based solders such as Sn-3.5 wt% Ag has good wettability but contains expensive silver (Ag). When the cost is high and the silver content is reduced for cost reduction, the wettability and the alloy strength of the solder are reduced. In addition, since the melting point is about 50 ~ 100 ℃ higher than the conventional solder of the Sn-37Pb alloy, it is inevitable to change the bonding facilities and processes, it is necessary to review the heat resistance limit when using the existing PCB.

본 발명은 이와 같은 종래의 문제점들을 해결하기 위해 발명된 것으로서, 땜납의 성분 중 납을 포함하지 않고도 납땜이 이루어지도록 하였으며, 납에 의해 인체가 입는 피해를 예방할 수 있는 것을 특징으로 한다. 무연합금은 첨가된 미량원소 및 함유량에 따라 고유의 특성이 크게 달라지는 경향을 나타낸다.The present invention has been invented to solve such a conventional problem, it is to be soldered without including lead in the components of the solder, it is characterized in that the damage to the human body by the lead can be prevented. Lead-free alloys tend to vary greatly in their inherent properties depending on the trace elements added and their content.

따라서, 본 발명은 주석(Sn)을 기본물질로 하고 여기에 작업성과 경도를 개선하여 기계적 특성을 증가시키고 무연 땜납의 제조시 드로스 되는 양을 최소화하고자 부가금속으로 은(Ag), 구리(Cu), 인(P), 니켈(Ni)을 첨가하고, 젖음성을 향상시키기 위하여 비스무쓰(Bi)를 첨가하여 조성되는 것을 특징으로 한다.Therefore, the present invention is based on the tin (Sn) and to improve the workability and hardness to increase the mechanical properties and to minimize the amount of dross in the production of lead-free solder silver (Ag), copper (Cu) ), Phosphorus (P), nickel (Ni) is added, and bismuth (Bi) is added to improve wettability.

본 발명은 은(Ag)이 0.2~2.5중량%, 구리(Cu)가 0.1~2.0중량%, 니켈(Ni)이 0.001~0.1중량%, 인(P)이 0.001~0.5중량%, 비스무쓰(Bi)가 0.01~0.08중량%, 나머지가 주석(Sn)으로 이루어지는 것을 특징으로 하는 납땜용 무연합금이다.The present invention is 0.2 to 2.5% by weight of silver (Ag), 0.1 to 2.0% by weight of copper (Cu), 0.001 to 0.1% by weight of nickel (Ni), 0.001 to 0.5% by weight of phosphorus (P), bismuth ( A lead-free alloy for soldering, wherein Bi) is 0.01 to 0.08% by weight and the remainder is made of tin (Sn).

주석(Sn)은 자체 독성이 없고 접합모재에 대하여 젖음성을 제공하는 역할을 하는 땜납 기재의 필수 금속이다.Tin (Sn) is an essential metal of a solder substrate which is not self toxic and serves to provide wettability to the bonded base material.

은(Ag)은 젖음성 향상효과를 지니며, 기계적 성능을 향상시키고, 변태억제 역할을 한다. 하지만, 은(Ag) 함량이 증가함에 따라 조직은 미세화되어 강도는 상승하고, 동시에 조대한 초정 Ag3Sn이 생성되어 결함으로 될 가능성이 높아진다. 은(Ag)량의 Ag3Sn 초정 형성에 미치는 영향을 조사한 결과 약 3.2wt% 이상의 범위에서 발생한다는 것이 밝혀졌다. 기계적 강도는 3.5wt%까지 첨가량에 비례하여 증가하고, 그 이상이 되면 실용범위의 은(Ag)량에서는 거의 변화가 없다. 본 발명에서 은(Ag)은 0.2~2.5중량%로 함유된다. 2.5중량%를 초과하면 젖음성 향상 및 기계적 성능향상 효과가 미미하며, 0.2중량% 미만의 경우 솔더 특성향상에 효과가 거의 없다.Silver (Ag) has a wettability-improving effect, improves mechanical performance, and plays a role in transformation. However, as the silver (Ag) content increases, the structure becomes finer, the strength increases, and at the same time, the coarse primary Ag 3 Sn is generated, which is likely to become a defect. Investigation of the effect of Ag (Ag) content on the Ag 3 Sn primary formation revealed that it occurs in the range of about 3.2 wt% or more. The mechanical strength increases in proportion to the amount added up to 3.5 wt%, and if it is higher than that, there is little change in the amount of silver (Ag) in the practical range. In the present invention, silver (Ag) is contained in 0.2 to 2.5% by weight. If the content exceeds 2.5% by weight, the effect of improving the wettability and the mechanical performance is insignificant. If the content is less than 0.2% by weight, there is little effect on the improvement of the solder properties.

구리(Cu)는 주석(Sn)중에 대부분 고용되지 않는 것이 특징적이며, Cu6Sn5 미세분산으로 전환된다. 합금의 조직을 미세화하여 접합강도를 향상시키는 동시에 점성증대를 기대할 수 있으며, 전자부품이나 인쇄회로 기판의 침식을 억제하는 역할 하게 된다. 본 발명에서 구리(Cu)는 0.1~2.0중량%로 함유된다. 구리(Cu) 함량이 2.0중량%를 초과하면, 융점이 급격히 상승하여 합금조성 상의 결함을 야기할 수 있으며, 0.1중량% 미만의 경우 솔더 특성향상에 효과가 없다.Copper (Cu) is characterized by not being mostly dissolved in tin (Sn), and is converted to Cu 6 Sn 5 microdispersion. The microstructure of the alloy can be refined to improve bonding strength and increase viscosity, and to suppress erosion of electronic components and printed circuit boards. Copper (Cu) is contained in the present invention at 0.1 to 2.0% by weight. If the copper (Cu) content exceeds 2.0% by weight, the melting point may rise sharply, causing defects in the alloy composition, and less than 0.1% by weight has no effect on improving solder properties.

니켈(Ni)은 미량첨가시 Cu6Sn5 등과 같은 중간생성물 용해에 도움을 준다. 또한, 매끄러운 표면구조를 생성한다. 따라서 응고균열의 발생을 감소시키며, 젖음성에는 거의 영향을 미치지 않는다. 본 발명에서는 0.001~0.1중량% 함유된 다. 니켈(Ni) 함량이 0.001중량% 미만일 경우에는 중간생성물 용해에 별다른 도움을 주지 못하며, 0.1중량% 이상이 함유되면, 솔더 융점을 향상시키게 된다.Nickel (Ni) helps to dissolve intermediates such as Cu 6 Sn 5 at trace addition. It also creates a smooth surface structure. This reduces the incidence of coagulation cracks and has little effect on wettability. In the present invention is contained 0.001 ~ 0.1% by weight. If the nickel (Ni) content is less than 0.001% by weight does not help the dissolution of the intermediate product, when contained more than 0.1% by weight, the solder melting point is improved.

비스무쓰(Bi)는 첨가시 솔더 합금조성의 융점하강에 탁월한 효과가 있다. 따라서, 일찍부터 저융점 무연솔더 재료로 연구가 활발히 이루어졌다. 하지만, 조직이 공정 조성이라면 단순한 Bi/Sn 공정조직으로 되지만, 주석(Sn) 매트릭스 중에 다량의 비스무쓰(Bi)가 고용되는 다른 합금계에서 찾아볼 수 없는 특징이 있다. 또한, 원래 깨지기 쉬운 취성의 성질을 가지고 있으므로, 다량 첨가시 솔더의 접합 신뢰성 저하가 우려된다. 비스무쓰(Bi)량을 다량 첨가하는 것은 비스무쓰(Bi)가 10㎛이상의 조대한 형상으로 정출되어 솔더의 조직적 성질에 악영향을 미칠 것을 추측할 수 있다. 또한, 비스무쓰(Bi)의 소량 첨가는 솔더의 젖음성을 향상시킨다는 연구보고가 있다.Bismuth (Bi) has an excellent effect on the melting point of the solder alloy composition when added. Therefore, from early on, research has been actively conducted on low melting lead-free solder materials. However, if the structure is a process composition, it becomes a simple Bi / Sn process structure, but there is a feature not found in other alloy systems in which a large amount of bismuth (Bi) is dissolved in the tin (Sn) matrix. In addition, because of its brittle nature, which is inherently brittle, there is a concern that the soldering reliability of the solder may be reduced when a large amount is added. Addition of a large amount of bismuth (Bi) can be inferred that bismuth (Bi) is crystallized to a coarse shape of 10 µm or more, which adversely affects the structure of the solder. In addition, a small amount of bismuth (Bi) has been reported to improve the wettability of the solder.

따라서, 본 발명에서는 비스무쓰(Bi)의 소량 첨가에 따른 젖음성 향상효과를 얻기 위해, 비스무쓰(Bi) 0.01~0.08중량%가 함유된다. 0.08중량%이상 함유시에는 젖음성 향상효과가 감소하며, 취성이 서서히 증가한다. 따라서, 다량 함유시 접합부의 기계적 성질 및 퍼짐성을 제대로 얻을 수 없으며, 0.01중량% 이하의 경우 비스무쓰(Bi) 첨가에 따른 젖음성 강화 효과를 효과적으로 얻을 수 없다.Therefore, in the present invention, in order to obtain the effect of improving the wettability according to the addition of a small amount of bismuth (Bi), 0.01 to 0.08% by weight of bismuth (Bi) is contained. When it contains more than 0.08% by weight, the effect of improving wettability decreases and brittleness gradually increases. Therefore, when a large amount is contained, the mechanical properties and spreadability of the joint cannot be properly obtained, and in the case of 0.01 wt% or less, the wettability enhancing effect due to the addition of bismuth (Bi) cannot be effectively obtained.

인(P)의 첨가는 땜납의 산화방지에 효과가 있다. 무연땜납의 제조시 용융상태에서 인이 상부층으로 떠올라 공기 중의 산소와 접촉하는 피막이 형성되도록 하여 드로스량을 최소화할 수 있다. 본 발명에서는 0.001~0.5중량%가 함유된다. 인(P)의 첨가량이 0.001중량% 미만에서는 산화방지 및 젖음성 향상에 효과가 없으 며, 0.5중량% 이상에서는 땜납의 점성을 증가시켜 납땜시의 브리지(Bridge) 등의 결함이 발생된다.The addition of phosphorus (P) is effective in preventing the oxidation of the solder. In the production of lead-free solder, phosphorus rises to the upper layer in the molten state so that a film is formed in contact with oxygen in the air, thereby minimizing the amount of dross. In the present invention, 0.001 to 0.5% by weight is contained. If the amount of phosphorus (P) is less than 0.001% by weight, it is not effective in preventing oxidation and improving wettability. If the amount of phosphorus (P) is more than 0.5% by weight, the viscosity of the solder is increased to cause defects such as bridges during soldering.

이하 본 발명의 바람직한 실시 예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described.

(실시예 1)(Example 1)

은이 0.3중량%, 구리가 0.7중량%, 인이 0.01중량% 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which 0.3 wt% silver, 0.7 wt% copper, and 0.01 wt% phosphorus were tin.

(실시예 2)(Example 2)

은이 0.3중량%, 구리가 0.7중량%, 니켈이 0.05중량%, 인이 0.01중량% 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which 0.3 wt% silver, 0.7 wt% copper, 0.05 wt% nickel, and 0.01 wt% phosphorus were tin.

(실시예 3)(Example 3)

은이 0.3중량%, 구리가 0.7중량%, 니켈이 0.05중량%, 비스무쓰 0.005%, 인이 0.01중량% 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which 0.3 wt% silver, 0.7 wt% copper, 0.05 wt% nickel, 0.005% bismuth, and 0.01 wt% phosphorus were tin.

(실시예 4)(Example 4)

은이 0.3중량%, 구리가 0.7중량%, 니켈이 0.05중량%, 비스무쓰 0.03%, 인이 0.01중량% 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which 0.3 wt% silver, 0.7 wt% copper, 0.05 wt% nickel, 0.03% bismuth, and 0.01 wt% phosphorus were tin.

(실시예 5)(Example 5)

은이 0.3중량%, 구리가 0.7중량%, 니켈이 0.05중량%, 비스무쓰 0.05%, 인이 0.01중량% 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which 0.3 wt% silver, 0.7 wt% copper, 0.05 wt% nickel, 0.05 wt% bismuth, and 0.01 wt% phosphorus were tin.

(실시예 6)(Example 6)

은이 0.3중량%, 구리가 0.7중량%, 니켈이 0.05중량%, 비스무쓰 0.08%, 인이 0.01중량% 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which 0.3 wt% silver, 0.7 wt% copper, 0.05 wt% nickel, 0.08% bismuth, and 0.01 wt% phosphorus were tin.

(실시예 7)(Example 7)

은이 0.3중량%, 구리가 0.7중량%, 니켈이 0.05중량%, 비스무쓰 0.1%, 인이 0.01중량% 나머지가 주석인 무연합금을 제조하였다.A lead-free alloy was prepared in which 0.3 wt% silver, 0.7 wt% copper, 0.05 wt% nickel, 0.1 wt% bismuth, and 0.01 wt% phosphorus were tin.

구분division 화학성분(중량%)Chemical composition (% by weight) 고상온도 (℃)Solid State Temperature (℃) 액상온도(℃)Liquid Temperature (℃) 젖음력Fmax (mN)Wetting Force Fmax (mN) 젖음시간 T1(sec)Wetting time T1 (sec) 주석Remark silver 구리Copper sign 니켈nickel 비스 무쓰Bismus 실시예 1Example 1 나머지Remainder 0.30.3 0.70.7 0.010.01 -- -- 222∼225222-225 227∼228227-228 1.981.98 3.953.95 실시예 2Example 2 나머지Remainder 0.30.3 0.70.7 0.010.01 0.050.05 -- 222∼225222-225 228∼230228-230 2.112.11 3.813.81 실시예 3Example 3 나머지Remainder 0.30.3 0.70.7 0.010.01 0.050.05 0.0050.005 222∼225222-225 228∼230228-230 2.132.13 3.803.80 실시예 4Example 4 나머지Remainder 0.30.3 0.70.7 0.010.01 0.050.05 0.030.03 222∼225222-225 228∼230228-230 2.2262.226 3.393.39 실시예 5Example 5 나머지Remainder 0.30.3 0.70.7 0.010.01 0.050.05 0.050.05 222∼225222-225 228∼230228-230 2.2042.204 3.663.66 실시예 6Example 6 나머지Remainder 0.30.3 0.70.7 0.010.01 0.050.05 0.080.08 222∼225222-225 228∼230228-230 2.1802.180 3.703.70 실시예 7Example 7 나머지Remainder 0.30.3 0.70.7 0.010.01 0.050.05 0.10.1 222∼225222-225 227∼229227-229 2.122.12 3.793.79

상기 표에서와 같이 본 발명의 무연합금은 고상온도가 222~225℃이며, 액상온도가 228~230℃이다. 니켈의 소량 첨가로 인해 젖음력이 향상되고, 젖음시간이 짧아진 것을 확인할 수 있다.As shown in the table above, the lead-free alloy of the present invention has a solid phase temperature of 222 to 225 ° C and a liquidus temperature of 228 to 230 ° C. Due to the addition of a small amount of nickel, the wetting force is improved and the wetting time is shortened.

이렇게 제조된 무연합금은 일반 전자부품의 배선용으로 사용 가능한 융점을 가지며, 응고 범위가 좁아 단계적인 자동납땜에 매우 유리하다. 종래의 Sn-Ag-Cu 계와 비교하여 거의 유사한 젖음특성을 가지므로 적은 은(Ag) 첨가로 인한 제조원가 절감의 효과를 얻을 수 있다.The lead-free alloy thus manufactured has a melting point that can be used for wiring of general electronic components, and is narrowly solidified so that it is very advantageous for stepwise automatic soldering. Compared with the conventional Sn-Ag-Cu system has almost similar wetting characteristics, it is possible to obtain the effect of reducing the production cost due to the addition of less silver (Ag).

또한, 0.01~0.08중량%의 비스무쓰(Bi)를 첨가함으로써 젖음성 향상 효과를 볼 수 있다.In addition, the wettability improvement effect can be seen by adding 0.01-0.08 weight% of bismuth (Bi).

상술한 바와 같이 본 발명의 무연합금은 종래 Sn-Pb계 땜납에 비하여 납이 함유되어 있지 않아 작업환경을 개선 시킴은 물론 환경오염을 방지하게 된다.As described above, the lead-free alloy of the present invention does not contain lead as compared to the conventional Sn-Pb-based solder, thereby improving the working environment and preventing environmental pollution.

인을 첨가함으로써, 용탕시 산소와 접촉되는 상층에 피막을 형성하여 첨가원소의 산화를 억제하므로 땜납시 발생되는 드로스양을 최소화 할 수 있고, 은을 추가함으로써 무연합금과 모재합금과의 접합강도를 상승하게 하며, 젖음성 향상효과를 얻을 수 있다. 비스무쓰 첨가를 통한 젖음성 향상효과도 기대할 수 있다. 또한, 구리를 추가함으로써 합금의 조직을 미세화하여 접합강도를 향상시키는 동시에 전자부품이나 인쇄회로기판의 침식을 억제할 수 있다. 또한, 기존 Sn-Ag-Cu계의 은 첨가량보다 소량을 첨가하고도 거의 유사한 젖음특성을 나타내므로, 제조비용 절감 효과가 크다.By adding phosphorus, a film is formed on the upper layer in contact with oxygen when molten, thereby suppressing the oxidation of the added element, thereby minimizing the amount of dross generated during soldering, and by adding silver, the bonding strength between the lead-free alloy and the base alloy To increase the wetting effect can be obtained. It is also expected to improve the wettability by adding bismuth. In addition, by adding copper, it is possible to refine the alloy structure to improve the bonding strength and to suppress the erosion of the electronic component and the printed circuit board. In addition, even if a small amount of silver-based addition of the existing Sn-Ag-Cu system shows a similar wettability characteristics, manufacturing cost reduction effect is large.

Claims (1)

은(Ag)이 0.2~2.5중량%, 구리(Cu)가 0.1~2.0중량%, 니켈(Ni)이 0.001~0.1중량%이고, 인(P)이 0.001~0.5중량%, 비스무쓰(Bi)가 0.01~0.08중량%, 나머지가 주석(Sn)으로 이루어지는 것을 특징으로 하는 납땜용 무연합금.Silver (Ag) is 0.2-2.5 wt%, Copper (Cu) is 0.1-2.0 wt%, Nickel (Ni) is 0.001-0.1 wt%, Phosphorus (P) is 0.001-0.5 wt%, Bismuth (Bi) Is 0.01 to 0.08% by weight, the remainder is made of tin (Sn) lead-free alloy for soldering.
KR1020060112783A 2006-11-15 2006-11-15 Lead-free solder alloy KR100756072B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060112783A KR100756072B1 (en) 2006-11-15 2006-11-15 Lead-free solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060112783A KR100756072B1 (en) 2006-11-15 2006-11-15 Lead-free solder alloy

Publications (1)

Publication Number Publication Date
KR100756072B1 true KR100756072B1 (en) 2007-09-07

Family

ID=38736717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060112783A KR100756072B1 (en) 2006-11-15 2006-11-15 Lead-free solder alloy

Country Status (1)

Country Link
KR (1) KR100756072B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213879B2 (en) 2015-11-30 2019-02-26 Senju Metal Industry Co., Ltd. Solder alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213879B2 (en) 2015-11-30 2019-02-26 Senju Metal Industry Co., Ltd. Solder alloy

Similar Documents

Publication Publication Date Title
JP4225165B2 (en) Lead-free solder alloy
KR101026970B1 (en) Lead-free solder paste
EP2277657B1 (en) Lead-free solder
KR19980068127A (en) Lead-Free Alloys for Soldering
JP2002018589A (en) Lead-free solder alloy
JP4392020B2 (en) Lead-free solder balls
CN102085604A (en) Sn-Ag-Cu-Bi-Cr low-silver and lead-free solder
JP2007075836A (en) Lead free alloy for soldering
KR100756072B1 (en) Lead-free solder alloy
JP2019155467A (en) Lead-free solder alloy
KR100743240B1 (en) Low temperature lead-free solder alloy
KR100445350B1 (en) Lead-free solder alloy
KR100333401B1 (en) Lead-Free Alloys for Soldering
KR100337498B1 (en) Lead-Free Alloys for Soldering
KR100509509B1 (en) Lead-free solder alloy
KR100337497B1 (en) Lead-Free Alloys for Soldering
KR101951813B1 (en) Composite for low melting point lead-free solder alloy, lead-free solder paste including the same and semiconductor package including the same
JP2004260147A (en) Soldering method and method for manufacturing component-packaged substrate
KR20040063027A (en) Alloy that there is no lead ingredient for soldering
KR100443230B1 (en) Lead-free solder alloy
KR100337496B1 (en) Lead-Free Alloys for Soldering
JP2007313519A (en) Lead-free alloy for soldering
KR20110097329A (en) Sn-ag-ce ternary pb-free solder alloy
KR20040035458A (en) Lead-free solder alloy
KR20050069477A (en) Lead-free solder alloy

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120601

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130529

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140829

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160830

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee