JP2004260147A - Soldering method and method for manufacturing component-packaged substrate - Google Patents

Soldering method and method for manufacturing component-packaged substrate Download PDF

Info

Publication number
JP2004260147A
JP2004260147A JP2004025240A JP2004025240A JP2004260147A JP 2004260147 A JP2004260147 A JP 2004260147A JP 2004025240 A JP2004025240 A JP 2004025240A JP 2004025240 A JP2004025240 A JP 2004025240A JP 2004260147 A JP2004260147 A JP 2004260147A
Authority
JP
Japan
Prior art keywords
solder
soldering
coating
compound
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004025240A
Other languages
Japanese (ja)
Inventor
Atsushi Yamaguchi
敦史 山口
Masato Hirano
正人 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004025240A priority Critical patent/JP2004260147A/en
Publication of JP2004260147A publication Critical patent/JP2004260147A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein deterioration is produced at a joint, when an electronic circuit board is used under a high-temperature and high-humidity environment in soldering, with a solder having the basic composition of Sn and Zn, even although the heat damage to electronic components is relieved more than that in the case of solder formed of Sn and Ag. <P>SOLUTION: On the bonding interface of a Cu surface at a part where a circuit board joins with an electronic component, a compound of Cu and Sn or an alloy 12 are formed. By using a soldering material 11 containing Sn and Zn in a composition to solder, deterioration of the joint due to a Cu-Zn compound layer is prevented. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、電子回路基板へ部品実装を行うためのはんだ付け方法、及び回路基板と電子部品とをはんだ付けする部品実装基板の製造方法に関するものである。   The present invention relates to a soldering method for mounting components on an electronic circuit board, and a method for manufacturing a component mounting board for soldering a circuit board and an electronic component.

近年、電子部品実装に関して、はんだ付け部の機械的強度向上や熱衝撃強度等の信頼性特性向上への要求が高まってきている。その一方、地球環境保護の関心が高まる中、電子回路基板などの産業廃棄物の処理についての法規制も進みつつある。したがって、これら両者を満足するはんだ付けに関する開発が必要となっている。   In recent years, with respect to electronic component mounting, there has been an increasing demand for improvement in mechanical strength of soldered portions and improvement in reliability characteristics such as thermal shock strength. On the other hand, with the growing interest in global environmental protection, laws and regulations on the treatment of industrial waste such as electronic circuit boards are also advancing. Therefore, it is necessary to develop soldering that satisfies both of these requirements.

ところで、従来のはんだ材料の主要構成成分はSnとPbであり、63Sn−37Pbの組成をもつものであった。   By the way, the main constituent components of the conventional solder material are Sn and Pb, and have a composition of 63Sn-37Pb.

以下、従来のはんだ材料を用いたはんだ付け方法における電子部品と電子回路基板の接合構造について、図面を参照しながら説明する。   Hereinafter, a joint structure between an electronic component and an electronic circuit board in a conventional soldering method using a solder material will be described with reference to the drawings.

図3は、従来のはんだ材料を用いた接合構造を示す概要図である。図3において、1ははんだ材料で構成成分はSnとPbからなり、2は電子部品電極、3は電子回路基板のランドで構成成分はCu、4は接合界面に形成される化合物層のCuSnである。従来のはんだ材料では融点が比較的低く、また、高温高湿環境下での接合部の信頼性も実用上十分である。しかしながら、上述のように、Pbを使用するはんだ材料は、地球環境保護の観点から好ましくない。   FIG. 3 is a schematic view showing a joining structure using a conventional solder material. In FIG. 3, reference numeral 1 denotes a solder material, whose constituent components are Sn and Pb, 2 denotes an electrode of an electronic component, 3 denotes a land of an electronic circuit board, the constituent component is Cu, and 4 denotes CuSn of a compound layer formed at a bonding interface. is there. The melting point of the conventional solder material is relatively low, and the reliability of the joint under a high temperature and high humidity environment is practically sufficient. However, as described above, a solder material using Pb is not preferable from the viewpoint of global environmental protection.

そこで、鉛を含まないはんだ材料である鉛フリーはんだを用いることが考えられる。鉛フリーはんだの一例である主要成分がSnとAgで構成されるはんだは、Sn−Pbはんだより融点が30〜40℃も高く、はんだ付け温度が鉛入りはんだより高くなる。そのため、はんだ付け温度が電子部品の耐熱温度以上になることがあり、電子部品を損傷させるという問題点を有していた。さらに、濡れ性の面でも、Sn−Pbはんだより劣っているという問題点を有していた。   Therefore, it is conceivable to use a lead-free solder which is a solder material containing no lead. A solder composed of Sn and Ag as main components, which is an example of lead-free solder, has a melting point higher by 30 to 40 ° C. than Sn—Pb solder, and has a higher soldering temperature than lead-containing solder. Therefore, the soldering temperature may be higher than the heat-resistant temperature of the electronic component, and there is a problem that the electronic component is damaged. In addition, there was a problem that the wettability was inferior to that of the Sn-Pb solder.

また、Sn−Pbはんだより、融点が10〜20℃高いSnとZnを基本組成とするはんだを用いることも考えられている。   It has also been considered to use a solder having a basic composition of Sn and Zn whose melting point is higher by 10 to 20 ° C. than that of the Sn—Pb solder.

図4は、SnとZnを基本組成とするはんだ材料を用いた接合構造を示す概要図である。図4において、5はSn−Znはんだ、6は被接合材であるランド3の接合界面に形成されるCu−Zn化合物層である。
特開平09−094688号公報(第2−4頁)
FIG. 4 is a schematic diagram showing a bonding structure using a solder material having a basic composition of Sn and Zn. In FIG. 4, reference numeral 5 denotes an Sn—Zn solder, and reference numeral 6 denotes a Cu—Zn compound layer formed at a bonding interface of the land 3 as a material to be bonded.
JP-A-09-094688 (pages 2-4)

このSnとZnを基本組成とするはんだによるはんだ付けにおいては、電子部品の熱損傷は軽減されるが、電子回路基板の高温高湿環境下での使用における接合部の劣化が問題となってくる。それは、Cu−Zn化合物層6およびSn−Znはんだ5表面に存在するZnが、高温高湿環境下で溶出することが劣化の原因と考えられている。   In the soldering using the solder having Sn and Zn as basic compositions, the thermal damage of the electronic component is reduced, but the deterioration of the joint portion when the electronic circuit board is used in a high-temperature and high-humidity environment becomes a problem. . It is considered that Zn existing on the surfaces of the Cu—Zn compound layer 6 and the Sn—Zn solder 5 elutes in a high-temperature and high-humidity environment, which is a cause of deterioration.

本発明は、電子回路基板の耐高温高湿性の優れた接合部の実現を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to realize a bonded portion of an electronic circuit board having excellent resistance to high temperature and high humidity.

この目的を達成するために本発明は、接合する部分のCu表面の接合界面にCuとSnの化合物または合金を形成させ、SnとZnを組成に含むはんだ材料を用いてはんだ付けを行うことを特徴とするものである。   In order to achieve this object, the present invention provides a method of forming a compound or alloy of Cu and Sn at a bonding interface of a Cu surface at a bonding portion and performing soldering using a solder material containing Sn and Zn in a composition. It is a feature.

これにより、Cu−Zn化合物層による接合部の劣化を、防ぐことが可能となる。   This makes it possible to prevent the deterioration of the joint due to the Cu—Zn compound layer.

また、このはんだ付けを用いて回路基板と電子部品とを接合することにより、耐高温高湿特性に優れた接合部を有する部品実装基板を製造することも可能となる。   Further, by joining the circuit board and the electronic component by using this soldering, it is also possible to manufacture a component mounting board having a joint having excellent resistance to high temperature and humidity.

以上のように本発明によれば、接合する部分のCu表面の接合界面にCuとSnの化合物または合金を形成させ、SnとZnを組成に含むはんだ材料を用いてはんだ付けを行うことにより、Cu−Zn化合物層による接合部の劣化を防ぐという有利な効果が得られる。   As described above, according to the present invention, a compound or an alloy of Cu and Sn is formed at a bonding interface of a Cu surface at a bonding portion, and soldering is performed using a solder material containing Sn and Zn in a composition. An advantageous effect of preventing the deterioration of the joint due to the Cu-Zn compound layer can be obtained.

また、このはんだ付けを用いて回路基板と電子部品とを接合することにより、耐高温高湿特性に優れた接合部を有する部品実装基板を製造することも可能である。   Further, by joining the circuit board and the electronic component by using this soldering, it is also possible to manufacture a component mounting board having a joint having excellent resistance to high temperature and high humidity.

以下、図面を参照しながら本発明について説明をする。なお、各図において、同じ構成要素については同じ符号を付し、説明を省略する。   Hereinafter, the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted.

図1は、本発明の実施の形態にかかるSnとZnを基本組成とするはんだ材料を用いた接合構造を示す概要図である。図1において、11はSn−Znはんだ、12は接合界面に形成されるCu−Sn化合物層、13は被接合材であるランド、14は電子部品電極である。   FIG. 1 is a schematic diagram showing a joint structure using a solder material having a basic composition of Sn and Zn according to an embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a Sn—Zn solder, 12 denotes a Cu—Sn compound layer formed at a bonding interface, 13 denotes a land as a material to be bonded, and 14 denotes an electronic component electrode.

Sn−Znはんだ11は、Sn−Pbはんだより、融点が10〜20℃程度高い。ところで、開発を進めていくうちに、電子回路基板上のランド13のCuの表面に、CuとSnの化合物または合金を形成した状態ではんだ付けをすると、Cu母材とSn−Znはんだ11のZnが直接反応して、Cu−Zn化合物の形成を抑制する効果があることが判明した。そして、CuとSnの化合物または合金の厚みについては、5μmを超えるとCuとSnの化合物または合金が硬くてもろいという性質があるため、界面強度が低下するということも判明した。そこで、厚みが5μm以下のCuとSnの化合物または合金を、電子回路基板上のランド13のCuの表面に形成した状態ではんだ付けをすると、Cu母材とSn−Znはんだ11のZnが直接反応して、Cu−Zn化合物を形成するのを抑制し、耐高温高湿特性に優れる接合部を得ることができた。   The melting point of the Sn-Zn solder 11 is higher than that of the Sn-Pb solder by about 10 to 20 ° C. By the way, during the development, if the compound or alloy of Cu and Sn is formed on the Cu surface of the land 13 on the electronic circuit board and soldered, the Cu base material and the Sn—Zn solder 11 are formed. It has been found that Zn reacts directly to suppress the formation of a Cu—Zn compound. Then, it was also found that, when the thickness of the compound or alloy of Cu and Sn exceeds 5 μm, the compound or alloy of Cu and Sn has a property of being hard and brittle, so that the interface strength decreases. Therefore, when a compound or alloy of Cu and Sn having a thickness of 5 μm or less is formed on the surface of Cu of the land 13 on the electronic circuit board and soldered, the Cu base material and Zn of the Sn—Zn solder 11 are directly connected. The formation of a Cu—Zn compound by the reaction was suppressed, and a joint having excellent resistance to high temperature and high humidity was obtained.

また、はんだ中にZnよりも酸化しやすい金属、例えばNiを、予め微量添加しておくことで、優先的に添加金属による酸化膜をはんだ表面に形成させることができる。図2は、本発明の実施の形態にかかるSnとZnを基本組成とし、Niを微量添加したはんだ材料を用いた接合構造を示す概要図である。図2において、15はSnとZnを基本組成とし、Niを微量添加したはんだ材料、16はNi酸化膜である。このNi酸化膜16には、はんだ中のZnの高温高湿下での溶出を防止する働きがある。はんだへのNiの添加量は、0.1重量%以下、好ましくは、0.01重量%以下が好ましい。Ni添加量が、0.1重量%を超えると、はんだのぬれ性が著しく低下し、十分なはんだ付け品質が確保できないという課題が生じるためである。この時のZnの含有量としては、5〜10重量%が望ましい。さらに、はんだ材料にBiを0.1〜5.0重量%含有させると良い。   Also, by adding a metal, for example, Ni, which is more easily oxidized than Zn, in the solder in advance, an oxide film of the added metal can be preferentially formed on the solder surface. FIG. 2 is a schematic diagram showing a bonding structure using a solder material having a basic composition of Sn and Zn and a small amount of Ni added according to the embodiment of the present invention. In FIG. 2, reference numeral 15 denotes a solder material having a basic composition of Sn and Zn and a small amount of Ni added, and reference numeral 16 denotes a Ni oxide film. The Ni oxide film 16 has a function to prevent the elution of Zn in the solder under high temperature and high humidity. The amount of Ni added to the solder is preferably 0.1% by weight or less, more preferably 0.01% by weight or less. If the amount of Ni exceeds 0.1% by weight, the wettability of the solder is remarkably reduced, and there is a problem that sufficient soldering quality cannot be secured. The Zn content at this time is desirably 5 to 10% by weight. Further, it is preferable that Bi is contained in the solder material in an amount of 0.1 to 5.0% by weight.

なお、Znより酸化しやすく高温高湿下で溶出をしない金属であるAl、Si、In、Mn、Ge、Mo、Pなどををはんだ中に微量添加しても、同様の効果が得られる。   The same effect can be obtained by adding a small amount of Al, Si, In, Mn, Ge, Mo, P, or the like, which is a metal that is easily oxidized than Zn and does not elute under high temperature and high humidity, into the solder.

ところで、CuとSnの化合物の形成は、Cu表面にSnを含む金属を被覆した後、熱処理を行う方法がある。Cu表面にSnを含む金属の被覆は、めっきまたは、溶融金属への浸漬または蒸着においても可能である。そして、めっき及び蒸着法による被覆については、熱処理により接合界面にCuとSnの化合物層を形成させる必要がある。溶融金属への浸漬方法についても、熱処理によりCuとSnの化合物層をさらに成長させるとCu−Zn化合物層の形成を抑制でき、耐高温高湿特性に優れた接合部が得られる。   Meanwhile, as a method of forming a compound of Cu and Sn, there is a method of performing a heat treatment after coating a metal containing Sn on the Cu surface. The coating of the metal containing Sn on the Cu surface is also possible by plating or dipping or vapor deposition in molten metal. Then, for coating by plating and vapor deposition, it is necessary to form a compound layer of Cu and Sn at the bonding interface by heat treatment. Regarding the method of dipping in a molten metal, when a compound layer of Cu and Sn is further grown by heat treatment, the formation of a Cu—Zn compound layer can be suppressed, and a bonded portion having excellent resistance to high temperature and high humidity can be obtained.

また、被覆の種類としては、Sn被覆、Ag被覆、Sn−Bi被覆、Sn−Ag被覆、Sn−Cu被覆、Sn−Ag−Cu被覆、Sn−Ag−Bi被覆等が考えられる。そして、被覆の厚みとしては、10μm以下とすることが望ましい。それは、10μmを超えるとはんだ付時に、被覆した金属がはんだ中に溶融したり、溶融しなくとも界面に残存し、接合部特性を劣化させるためである。   Examples of the type of coating include Sn coating, Ag coating, Sn-Bi coating, Sn-Ag coating, Sn-Cu coating, Sn-Ag-Cu coating, and Sn-Ag-Bi coating. The thickness of the coating is desirably 10 μm or less. If the thickness exceeds 10 μm, the coated metal may be melted in the solder at the time of soldering, or may remain at the interface even if not melted, thereby deteriorating the joint characteristics.

さらに、接合界面に形成されるものをCu−Sn化合物層としたが、合金層であっても良い。   Furthermore, although the one formed at the bonding interface is a Cu-Sn compound layer, it may be an alloy layer.

さらに、CuとSnの化合物または合金を予め作製し、これを、はんだ付け部に設置することによっても、同様の効果が得られる。   Further, a similar effect can be obtained by preparing a compound or alloy of Cu and Sn in advance and installing the compound or alloy in a soldered portion.

また、電子回路基板のCuランドに対する被覆以外にも、電子部品の端子電極に対する被覆についても同様の効果が得られる。   In addition to covering the Cu lands of the electronic circuit board, the same effect can be obtained for covering the terminal electrodes of the electronic components.

さらに、前記方法を用いて回路基板と電子部品とをはんだ付けすることによって、耐高温高湿特性に優れた接合部を有する部品実装基板を、製造することも可能である。   Further, by soldering the circuit board and the electronic component using the above method, it is also possible to manufacture a component mounting board having a joint having excellent resistance to high temperature and humidity.

本発明の実施の形態にかかるSnとZnを基本組成とするはんだ材料を用いた接合構造を示す概要図FIG. 1 is a schematic diagram showing a joint structure using a solder material having a basic composition of Sn and Zn according to an embodiment of the present invention. 本発明の実施の形態にかかるSnとZnを基本組成とし、Niを微量添加したはんだ材料を用いた接合構造を示す概要図Schematic diagram showing a joint structure using a solder material containing Sn and Zn as basic components and a small amount of Ni added according to an embodiment of the present invention. 従来のはんだ材料を用いた接合構造を示す概要図Schematic diagram showing joining structure using conventional solder material SnとZnを基本組成とするはんだ材料を用いた接合構造を示す概要図Schematic diagram showing a joint structure using a solder material having a basic composition of Sn and Zn

符号の説明Explanation of reference numerals

11 Sn−Znはんだ
12 Cu−Sn化合物層
13 ランド
14 電子部品電極
15 Niを微量添加したはんだ
16 Ni酸化膜
DESCRIPTION OF SYMBOLS 11 Sn-Zn solder 12 Cu-Sn compound layer 13 Land 14 Electronic component electrode 15 Solder which added a small amount of Ni 16 Ni oxide film

Claims (10)

接合する部分のCu表面の接合界面にCuとSnの化合物または合金を形成させ、SnとZnを組成に含むはんだ材料を用いてはんだ付けを行うことを特徴とするはんだ付け方法。 A soldering method comprising forming a compound or alloy of Cu and Sn at a bonding interface on a Cu surface of a bonding portion, and performing soldering using a solder material containing Sn and Zn in a composition. 化合物または合金の厚みが、5μm以下であることを特徴とする請求項1に記載のはんだ付け方法。 The soldering method according to claim 1, wherein the thickness of the compound or the alloy is 5 µm or less. CuとSnの化合物を形成させる方法が、Cu表面にSnを含む金属を被覆した後、熱処理を行うことを特徴とする請求項1、2のいずれかに記載のはんだ付け方法。 3. The soldering method according to claim 1, wherein the method of forming a compound of Cu and Sn includes performing heat treatment after coating a metal containing Sn on the Cu surface. 被覆が、Sn被覆、Ag被覆、Sn−Bi被覆、Sn−Ag被覆、Sn−Cu被覆、Sn−Ag−Cu被覆、Sn−Ag−Bi被覆のいずれかであることを特徴とする請求項3に記載のはんだ付け方法。 The coating is any one of Sn coating, Ag coating, Sn-Bi coating, Sn-Ag coating, Sn-Cu coating, Sn-Ag-Cu coating, and Sn-Ag-Bi coating. The soldering method described in 1. 被覆する方法が、めっき法、浸漬法、蒸着法のいずれかの方法であることを特徴とする請求項3に記載のはんだ付け方法。 The soldering method according to claim 3, wherein the coating method is any one of a plating method, an immersion method, and a vapor deposition method. 被覆の厚みが10μm以下であることを特徴とする請求項3〜5のいずれかに記載のはんだ付け方法。 The soldering method according to any one of claims 3 to 5, wherein the thickness of the coating is 10 µm or less. はんだ中にZnよりも酸化しやすい金属を予め添加しておくことを特徴とする請求項1記載のはんだ付け方法。 2. The soldering method according to claim 1, wherein a metal which is more easily oxidized than Zn is added to the solder in advance. はんだ中に添加する金属がNi、Si、Al、In、Mn、Ge、Mo、Pであることを特徴とする請求項7記載のはんだ付け方法。 The soldering method according to claim 7, wherein the metal added to the solder is Ni, Si, Al, In, Mn, Ge, Mo, or P. はんだ中に添加する金属の量が0.1重量%以下であることを特徴とする請求項8記載のはんだ付け方法。 9. The soldering method according to claim 8, wherein the amount of the metal added to the solder is 0.1% by weight or less. 請求項1〜9のいずれかに記載の方法により、回路基板と電子部品とをはんだ付けすることを特徴とする部品実装基板の製造方法。 A method for manufacturing a component mounting board, comprising: soldering a circuit board and an electronic component by the method according to claim 1.
JP2004025240A 2003-02-04 2004-02-02 Soldering method and method for manufacturing component-packaged substrate Pending JP2004260147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025240A JP2004260147A (en) 2003-02-04 2004-02-02 Soldering method and method for manufacturing component-packaged substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003026745 2003-02-04
JP2004025240A JP2004260147A (en) 2003-02-04 2004-02-02 Soldering method and method for manufacturing component-packaged substrate

Publications (1)

Publication Number Publication Date
JP2004260147A true JP2004260147A (en) 2004-09-16

Family

ID=33133644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025240A Pending JP2004260147A (en) 2003-02-04 2004-02-02 Soldering method and method for manufacturing component-packaged substrate

Country Status (1)

Country Link
JP (1) JP2004260147A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086386A (en) * 2004-09-17 2006-03-30 Espec Corp Material applicable to solder joint and its manufacturing method
JP2008218483A (en) * 2007-02-28 2008-09-18 Fujitsu Ltd Semiconductor device and its manufacturing method
JP7032688B1 (en) * 2021-11-02 2022-03-09 千住金属工業株式会社 Solder joints and their manufacturing methods, joints

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086386A (en) * 2004-09-17 2006-03-30 Espec Corp Material applicable to solder joint and its manufacturing method
JP2008218483A (en) * 2007-02-28 2008-09-18 Fujitsu Ltd Semiconductor device and its manufacturing method
JP7032688B1 (en) * 2021-11-02 2022-03-09 千住金属工業株式会社 Solder joints and their manufacturing methods, joints

Similar Documents

Publication Publication Date Title
JP3220635B2 (en) Solder alloy and cream solder
KR101738841B1 (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
WO1997012719A1 (en) Lead-free solder
US7172726B2 (en) Lead-free solder
JP2013000744A (en) Lead-free solder alloy, and soldered joint using the same
JP4392020B2 (en) Lead-free solder balls
JP3878978B2 (en) Lead-free solder and lead-free fittings
JP2007075836A (en) Lead free alloy for soldering
JP4396162B2 (en) Lead-free solder paste
JPH0994688A (en) Lead-free solder alloy
JP2003332731A (en) ARTICLE SOLDERED WITH Pb-FREE SOLDER
JPH0994687A (en) Lead-free solder alloy
KR20050035083A (en) Pb-free solder alloy, and solder material and solder joint using same
JP2002185130A (en) Electronic circuit device and electronic part
CN103476540B (en) Solder alloy
JP2004260147A (en) Soldering method and method for manufacturing component-packaged substrate
JP2008093701A (en) Solder alloy
KR100904652B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
JP3254901B2 (en) Solder alloy
KR100333401B1 (en) Lead-Free Alloys for Soldering
KR100756072B1 (en) Lead-free solder alloy
KR100743240B1 (en) Low temperature lead-free solder alloy
WO2019035197A1 (en) Solder alloy for preventing fe erosion, flux cored solder, wire solder, flux cored wire solder, flux-coated solder and solder joint
JP5724638B2 (en) Pb-free solder, solder-coated conductor, and electrical parts using the same
KR100883863B1 (en) Electrical components with improvement of mechanical property, Bonded structural body therebetween, and Bonding method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909