JPH0994688A - Lead-free solder alloy - Google Patents

Lead-free solder alloy

Info

Publication number
JPH0994688A
JPH0994688A JP27503095A JP27503095A JPH0994688A JP H0994688 A JPH0994688 A JP H0994688A JP 27503095 A JP27503095 A JP 27503095A JP 27503095 A JP27503095 A JP 27503095A JP H0994688 A JPH0994688 A JP H0994688A
Authority
JP
Japan
Prior art keywords
alloy
solder alloy
soldering
lead
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27503095A
Other languages
Japanese (ja)
Other versions
JP3299091B2 (en
Inventor
Toshiichi Murata
敏一 村田
Hiroshi Noguchi
博司 野口
Sadao Kishida
貞雄 岸田
Narutoshi Taguchi
稔孫 田口
Shozo Asano
省三 浅野
Makoto Oishi
良 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Panasonic Holdings Corp
Original Assignee
Senju Metal Industry Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27503095A priority Critical patent/JP3299091B2/en
Application filed by Senju Metal Industry Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Senju Metal Industry Co Ltd
Priority to EP96931990A priority patent/EP0855242B1/en
Priority to DE69632866T priority patent/DE69632866T2/en
Priority to PCT/JP1996/002774 priority patent/WO1997012719A1/en
Priority to CN96197287A priority patent/CN1087994C/en
Priority to MYPI96004016A priority patent/MY114565A/en
Publication of JPH0994688A publication Critical patent/JPH0994688A/en
Priority to US09/050,078 priority patent/US6241942B1/en
Priority to US09/828,164 priority patent/US6488888B2/en
Application granted granted Critical
Publication of JP3299091B2 publication Critical patent/JP3299091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lead-free solder alloy which may be lowered in soldering temp., does not impart thermal damage to electronic parts and does not peel after soldering and is easily plastically workable to a wire shape as the alloy has adequate mechanical strength and elongation rate. SOLUTION: This lead-free solder alloy is an alloy consisting of 7 to 10wt.% Zn, 0.01 to 1wt.% Ni and the balance Sn and is formed by adding 0.1 to 3.5wt.% Ag, 0.1 to 3wt.% Cu, 0.5 to 6wt.% Bi, 0.5 to 3wt.% In, 0.001 to 1wt.% P, etc., to the alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛を全く含有せず、し
かも電子部品のはんだ付けに適したはんだ合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder alloy containing no lead and suitable for soldering electronic parts.

【0002】[0002]

【従来の技術】電子機器のはんだ付けに用いられるはん
だ合金としては、Sn−Pb合金が一般的であり、古来
より長い間使用されてきていた。Sn−Pb合金は、共
晶組成(63Sn−Pb)の融点が183℃という低い
ものであり、そのはんだ付け温度は230〜240℃と
いう熱に弱い電子部品に対しては熱損傷を与えることが
ない温度である。しかもSn−Pb合金は、はんだ付け
性が極めて良好であるとともに、適当な柔軟性を有して
いるため、はんだ付け後、はんだ付け部に衝撃が加えら
れても、それを緩和して剥離させにくくし、さらに鏝付
け用に適した線状加工もしやすいという優れた特長を有
している。
2. Description of the Related Art As a solder alloy used for soldering electronic equipment, an Sn-Pb alloy is generally used, and has been used for a long time since ancient times. The Sn-Pb alloy has a eutectic composition (63Sn-Pb) having a low melting point of 183 ° C. and a soldering temperature of 230 to 240 ° C., which may cause thermal damage to electronic components that are weak to heat. No temperature. Moreover, since the Sn-Pb alloy has extremely good solderability and has appropriate flexibility, even if an impact is applied to the soldered portion after soldering, it is relaxed and peeled off. It has the excellent feature that it is difficult to make, and that it is easy to perform linear processing suitable for trowel attachment.

【0003】一般に、テレビ、ビデオ、ラジオ、テープ
レコーダー、コンピューター、複写機のような電子機器
は、故障したり、古くなって使い勝手が悪くなったりし
た場合は、廃棄処分される。これらの電子機器は、外枠
やプリント基板がプラスチックのような合成樹脂であ
り、また導体部やフレームが金属製であるため、焼却処
分ができず、ほとんどが地中に埋められている。
[0003] Generally, electronic devices such as televisions, videos, radios, tape recorders, computers, and copiers are disposed of when they break down or become old and inconvenient. In these electronic devices, since the outer frame and the printed circuit board are made of synthetic resin such as plastic, and the conductor and the frame are made of metal, they cannot be incinerated and are mostly buried in the ground.

【0004】ところで近年、ガソリン、重油等の石化燃
料の多用により、大気中に硫黄酸化物が大量に放出さ
れ、その結果、地上に降る雨は酸性雨となっている。酸
性雨は地中に埋められた電子機器のはんだを溶出させて
地下に染み込み、地下水を汚染するようになる。このよ
うに鉛を含んだ地下水を長年月飲用していると、人体に
鉛分が蓄積され、鉛毒を起こす虞が出てくる。このよう
な機運から、電子機器業界では鉛を含まないはんだ、所
謂「鉛フリーはんだ合金」の出現が望まれてきている。
[0004] In recent years, due to the heavy use of petroleum fuels such as gasoline and heavy oil, a large amount of sulfur oxides has been released into the atmosphere, and as a result, the rain falling on the ground has been acid rain. Acid rain dissolves solder in electronic equipment buried underground and soaks into the ground, polluting groundwater. When drinking groundwater containing lead in this way for many years, lead may accumulate in the human body and lead poisoning may occur. Due to such momentum, the appearance of solder that does not contain lead, that is, a so-called “lead-free solder alloy” has been desired in the electronic equipment industry.

【0005】従来より鉛フリーはんだ合金としてSn主
成分のSn−AgやSn−Sb合金はあった。Sn−A
g合金は、最も融点の低い組成がSn−3.5Agの共
晶組成で、融点が221℃である。この組成のはんだ合
金のはんだ付け温度は260〜280℃というかなり高
い温度であり、この温度ではんだ付けを行うと熱に弱い
電子部品は熱損傷を受けて機能劣化や破壊等を起こして
しまうものである。またSn−Sb合金は、最も融点の
低い組成がSn−5Sbであるが、この組成の溶融温度
は、固相線温度が235℃、液相線温度が240℃とい
う高い温度であるため、はんだ付け温度は、さらに高い
280〜300℃となり、やはり熱に弱い電子部品を熱
損傷させてしまうものである。
Conventionally, Sn-Ag and Sn-Sb alloys containing Sn as a main component have been used as lead-free solder alloys. Sn-A
The g alloy has a eutectic composition of Sn-3.5Ag having the lowest melting point and a melting point of 221 ° C. The soldering temperature of the solder alloy having this composition is a considerably high temperature of 260 to 280 ° C., and if soldering is performed at this temperature, the electronic components that are weak to heat will be damaged by heat and cause functional deterioration or destruction. Is. The Sn-Sb alloy has a composition with the lowest melting point of Sn-5Sb, but the melting temperature of this composition is as high as a solidus temperature of 235 ° C. and a liquidus temperature of 240 ° C. The attachment temperature is 280 to 300 ° C., which is higher, which also causes thermal damage to electronic components that are vulnerable to heat.

【0006】このようにSn−Ag合金やSn−Sb合
金は溶融温度が高いため、これらの合金の溶融温度を下
げる手段を講じたはんだ合金が多数提案されている。
(参照:特開平6−15476号公報、同6−3441
80号公報、同7−1178号公報、同7−40079
号公報、同7−51883号公報)
Since the Sn-Ag alloy and the Sn-Sb alloy have a high melting temperature as described above, many solder alloys have been proposed which take measures to lower the melting temperature of these alloys.
(Reference: JP-A-6-15476, JP-A-6-3441)
No. 80, No. 7-1178, No. 7-40079.
No. 7-51883)

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の合金は融点を下げるために、BiやInを多量に添加
してあり、その結果、新たに別の問題が生じていた。つ
まりBiを多量に添加すると、溶融温度は下がるもの
の、はんだ合金が非常に硬く、しかも脆くなってしま
い、はんだ合金を線状に塑性加工できなくなったり、は
んだ付け後、はんだ付け部に少しの衝撃が加わっただけ
で簡単に剥離してしまったりするものであった。またI
nも融点を下げるのに効果はあるが、Inの価格が非常
に高いため、はんだ合金には大量に添加できない。
However, these alloys are added with a large amount of Bi and In in order to lower the melting point, and as a result, another problem is newly caused. In other words, if a large amount of Bi is added, the melting temperature will decrease, but the solder alloy will become extremely hard and brittle, and the solder alloy will not be able to be plastically processed into a linear shape. It was easy to peel off just by adding. Also I
n is also effective in lowering the melting point, but since the price of In is very high, it cannot be added in a large amount to the solder alloy.

【0008】[0008]

【課題を解決するための手段】Sn主成分でSn−Pb
合金の共晶に近い溶融温度を有する合金では、Sn−Z
n合金の共晶組成Sn−9Znが199℃という他のS
n主成分のはんだ合金に比べて比較的低い溶融温度であ
るが、このはんだ合金は機械的強度、特に引張り強度が
あまり強くない。このはんだ合金の引張り強度を改善す
れば、電子機器のはんだ付けに充分使用可能となる。本
発明者らは、このはんだ合金の引張り強さの改善にNi
がきわめて有効であることを見いだし本発明を完成させ
た。
[Means for Solving the Problems] Sn-Pb with Sn main component
For alloys with melting temperatures close to the eutectic of the alloy, Sn-Z
Eutectic composition Sn-9Zn of n alloy is 199 ° C.
Although the melting temperature is relatively lower than that of the solder alloy containing n as a main component, this solder alloy does not have very high mechanical strength, particularly tensile strength. If the tensile strength of this solder alloy is improved, it can be sufficiently used for soldering electronic devices. The inventors of the present invention have investigated Ni in order to improve the tensile strength of this solder alloy.
Have been found to be extremely effective, and have completed the present invention.

【0009】本発明は、Zn7〜10重量%、Ni0.
01〜1重量%、残部Snからなることを特徴とする鉛
フリーはんだ合金であり、またZn7〜10重量%、N
i0.01〜1重量%並びにAg0.1〜3.5重量%
および/またはCu0.1〜3重量%、残部Snからな
ることを特徴とする鉛フリーはんだ合金であり、さらに
これらの合金にBi0.2〜6重量%、In0.5〜3
重量%のうちから選ばれた1種以上が添加されているこ
とを特徴とする鉛フリーはんだ合金であり、さらにまた
これらの合金にPが0.001〜1重量%添加されてい
ること特徴とする鉛フリーはんだ合金である。
According to the present invention, Zn 7 to 10% by weight, Ni 0.
It is a lead-free solder alloy characterized by comprising 0 to 1% by weight and the balance Sn, and Zn 7 to 10% by weight, N
i 0.01 to 1% by weight and Ag 0.1 to 3.5% by weight
And / or Cu 0.1 to 3% by weight and the balance Sn, which is a lead-free solder alloy, further containing Bi 0.2 to 6% by weight and In 0.5 to 3% by weight.
A lead-free solder alloy, characterized in that at least one selected from the weight% is added, and 0.001 to 1% by weight of P is added to these alloys. It is a lead-free solder alloy.

【0010】[0010]

【作用】本発明では、Sn−Pb合金に代わるべく発明
したものであるため、溶融温度、即ち液相線温度と固相
線温度はSn−Pb合金の共晶温度である183℃近辺
にあるようにしてある。本発明で好ましい溶融温度範囲
は183℃±30℃である。この温度範囲であれば、は
んだ付け温度を250℃以下とすることができ、電子部
品への熱影響を少なくできる。また固相線温度が150
℃よりも下がると、はんだ付け後にはんだ合金が凝固す
るまでに時間がかかって、その間にはんだ付け部に多少
の衝撃や振動が加わった場合、はんだ付け部がひび割れ
を起こしてしまう。
In the present invention, since it was invented to replace the Sn-Pb alloy, the melting temperature, that is, the liquidus temperature and the solidus temperature is around 183 ° C which is the eutectic temperature of the Sn-Pb alloy. Is done. The melting temperature range preferred in the present invention is 183 ° C. ± 30 ° C. Within this temperature range, the soldering temperature can be set to 250 ° C. or lower, and the thermal effect on electronic components can be reduced. Also, the solidus temperature is 150
If the temperature is lower than ℃, it takes time for the solder alloy to solidify after soldering, and if some shock or vibration is applied to the soldered portion during that time, the soldered portion may crack.

【0011】はんだの接合強度は、はんだ合金自体の引
張り強度と略一致するものであるため、或る程度の引張
り強度を有していなければならない。電子機器のはんだ
付け用として必要な引張り強度は5Kgf/mm2以上であ
る。しかしながらはんだ合金は、引張り強度ばかり強く
ても脆い材料であると衝撃に弱く、はんだ付け後、はん
だ付け部に衝撃が加わわった場合、容易に剥離してしま
うことがある。またはんだ合金をはんだ鏝ではんだ付け
する場合、線状にできるもの、即ち塑性加工ができるよ
うな伸び率を有しているものでなければならない。脆さ
がなく、塑性加工が可能なはんだ合金が必要とする伸び
率は10%以上である。
Since the joint strength of the solder is substantially the same as the tensile strength of the solder alloy itself, it must have a certain degree of tensile strength. The tensile strength required for soldering electronic equipment is 5 Kgf / mm 2 or more. However, the solder alloy is weak in impact if it is a material that is strong in tensile strength but is brittle, and may be easily peeled off when an impact is applied to the soldered portion after soldering. Also, when soldering a solder alloy with a soldering iron, it must be one that can be made into a linear shape, that is, one that has an elongation rate that enables plastic working. A solder alloy which is free from brittleness and can be plastically worked has an elongation of 10% or more.

【0012】[0012]

【実施例】本発明で、Znの添加量が7重量%より少な
かったり、10重量%よりも多くなったりすると本発明
が目的とする183℃±30℃の溶融温度域からはずれ
てしまう。
EXAMPLES In the present invention, if the amount of Zn added is less than 7% by weight or more than 10% by weight, the melting temperature range of 183 ° C. ± 30 ° C. targeted by the present invention is deviated.

【0013】NiはSn−Zn系合金の凝固組織中の結
晶を微細化し、機械的特性を改善する効果がある。Sn
−Zn系へのNiの添加は0.01重量%より少ないと
機械的特性改善の効果がなく、1重量%よりも多いと液
相線温度を急激に高め、はんだ付け温度が高くなるた
め、電子部品に熱損傷を与えるようになってしまう。
Ni has the effect of refining the crystals in the solidified structure of the Sn--Zn alloy and improving the mechanical properties. Sn
If the amount of Ni added to the -Zn system is less than 0.01% by weight, there is no effect of improving the mechanical properties, and if it is more than 1% by weight, the liquidus temperature rises sharply and the soldering temperature rises. This will cause thermal damage to electronic components.

【0014】Agは機械的強度を改善するとともに、S
n−Zn合金の耐食性を向上させる効果がある。Agは
0.1重量%より少ない添加では、これらの効果が現れ
ず、しかるに3.5重量%を越えて添加されると、液相
線温度が急激に上昇してしまい、はんだ付け温度が高く
なって電子部品に熱損傷を与えるようになる。
Ag improves mechanical strength and, at the same time, S
It has the effect of improving the corrosion resistance of the n-Zn alloy. These effects do not appear when Ag is added in an amount less than 0.1% by weight. However, when it is added in an amount over 3.5% by weight, the liquidus temperature rises sharply and the soldering temperature increases. As a result, the electronic parts will be damaged by heat.

【0015】Cuは機械的強度改善に優れた効果を奏す
るものであり、また溶融はんだに浸漬してはんだ付けを
行う場合、プリント基板の銅箔を溶融はんだ中に拡散す
ることを抑制する効果もある。0.1重量%より少ない
添加では、その効果がなく、3重量%を越えるとSn・
Cuの金属間化合物が析出し、急激に液相線温度を上昇
させるとともに、はんだ付け性を阻害するようになる。
Sn−Zn−Ni系合金にAgまたはCuだけを添加し
てもよく、またAgとCuを同時に添加することもでき
る。
Cu has an excellent effect of improving the mechanical strength and also has an effect of suppressing the diffusion of the copper foil of the printed board into the molten solder when the solder is dipped in the molten solder for soldering. is there. Addition of less than 0.1 wt% has no effect, and addition of more than 3 wt% causes Sn.
An intermetallic compound of Cu precipitates, which rapidly raises the liquidus temperature and hinders solderability.
Only Ag or Cu may be added to the Sn—Zn—Ni-based alloy, or Ag and Cu may be added simultaneously.

【0016】Sn−Zn−Ni系合金にBiやInを添
加すると、溶融温度を下げることができる。Biは0.
5重量%より少ない添加では溶融温度を下げる効果が現
れず、しかるに6重量%を越えて添加すると硬く、脆く
なり、はんだ合金を線状にするための塑性加工が困難と
なるばかりでなく、はんだ付け後にはんだ付け部が容易
に剥離するようになってしまう。
When Bi or In is added to the Sn-Zn-Ni type alloy, the melting temperature can be lowered. Bi is 0.
If it is added in an amount less than 5% by weight, the effect of lowering the melting temperature does not appear. However, if it is added in an amount over 6% by weight, it becomes hard and brittle, and not only the plastic working for making the solder alloy into a linear shape becomes difficult, but also the solder After soldering, the soldered part will easily come off.

【0017】Inは0.5重量%より少ない添加では溶
融温度を下げる効果が現れない。Inは多量に添加すれ
ばするほど溶融温度を下げることができるが、非常に高
価であり、Inの多量の添加は経済的に好ましいもので
はない。またInを多量に添加すると本発明が目的とす
る溶融温度範囲の183℃±30℃を外れてしまう。従
って、Inの最大添加量は6重量%までである。Inや
Biは、はんだ合金の溶融温度を下げるために添加する
ものであるが、InやBiをそれぞれ単体で添加した
り、同時に添加したりすることもできる。
If In is added in an amount less than 0.5% by weight, the effect of lowering the melting temperature does not appear. Although the melting temperature can be lowered by adding a large amount of In, it is very expensive and the addition of a large amount of In is not economically preferable. If a large amount of In is added, the melting temperature range of 183 ° C. ± 30 ° C., which is the object of the present invention, will be exceeded. Therefore, the maximum addition amount of In is up to 6% by weight. In and Bi are added to lower the melting temperature of the solder alloy, but In and Bi can be added individually or simultaneously.

【0018】Znは非常に酸化しやすい金属であるた
め、Znを含むはんだ合金を溶融させると、優先的に酸
化され、はんだ付け時に多量にZnの酸化物が発生して
はんだ付け不良を起こすことがある。そのためZnを含
むはんだ合金にPを添加すると、Pは溶融したはんだ合
金の表面に薄い膜を形成し、はんだ合金が直接空気と触
れるのを妨げて、はんだ合金自体が酸化するのを抑制す
ることができる。Pの添加量は0.001重量%より少
ないと酸化抑制の効果が現れず、しかるに1重量%より
も多くなるとはんだ付け性を害するようになる。
Since Zn is a metal that is very easily oxidized, when a solder alloy containing Zn is melted, it is preferentially oxidized, and a large amount of Zn oxide is generated during soldering, causing soldering failure. There is. Therefore, when P is added to a solder alloy containing Zn, P forms a thin film on the surface of the molten solder alloy, prevents the solder alloy from directly contacting air, and suppresses oxidation of the solder alloy itself. You can If the added amount of P is less than 0.001% by weight, the effect of suppressing oxidation does not appear, but if it is more than 1% by weight, the solderability is impaired.

【0019】ここで本発明の代表的な実施例について記
す。
A typical embodiment of the present invention will be described below.

【0020】○実施例1 Zn9重量%、Ni0.1重量%、残部Snからなるは
んだ合金は、溶融温度が199〜200℃であり、この
はんだ合金を自動はんだ付け装置のはんだ槽に入れ、は
んだ合金の温度を240℃にしてプリント基板のはんだ
付けを行ったところ、熱による電子部品の損傷や劣化は
なかった。はんだ合金自体の引張り強度は6.24Kgf
/mm2であり、この値は電子機器のはんだ付けに充分使
用できるものである。また伸びも68.8%であるた
め、はんだ付け後の衝撃による剥離の心配がなく、線状
の加工も容易となるものである。
Example 1 A solder alloy consisting of 9 wt% Zn, 0.1 wt% Ni, and the balance Sn has a melting temperature of 199 to 200 ° C., and this solder alloy is put in a solder bath of an automatic soldering apparatus and soldered. When the printed circuit board was soldered at an alloy temperature of 240 ° C., there was no damage or deterioration of the electronic components due to heat. The tensile strength of the solder alloy itself is 6.24Kgf
/ Mm 2, which is a value that can be sufficiently used for soldering electronic devices. Further, since the elongation is 68.8%, there is no fear of peeling due to impact after soldering, and the linear processing becomes easy.

【0022】○実施例2 Zn8重量%、Ni0.2重量%、Cu0.3重量%、
In3重量%、残部Snからなるはんだ合金は、溶融温
度が191〜205℃である。はんだ槽でのはんだ付け
温度は250℃であり、電子部品に対する熱影響も少な
い。また引張り強度は8.51Kgf/mm2という強い値で
ある。伸びは40.1%と少し下がるが、はんだ付け後
の衝撃による剥離や線状の加工においては何ら問題のな
い値である。
Example 2 Zn 8% by weight, Ni 0.2% by weight, Cu 0.3% by weight,
A solder alloy composed of In 3 wt% and the balance Sn has a melting temperature of 191 to 205 ° C. The soldering temperature in the solder bath is 250 ° C., which has little thermal effect on electronic components. The tensile strength is a strong value of 8.51 Kgf / mm 2 . Although the elongation is a little lower at 40.1%, there is no problem in peeling due to impact after soldering and in linear processing.

【0023】○実施例3 Zn8重量%、Ni0.1重量%、P0.01重量%、
残部Snからなるはんだ合金は、はんだ槽で溶融させた
とき、実施例1、2よりも酸化物の発生量が少なく、酸
化物回収の作業が少なくて済むものである。
Example 3 Zn 8% by weight, Ni 0.1% by weight, P 0.01% by weight,
When the solder alloy composed of the balance Sn is melted in the solder bath, the amount of oxides generated is smaller than in Examples 1 and 2, and the work of recovering oxides can be reduced.

【0024】実施例および比較例を表1に示す。Table 1 shows examples and comparative examples.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例におけるはんだ合金は、はんだ付け
温度を250℃以下にすることができるため電子部品へ
の熱影響がなく、また電子部品のはんだ付けに要求され
る引張り強度と伸びを有している。
The solder alloys in the examples have a soldering temperature of 250 ° C. or lower, so that they have no thermal effect on electronic parts and have the tensile strength and elongation required for soldering electronic parts. There is.

【0027】比較例1、2、3は引張り強度が充分でな
く、はんだ付け後の信頼性に劣るものである。また比較
例3、4は液相線温度が高いため、はんだ付け温度も高
くせざるを得ず、電子部品に対する熱損傷が心配され
る。実施例5、6は伸びが少ないため、はんだ付け後の
衝撃による剥離と線状にする塑性加工が問題となる。
In Comparative Examples 1, 2, and 3, the tensile strength is not sufficient and the reliability after soldering is poor. Further, in Comparative Examples 3 and 4, since the liquidus temperature is high, the soldering temperature must be increased, and there is a concern that the electronic parts will be damaged by heat. In Examples 5 and 6, since the elongation is small, peeling due to impact after soldering and plastic working to form a line are problems.

【0027】[0027]

【発明の効果】以上説明した如く、本発明のはんだ合金
は、Sn主成分であるにもかかわらず、溶融温度が18
3℃±30℃という従来のSn−Pb共晶合金に近いも
のであるため、はんだ付け温度も電子部品に熱損傷を与
えるほど高くしなくても済むものであり、さらに機械的
強度に強いばかりでなく、適当な伸び率を有しているた
め、はんだ付け後に剥離を起こしにくく、しかも線状加
工も容易に行えるという従来のSn主成分の鉛フリーは
んだ合金にない優れた特長を有したものである。
As described above, the solder alloy of the present invention has a melting temperature of 18 even though it contains Sn as a main component.
Since it is close to the conventional Sn-Pb eutectic alloy of 3 ° C ± 30 ° C, the soldering temperature does not have to be high enough to cause thermal damage to electronic parts, and it is not only strong in mechanical strength. Rather, it has an excellent feature that conventional lead-free solder alloys containing Sn as the main component do not easily peel off after soldering because it has an appropriate elongation, and that it is also easy to perform linear processing. Is.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸田 貞雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田口 稔孫 東京都足立区千住橋戸町23番地 千住金属 工業株式会社内 (72)発明者 浅野 省三 東京都足立区千住橋戸町23番地 千住金属 工業株式会社内 (72)発明者 大石 良 東京都足立区千住橋戸町23番地 千住金属 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Sadao Kishida Sadao Kishida 1006, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Shozo Asano 23, Senju-Hashidocho, Adachi-ku, Tokyo Tokyo Senju Metal Industry Co., Ltd. (72) Inventor Ryo Oishi, 23, Senju-Hashidocho, Adachi-ku, Tokyo Senju Metal Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Zn7〜10重量%、Ni0.01〜1
重量%、残部Snからなることを特徴とする鉛フリーは
んだ合金。
1. Zn 7 to 10% by weight, Ni 0.01 to 1
A lead-free solder alloy, characterized in that it is composed of wt% and the balance Sn.
【請求項2】 Zn7〜10重量%、Ni0.01〜1
重量%並びにAg0.1〜3.5重量%および/または
Cu0.1〜3重量%、残部Snからなることを特徴と
する鉛フリーはんだ合金。
2. Zn 7 to 10% by weight, Ni 0.01 to 1
A lead-free solder alloy, characterized in that the lead-free solder alloy is composed of 0.1 wt% and 0.1 to 3.5 wt% of Ag and / or 0.1 to 3 wt% of Cu, and the balance Sn.
【請求項3】 請求項1乃至2記載の合金にBi0.2
〜6重量%、In0.5〜3重量%のうちから選ばれた
1種以上が添加されていることを特徴とする鉛フリーは
んだ合金。
3. The alloy according to claim 1, further comprising Bi0.2.
.About.6 wt%, In 0.5 to 3 wt%, and at least one selected from the group of lead-free solder alloys.
【請求項4】 請求項1乃至3記載の合金にPが0.0
01〜1重量%添加されていること特徴とする鉛フリー
はんだ合金。
4. The alloy according to claim 1, wherein P is 0.0
A lead-free solder alloy characterized by being added in an amount of 0 to 1% by weight.
JP27503095A 1995-09-29 1995-09-29 Lead-free solder alloy Expired - Fee Related JP3299091B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP27503095A JP3299091B2 (en) 1995-09-29 1995-09-29 Lead-free solder alloy
DE69632866T DE69632866T2 (en) 1995-09-29 1996-09-26 LEAD-FREE LOT
PCT/JP1996/002774 WO1997012719A1 (en) 1995-09-29 1996-09-26 Lead-free solder
CN96197287A CN1087994C (en) 1995-09-29 1996-09-26 Lead-free solder
EP96931990A EP0855242B1 (en) 1995-09-29 1996-09-26 Lead-free solder
MYPI96004016A MY114565A (en) 1995-09-29 1996-09-27 Lead-free solder alloys
US09/050,078 US6241942B1 (en) 1995-09-29 1998-03-30 Lead-free solder alloys
US09/828,164 US6488888B2 (en) 1995-09-29 2001-04-09 Lead-free solder alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27503095A JP3299091B2 (en) 1995-09-29 1995-09-29 Lead-free solder alloy

Publications (2)

Publication Number Publication Date
JPH0994688A true JPH0994688A (en) 1997-04-08
JP3299091B2 JP3299091B2 (en) 2002-07-08

Family

ID=17549903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27503095A Expired - Fee Related JP3299091B2 (en) 1995-09-29 1995-09-29 Lead-free solder alloy

Country Status (1)

Country Link
JP (1) JP3299091B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100309229B1 (en) * 1999-01-28 2001-09-26 무라타 야스타카 Lead-free solder and soldered article
JP2001334384A (en) * 2000-05-22 2001-12-04 Murata Mfg Co Ltd Solder composition and soldered article
US6702176B2 (en) 2000-12-11 2004-03-09 Nec Toppan Circuit Solutions, Inc Solder, method for processing surface of printed wiring board, and method for mounting electronic part
JP2005324257A (en) * 2005-07-19 2005-11-24 Murata Mfg Co Ltd Soldered article
EP1757400A2 (en) 2005-08-25 2007-02-28 Harima Chemicals, Inc. Method of manufacturing SnZnNiCu solder powder by gas atomization, and solder powder
US7248141B2 (en) 2003-07-03 2007-07-24 Koa Kabushiki Kaisha Current fuse and method of making the current fuse
US7282174B2 (en) 2002-10-31 2007-10-16 Senju Metal Industry Co., Ltd. Lead-free solder and soldered article
WO2009157099A1 (en) 2008-06-23 2009-12-30 日本ジョイント株式会社 Apparatus for soldering electronic component and method for soldering electronic component
US8138576B2 (en) 2009-02-09 2012-03-20 Nippon Joint Co., Ltd. Production method and production apparatus of tin or solder alloy for electronic components, and solder alloy
US8503189B2 (en) 1997-12-16 2013-08-06 Renesas Electronics Corporation Pb-free solder-connected structure and electronic device
WO2015155934A1 (en) * 2014-04-07 2015-10-15 パナソニックIpマネジメント株式会社 Three-phase electric motor
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503189B2 (en) 1997-12-16 2013-08-06 Renesas Electronics Corporation Pb-free solder-connected structure and electronic device
KR100309229B1 (en) * 1999-01-28 2001-09-26 무라타 야스타카 Lead-free solder and soldered article
JP2001334384A (en) * 2000-05-22 2001-12-04 Murata Mfg Co Ltd Solder composition and soldered article
US6702176B2 (en) 2000-12-11 2004-03-09 Nec Toppan Circuit Solutions, Inc Solder, method for processing surface of printed wiring board, and method for mounting electronic part
US7282174B2 (en) 2002-10-31 2007-10-16 Senju Metal Industry Co., Ltd. Lead-free solder and soldered article
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
US7248141B2 (en) 2003-07-03 2007-07-24 Koa Kabushiki Kaisha Current fuse and method of making the current fuse
JP2005324257A (en) * 2005-07-19 2005-11-24 Murata Mfg Co Ltd Soldered article
US7503958B2 (en) 2005-08-25 2009-03-17 Harima Chemicals, Inc. Method of manufacturing the SnZnNiCu solder powder and the SnZnNiCu solder powder
EP1757400A3 (en) * 2005-08-25 2008-07-23 Harima Chemicals, Inc. Method of manufacturing SnZnNiCu solder powder by gas atomization, and solder powder
EP1757400A2 (en) 2005-08-25 2007-02-28 Harima Chemicals, Inc. Method of manufacturing SnZnNiCu solder powder by gas atomization, and solder powder
WO2009157099A1 (en) 2008-06-23 2009-12-30 日本ジョイント株式会社 Apparatus for soldering electronic component and method for soldering electronic component
US8011562B2 (en) 2008-06-23 2011-09-06 Nippon Joint Co., Ltd. Soldering equipment and soldering method for electronic components
US8138576B2 (en) 2009-02-09 2012-03-20 Nippon Joint Co., Ltd. Production method and production apparatus of tin or solder alloy for electronic components, and solder alloy
WO2015155934A1 (en) * 2014-04-07 2015-10-15 パナソニックIpマネジメント株式会社 Three-phase electric motor

Also Published As

Publication number Publication date
JP3299091B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
EP0855242B1 (en) Lead-free solder
JP5152150B2 (en) Lead-free solder alloy
JPH09216089A (en) Solder alloy, cream solder, and soldering method
KR19980068127A (en) Lead-Free Alloys for Soldering
JP2000190090A (en) Lead free solder
JP4401671B2 (en) High temperature lead-free solder alloys and electronic components
JP3353662B2 (en) Solder alloy
JP3299091B2 (en) Lead-free solder alloy
JP4392020B2 (en) Lead-free solder balls
JPH0994687A (en) Lead-free solder alloy
JPH08132277A (en) Leadless solder
JP3643008B2 (en) Soldering method
JPH10193169A (en) Lead-free solder alloy
JP4337326B2 (en) Lead-free solder and soldered articles
JP5140644B2 (en) Soldering composition and electronic component
JP2007075836A (en) Lead free alloy for soldering
JP2000079494A (en) Solder
JPH1052791A (en) Lead free solder alloy
JP2003326386A (en) Leadless solder alloy
JPH09174279A (en) Solder alloy
JP3340021B2 (en) Lead-free solder alloy
JPH0819892A (en) Lead free soldering alloy
KR100509509B1 (en) Lead-free solder alloy
JP3992107B2 (en) Lead-free solder alloy
KR100327767B1 (en) Lead-Free Alloys for Soldering

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees