JP4401671B2 - High temperature lead-free solder alloys and electronic components - Google Patents

High temperature lead-free solder alloys and electronic components Download PDF

Info

Publication number
JP4401671B2
JP4401671B2 JP2003095499A JP2003095499A JP4401671B2 JP 4401671 B2 JP4401671 B2 JP 4401671B2 JP 2003095499 A JP2003095499 A JP 2003095499A JP 2003095499 A JP2003095499 A JP 2003095499A JP 4401671 B2 JP4401671 B2 JP 4401671B2
Authority
JP
Japan
Prior art keywords
free solder
temperature
temperature lead
mass
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003095499A
Other languages
Japanese (ja)
Other versions
JP2004298931A (en
Inventor
喜一 中村
良孝 豊田
司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
TDK Corp
Original Assignee
Senju Metal Industry Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd, TDK Corp filed Critical Senju Metal Industry Co Ltd
Priority to JP2003095499A priority Critical patent/JP4401671B2/en
Publication of JP2004298931A publication Critical patent/JP2004298931A/en
Application granted granted Critical
Publication of JP4401671B2 publication Critical patent/JP4401671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛を含有しない高温のはんだ合金、特に電子部品内部のはんだ付けに使用するに適した高温はんだ合金および該はんだ合金を用いた電子部品に関する。
【0002】
【従来の技術】
電子機器類のプリント基板に実装される電子部品には、その内部をはんだ合金ではんだ付けしてあるものがある。この電子部品をプリント基板に実装する際にもはんだ合金が用いられるため、電子部品内部のはんだ合金は、実装に用いるはんだ合金よりも融点が高く、しかも耐熱性に優れた高温はんだ合金である必要がある。つまりプリント基板にはんだ付けする際に、高温はんだ合金は、電子部品内部のはんだ付け部を確実に保持していなければならないものである。ここで高温はんだ合金とは、固相線温度が183℃以上である合金をいう。
【0003】
従来の高温はんだ合金は、Pb-5Sn、Pb-10Sn等のPb主成分とするPb-Sn系であり、実装用はんだ合金はSn-Pb共晶(63Sn-Pb)近傍の融点の低いはんだ合金が使用されていた。
【0004】
ところで近年、一般にAV機器やコンピューター等の電子機器類は、故障したり機能が低下したりした場合、修理や機能アップ等をせずに廃棄処分されていた。特にプリント基板は、樹脂に銅箔を接着したものであり、しかも該銅箔にははんだが金属的に付着していてそれらを分離することができないため、焼却処分ができず、廃棄は埋め立て処分となっていた。この埋め立て処分されたプリント基板に酸度の高い酸性雨が接触すると、はんだ中のPbが溶出し、それが地下水に混入する。そしてPb成分を含んだ地下水を人間や家畜が飲用すると長年月の間にPb成分が体内に蓄積されて鉛中毒を起こすことが懸念されている。そこで電子機器業界からはPbの含まない所謂鉛フリーはんだが要求されてきている。
【0005】
現状では、鉛フリーはんだ合金は、Snを主成分とし、Cu、Ag、Bi、Zn、In、Sb等の金属元素を添加したものが主流であり、Sn-0.7Cu(融点:227℃)、Sn-3.5Ag(融点:221℃)、Sn-58Bi(融点:139℃)、Sn-9Zn(融点:199℃)等の二元合金の他、用途に応じて、これらに金属元素を適宜添加して三元以上にしたものがある。
【0006】
鉛フリーはんだ合金としては、電子部品をプリント基板にはんだ付けする際に使用することを主としているため、いずれも融点が従来のSn-Pb共晶合金に近いことが望ましいものである。このSn-Pb共晶はんだの融点に近い鉛フリーはんだの組成としてはSn-9Zn合金があるが、該鉛フリーはんだ合金は、はんだ付け時の濡れ性が著しく悪い。さらにZnは非常に酸化やすい成分であるため、特に大気中でのはんだ付け作業を考慮すると、はんだ付け作業に困難をきたし、実用性に乏しい。またSn-58Bi合金はSn-Pb共晶合金よりも低い融点であるが、Biが多いため、脆く、しかも融点が低すぎて耐熱性がないことから接合部の信頼性に問題がある。従って、現在、電子部品の実装に多く使用される鉛フリーはんだは、Sn-Pb共晶はんだよりも融点が少し高いがSn-3.5Ag(融点221℃)、Sn-0.7Cu(融点:227℃)、Sn-3Ag-0.5Cu(融点:217℃)等である。
【0007】
また、コイルや半導体などの機能性素子を有する電子部品の内部には、高温はんだ合金が使用されている。例えば、巻き線を用いたコイルを有する部品では、磁性材料等の支持体に導体線が巻かれ、導体線の端部は、外部接続端子に高温はんだ合金を用いて接続される。そして、外部接続端子と基板をはんだ付けすることによりコイル部品を基板に接続、固定される。従って、このような電子部品の端子と基板とをはんだ付けする際の温度に対して、接合を保つ必要がある。
このような電子部品の内部に使用される高温はんだ合金についても鉛フリー化が要求されてきている。従来より高温鉛フリーはんだ合金として、Auを主成分としてSnを20質量%添加したAu−20Sn高温鉛フリーはんだ合金や、Snを主成分として、これにSbを25〜44重量%添加したSn−Sb高温鉛フリーはんだ(特許文献1)がある。
そして、Sbを11.0〜20.0質量%、Pを0.01〜0.2質量%および残部がSnおよび不可避不純物からなるダイボンディング用はんだ材料が開示されている。さらに、Sbを11.0〜20.0質量%、Pを0.01〜0.2質量%、Cu及びNiの少なくとも1種を0.005〜5.0質量%および残部がSnおよび不可避不純物からなるダイボンディング用はんだ材料が開示されている(特許文献2)。
【0008】
【特許文献1】
特開平11-151591号公報
【特許文献2】
特開2001-284792号公報
【0009】
【発明が解決しようとする課題】
ところで、Au-20Sn高温鉛フリーはんだ合金は、高価なAuを主成分としているため、低価格な電子部品や電子機器のはんだ付けに用いるには経済的に好ましいものではない。また、従来のSn-Sb高温鉛フリーはんだ合金は、Sbを10質量%以上と大量に添加することで良好な耐熱性を得ることができるが、このようにSbが大量に添加されていたため非常に脆く、高所から落下させただけで容易に破壊してしまうものであった。さらに、このSn-Sb高温鉛フリーはんだ合金は、固相線温度と液相線温度との間が大きく開いているため、はんだ付け後、溶融はんだが固化するまでに時間がかかり、その間に振動や衝撃がはんだ付け部に加わると、はんだ付け部にヒビ割れやクラックが入ることがあった。本発明は、安価であり、しかも従来のSn-Sb高温鉛フリーはんだ合金よりも脆さがないばかりでなく、固相線温度と液相線温度との間が比較的狭いという高温鉛フリーはんだ合金を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記のような課題は以下の(1)乃至(9)のいずれかの本発明により解決される。
(1) Sbが10〜40質量%、Cuが0.5〜10質量%、残部Snからなることを特徴とする高温鉛フリーはんだ合金。
(2) (1)記載の高温鉛フリーはんだ合金に、さらに機械的強度改善元素を含有する高温鉛フリーはんだ合金。
(3) 前記機械的強度改善元素として、Ni、Co、Fe、Mo、Cr、Mnの元素のいずれか1種または2種以上を合計で0.5質量%以下含有することを特徴とする(2)に記載の高温鉛フリーはんだ合金。
(4) 前記機械的強度改善元素は、Ag、Biのいずれか1種以上を合計で1質量%以下含有することを特徴とする(2)または(3)に記載の高温鉛フリーはんだ合金。
(5) (1)乃至(4)のいずれか一項に記載の高温鉛フリーはんだ合金に、さらに酸化抑制元素を含有することを特徴とする高温鉛フリーはんだ合金。
(6) 前記酸化抑制元素として、P、Ge、Gaのいずれか1種または2種以上を合計で1質量%以下含有することを特徴とする(5)に記載の鉛フリーはんだ合金。
(7) 機能性素子と外部接続端子とが高温はんだ合金を用いたはんだ付けにより接合された電子部品であって、前記高温はんだ合金は、Sbが10〜40質量%、Cuが0.5〜10質量%、残部Snからなる組成を有することを特徴とする電子部品。
(8) 前記高温はんだ合金は、機械的強度改善元素および/または酸化抑制元素を含有することを特徴とする(7)に記載の電子部品。
(9) 前記機能性素子は、コイル素子である(7)または(8)に記載の電子部品。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
一般に使われるSn主成分の鉛フリーはんだ合金は、液相線温度が210〜220℃であり、はんだ付け温度は240〜260℃となる。従って、これらの鉛フリーはんだ合金を電子部品とプリント基板のはんだ付けに使用する場合、該はんだ合金でのはんだ付け温度で溶融しない高温はんだ合金としては、固相線温度が260℃以上であることが好ましいが、Sn主成分として、これに常用の金属元素を添加した鉛フリーはんだ合金では固相線温度を260℃以上にすることはできない。しかしながら、例え固相線温度が260℃以下であっても、260℃においてはんだ付け部のはんだがほとんど凝固していれば、接合状態を維持でき使用可能である。つまり260℃で接合状態を維持できれば、次のSn主成分の鉛フリーはんだ合金で電子部品をはんだ付けするときに耐熱性を有することになる。
【0012】
本発明者らは、SnにSbを大量に添加した合金は、固相線温度が240近辺であるが、Sn主成分の実装用鉛フリーはんだ合金のはんだ付け温度である260℃では、ほとんど凝固状態となっていること、そしてSn-Sb合金にCuを添加するとSn-Sb合金の脆性を改善でき、しかも固相線温度と液相線温度間を狭められること等を見い出し本発明を完成させた。
【0013】
本発明の高温鉛フリー合金は、Sbが10〜40質量%、Cuが0.5〜10質量%、残部Snからなることを特徴とする高温鉛フリーはんだ合金である。
【0014】
Sn-Sb高温鉛フリーはんだ合金において、Sbが10質量%よりも少ないと必要とする耐熱性が得られず、しかるに40質量%を超えるとはんだ付け性が悪くなってしまう。
【0015】
CuはSn-Sb合金の脆性を改善し、液相線温度を下げる効果がある。またCuはDSC曲線において、合金の吸収熱量が高温領域で増加させる効果も有している。即ちSn-Sb系合金にCuを添加すると、はんだの溶融にはより多くの熱量が必要となって、さらに耐熱性が向上することになる。Sn-Sb合金におけるCuの添加量がは、0.5質量%よりも少ないと液相線温度の低下、脆性改善、そして耐熱性向上等の効果が得られず、しかるにCuの添加量が10質量%よりも多くなると液相線温度が400℃以上となり、はんだ付け作業に影響が生じてしまう。
【0016】
図1は示差熱走査熱量分析装置により得られたSn-30Sb-3Cu合金の曲線モデル(DSC曲線)である。ベースライン(点線)と、このDSC曲線で囲まれる面積が、はんだが完全溶融に必要とする熱量である。合金の耐熱性が良好であるためには、固体成分が液体成分の量を上回るか、若しくは液体成分の流動を抑制することが必要である。このため260℃(A)を境界線とした場合、この熱分析ではんだの溶融時の単位重量あたりの吸収熱量において、260℃以上の熱量(図中Aより右方)が全体の熱量の50%以上となるような曲線を描く合金であれば、その耐熱性の効果が期待される。また液相線温度は、作業性を考慮すると400℃以下でなければならない。図1のSn-30Sb-3Cuの示差熱分析では、260℃以上の熱量が全体の熱量の80%以上であり、260℃以上で充分耐熱性を有していることが分かる。
【0017】
本発明の高温鉛フリー合金は、機械的強度改善元素を添加することもできる。このような機械的強度改善元素を添加することで、機械的強度が要求される部位をはんだ付けするような場合であっても十分な信頼性を得ることができる。このような機械的強度改善元素は、Ag、Bi、Ni、Co、Fe、Mo、Cr、Mn等の金属のいずれか1種または2種以上が好ましい。これらいずれの元素もSnに固溶、或いは金属間化合物を形成して機械的強度を向上させる。しかし、Ni、Co、Fe、Mo、Cr、Mnは、その添加量が多いと、はんだの流動性を阻害する。このため、Ni、Co、Fe、Mo、Cr、Mnについては、その合計量がはんだ全量の0.5質量%以下にすることが好ましい。Ag、Biは、その添加量が多いと固相線の低下をもたらす。Ag、Biについては、その合計量がはんだ全量の1質量%以下にすることが好ましい。
【0018】
そして、本発明の高温鉛フリーはんだ合金は、酸化抑制元素を含有することもできる。酸化抑制元素を添加することで電子部品の製造時にはんだ合金の酸化を抑制することができる。特に液相線温度が350℃以上のはんだ合金は、はんだ付け作業の際に酸化することがあり、酸化抑制元素を添加することが好ましい。酸化抑制元素は、P、Ga、Geのいずれか1種または2種以上が好ましい。P、Ga、Geが多いとはんだ付け性を阻害する。このため、P、Ga、Geは、その添加量がはんだ全量に対して0.5質量%以下であることが好ましい。
機械的強度改善元素および酸化抑制元素は、用途により添加しなくても良いが、必要に応じてどちらか一方のみ、或いは両方とも添加すれば良い。
【0019】
また、本発明の高温鉛フリーはんだ合金は、コイルや半導体などの機能性素子を有する電子部品に用いることができる。すなわち、このような電子部品の内部の、機能性素子と外部接続端子とを接合する高温はんだ合金として好適に用いることができる。
本発明の電子部品は、機能性素子と外部接続端子とが高温はんだ合金と用いたはんだ付けにより接合された電子部品であって、前記高温はんだ合金は、Sbが10〜40質量%、Cuが0.5〜10質量%、残部Snからなる組成を有することを特徴とする。
このような組成の高温鉛フリーはんだ合金により、機能性素子と外部接続端子とをはんだ付けで接合することで、外部接合端子と基板とを一般的に使われるSn主成分の鉛フリーはんだを用いて、240〜260℃の温度ではんだ付けをした場合であっても機能性素子と外部接続端子との接合状態を維持することができる。すなわち、このような組成の高温はんだ合金を用いることで、電子部品を基板にはんだ付けするときに十分な耐熱性を得ることができる。
【0020】
また、本発明の電子部品は、内部に用いられる高温はんだ合金として、機械的強度改善元素を含有しても良い。このような機械的強度改善元素を添加することで、機械的強度が要求される部位をはんだ付けするような場合であっても十分な信頼性を得ることができる。
また、本発明の電子部品は、内部に用いられる高温はんだ合金として、酸化抑制元素を含有しても良い。このような酸化抑制元素を含有することで電子部品の製造時にはんだ合金の酸化を抑制することができる。
【0021】
本発明の電子部品は、例えばコイルを機能性素子としたコイル部品である。また、機能性部品を半導体素子とした電子部品としても良い。
【0022】
【実施例】
表1は本発明の実施例および比較例である。
【0023】
【表1】

Figure 0004401671
表1におけるNo1〜15は、固相線温度が240℃近辺であるが、260℃以上での吸収熱量が50%以上となっている。また引張試験における破断伸びも0.3%以上であり、十分にはんだとして使用できるものである。一方、比較例は260℃以上での吸収熱量が50%より少なかったり、260℃以下で完全に液状化したりする等、260℃以上において耐熱性に劣っていた。
次に本実施例のNo.1〜15の高温鉛フリーはんだ合金を用いて、内部のコイル素子と外部接続端子とを接合したコイル部品を各々100個作製し、基板に対する実装実験を行った。コイル部品は、外部接続端子と基板とをSn−0.7Cu鉛フリーはんだを用いて、260℃の温度ではんだ付け接合した。基板に実装後、コイル部品の導通を確認したが、いずれも良好な導通を維持し、導通不良を生じることはなかった。すなわち、コイルと外部接続端子との接合が良好な耐熱性を有していることが確認された。
【0024】
【発明の効果】
以上説明したように、本発明のはんだ合金は、固相線温度が240℃近辺であるにもかかわらず、260℃でほとんど凝固しているため、本発明のはんだ合金で電子部品内部のはんだ付けを行った場合、二度目に行う電子部品のはんだ付け温度が260℃以下であるならば、電子部品内部のはんだ付け部を確実に保持できるという信頼性に優れたはんだ付け部が得られるものである。
【図面の簡単な説明】
【図1】示差走査線熱量分析装置により測定して得られる本発明合金系の曲線モデル(DSC曲線)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-temperature solder alloy containing no lead, particularly to a high-temperature solder alloy suitable for use in soldering inside an electronic component, and an electronic component using the solder alloy.
[0002]
[Prior art]
Some electronic components mounted on a printed circuit board of electronic devices have their insides soldered with a solder alloy. Since a solder alloy is also used when mounting this electronic component on a printed circuit board, the solder alloy inside the electronic component must be a high-temperature solder alloy that has a higher melting point and higher heat resistance than the solder alloy used for mounting. There is. That is, when soldering to a printed circuit board, the high-temperature solder alloy must securely hold the soldered portion inside the electronic component. Here, the high temperature solder alloy refers to an alloy having a solidus temperature of 183 ° C. or higher.
[0003]
Conventional high-temperature solder alloys are Pb-Sn based on Pb, such as Pb-5Sn, Pb-10Sn, etc., and solder alloys for mounting are solder alloys with low melting point near Sn-Pb eutectic (63Sn-Pb) Was used.
[0004]
In recent years, in general, electronic devices such as AV devices and computers have been disposed of without being repaired or upgraded in the case of failure or reduced functionality. In particular, printed circuit boards are made by bonding copper foil to resin, and solder is attached to the copper foil and cannot be separated, so incineration is not possible and disposal is landfill disposal. It was. When acid rain with high acidity comes into contact with the printed circuit board disposed of in landfill, Pb in the solder is eluted and mixed into groundwater. And if humans or livestock drink groundwater containing Pb component, there is a concern that Pb component will accumulate in the body and cause lead poisoning for many years. Therefore, so-called lead-free solder containing no Pb has been required from the electronic equipment industry.
[0005]
At present, lead-free solder alloys are mainly composed of Sn and added with metal elements such as Cu, Ag, Bi, Zn, In, Sb, Sn-0.7Cu (melting point: 227 ° C), In addition to binary alloys such as Sn-3.5Ag (melting point: 221 ° C), Sn-58Bi (melting point: 139 ° C), Sn-9Zn (melting point: 199 ° C), metal elements are added to these depending on the application. And there is something that is more than three yuan.
[0006]
Since lead-free solder alloys are mainly used when soldering electronic components to a printed circuit board, it is desirable that all of them have a melting point close to that of a conventional Sn—Pb eutectic alloy. The composition of lead-free solder close to the melting point of this Sn—Pb eutectic solder is Sn-9Zn alloy, but the lead-free solder alloy has extremely poor wettability during soldering. Furthermore, since Zn is a very oxidizable component, the soldering operation is difficult and practical, especially considering the soldering operation in the atmosphere. The Sn-58Bi alloy has a lower melting point than the Sn-Pb eutectic alloy, but it is brittle because it contains a large amount of Bi, and the melting point is too low to have heat resistance, so there is a problem in the reliability of the joint. Therefore, lead-free solder, which is currently widely used for mounting electronic components, has a slightly higher melting point than Sn-Pb eutectic solder, but Sn-3.5Ag (melting point 221 ° C), Sn-0.7Cu (melting point: 227 ° C) ), Sn-3Ag-0.5Cu (melting point: 217 ° C.) and the like.
[0007]
In addition, high temperature solder alloys are used in electronic components having functional elements such as coils and semiconductors. For example, in a part having a coil using a winding, a conductor wire is wound around a support such as a magnetic material, and the end of the conductor wire is connected to an external connection terminal using a high-temperature solder alloy. The coil component is connected and fixed to the substrate by soldering the external connection terminal and the substrate. Therefore, it is necessary to maintain the bonding against the temperature at which the terminals of the electronic component and the substrate are soldered.
There is also a demand for lead-free soldering for high-temperature solder alloys used inside such electronic components. Conventionally, as a high-temperature lead-free solder alloy, Au-20Sn high-temperature lead-free solder alloy containing 20% by mass of Sn containing Au as a main component, or Sn- containing 25 to 44% by weight of Sb as a main component of Sn. There is Sb high-temperature lead-free solder (Patent Document 1).
A solder material for die bonding is disclosed, in which Sb is 11.0 to 20.0 mass%, P is 0.01 to 0.2 mass%, and the balance is Sn and inevitable impurities. Furthermore, a soldering material for die bonding is disclosed in which Sb is 11.0 to 20.0 mass%, P is 0.01 to 0.2 mass%, at least one of Cu and Ni is 0.005 to 5.0 mass%, and the balance is Sn and inevitable impurities. (Patent Document 2).
[0008]
[Patent Document 1]
JP 11-151591 A [Patent Document 2]
Japanese Patent Laid-Open No. 2001-284792
[Problems to be solved by the invention]
By the way, the Au-20Sn high-temperature lead-free solder alloy is composed of expensive Au as a main component, and thus is not economically preferable for use in soldering low-cost electronic components and electronic devices. In addition, the conventional Sn-Sb high-temperature lead-free solder alloy can obtain good heat resistance by adding Sb in a large amount of 10% by mass or more, but because Sb was added in such a large amount, It was so fragile that it could easily be destroyed just by dropping it from a high place. Furthermore, since this Sn-Sb high-temperature lead-free solder alloy has a large gap between the solidus temperature and the liquidus temperature, it takes time for the molten solder to solidify after soldering. When an impact is applied to the soldered portion, cracks or cracks may be generated in the soldered portion. The present invention is a high-temperature lead-free solder that is inexpensive and not only less brittle than conventional Sn-Sb high-temperature lead-free solder alloys, but also relatively narrow between the solidus and liquidus temperatures. The object is to provide an alloy.
[0010]
[Means for Solving the Problems]
The above problems are solved by any one of the following (1) to (9).
(1) A high-temperature lead-free solder alloy comprising 10 to 40% by mass of Sb, 0.5 to 10% by mass of Cu, and the balance Sn.
(2) A high-temperature lead-free solder alloy further containing a mechanical strength improving element in addition to the high-temperature lead-free solder alloy described in (1).
(3) The element contains one or more elements of Ni, Co, Fe, Mo, Cr, and Mn as the mechanical strength improving element in a total amount of 0.5% by mass or less (2) High temperature lead-free solder alloy described in 1.
(4) The high-temperature lead-free solder alloy according to (2) or (3), wherein the mechanical strength improving element contains at least 1% by mass of any one of Ag and Bi.
(5) A high-temperature lead-free solder alloy characterized by further containing an oxidation inhibiting element in the high-temperature lead-free solder alloy according to any one of (1) to (4).
(6) The lead-free solder alloy according to (5), wherein the oxidation-suppressing element contains one or more of P, Ge, and Ga in total of 1% by mass or less.
(7) An electronic component in which a functional element and an external connection terminal are joined by soldering using a high-temperature solder alloy, and the high-temperature solder alloy has Sb of 10 to 40 mass% and Cu of 0.5 to 10 mass %, And an electronic component having a composition consisting of the remaining Sn.
(8) The electronic component according to (7), wherein the high temperature solder alloy contains a mechanical strength improving element and / or an oxidation inhibiting element.
(9) The electronic component according to (7) or (8), wherein the functional element is a coil element.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The Sn-based lead-free solder alloy generally used has a liquidus temperature of 210 to 220 ° C and a soldering temperature of 240 to 260 ° C. Therefore, when these lead-free solder alloys are used for soldering electronic components and printed circuit boards, the solidus temperature is 260 ° C or higher as a high-temperature solder alloy that does not melt at the soldering temperature of the solder alloy. However, with a lead-free solder alloy containing Sn as a main component and a common metal element added thereto, the solidus temperature cannot be made 260 ° C. or higher. However, even if the solidus temperature is 260 ° C. or lower, if the solder in the soldered portion is almost solidified at 260 ° C., the bonded state can be maintained and used. In other words, if the bonding state can be maintained at 260 ° C., it will have heat resistance when soldering electronic components with the following Sn-based lead-free solder alloy.
[0012]
The inventors of the present invention have found that an alloy in which a large amount of Sb is added to Sn has a solidus temperature of around 240, but is almost solidified at 260 ° C., which is the soldering temperature of the lead-free solder alloy for Sn-based mounting. The present invention has been completed by finding out that it is in a state and that the addition of Cu to the Sn-Sb alloy can improve the brittleness of the Sn-Sb alloy and can narrow the gap between the solidus temperature and the liquidus temperature. It was.
[0013]
The high-temperature lead-free alloy of the present invention is a high-temperature lead-free solder alloy characterized by consisting of 10 to 40% by mass of Sb, 0.5 to 10% by mass of Cu, and the balance Sn.
[0014]
In the Sn-Sb high-temperature lead-free solder alloy, if the Sb content is less than 10% by mass, the required heat resistance cannot be obtained, and if it exceeds 40% by mass, the solderability becomes poor.
[0015]
Cu has the effect of improving the brittleness of the Sn—Sb alloy and lowering the liquidus temperature. Cu also has the effect of increasing the heat of absorption of the alloy in the high temperature region in the DSC curve. That is, when Cu is added to the Sn—Sb alloy, more heat is required for melting the solder, and the heat resistance is further improved. If the amount of Cu added to the Sn-Sb alloy is less than 0.5% by mass, the effects of lowering the liquidus temperature, improving brittleness, and improving heat resistance cannot be obtained. If the amount is larger than this, the liquidus temperature becomes 400 ° C. or more, which affects the soldering operation.
[0016]
FIG. 1 is a curve model (DSC curve) of Sn-30Sb-3Cu alloy obtained by a differential thermal scanning calorimeter. The area surrounded by the baseline (dotted line) and the DSC curve is the amount of heat required for the solder to melt completely. In order for the alloy to have good heat resistance, it is necessary that the solid component exceeds the amount of the liquid component or the flow of the liquid component is suppressed. For this reason, when 260 ° C (A) is used as the boundary line, the heat quantity per unit weight at the time of melting of the solder in this thermal analysis is a heat quantity of 260 ° C or higher (right side of A in the figure) of the total heat quantity. If it is an alloy that draws a curve that is at least%, its heat resistance effect is expected. The liquidus temperature must be 400 ° C or less in consideration of workability. In the differential thermal analysis of Sn-30Sb-3Cu in FIG. 1, it can be seen that the heat quantity at 260 ° C. or higher is 80% or more of the total heat quantity, and the heat resistance is sufficiently high at 260 ° C. or higher.
[0017]
The high-temperature lead-free alloy of the present invention can also contain an element for improving mechanical strength. By adding such an element for improving mechanical strength, sufficient reliability can be obtained even when soldering a portion where mechanical strength is required. Such a mechanical strength improving element is preferably one or more of metals such as Ag, Bi, Ni, Co, Fe, Mo, Cr, and Mn. Any of these elements improves the mechanical strength by forming a solid solution in Sn or forming an intermetallic compound. However, if Ni, Co, Fe, Mo, Cr, and Mn are added in large amounts, the fluidity of the solder is hindered. For this reason, it is preferable that the total amount of Ni, Co, Fe, Mo, Cr, and Mn is 0.5% by mass or less of the total amount of solder. When Ag and Bi are added in large amounts, the solidus line is lowered. As for Ag and Bi, the total amount is preferably 1% by mass or less of the total amount of solder.
[0018]
And the high temperature lead-free solder alloy of this invention can also contain an oxidation inhibitory element. By adding an oxidation inhibiting element, the oxidation of the solder alloy can be suppressed during the manufacture of the electronic component. In particular, a solder alloy having a liquidus temperature of 350 ° C. or higher may be oxidized during the soldering operation, and it is preferable to add an oxidation inhibiting element. The oxidation inhibiting element is preferably one or more of P, Ga, and Ge. If P, Ga, and Ge are large, solderability is hindered. For this reason, it is preferable that the addition amount of P, Ga, and Ge is 0.5 mass% or less with respect to the total amount of solder.
The mechanical strength improving element and the oxidation inhibiting element may not be added depending on the use, but only one or both may be added as necessary.
[0019]
The high-temperature lead-free solder alloy of the present invention can be used for electronic components having functional elements such as coils and semiconductors. That is, it can be suitably used as a high-temperature solder alloy for joining the functional element and the external connection terminal inside such an electronic component.
The electronic component of the present invention is an electronic component in which a functional element and an external connection terminal are joined by soldering using a high-temperature solder alloy, and the high-temperature solder alloy includes 10 to 40% by mass of Sb and Cu. It has the composition which consists of 0.5-10 mass% and remainder Sn.
By using a high-temperature lead-free solder alloy having such a composition, the functional element and the external connection terminal are joined by soldering, so that the external joint terminal and the substrate are generally used as a lead-free solder mainly composed of Sn. Even when soldering is performed at a temperature of 240 to 260 ° C., the bonding state between the functional element and the external connection terminal can be maintained. That is, by using the high-temperature solder alloy having such a composition, sufficient heat resistance can be obtained when the electronic component is soldered to the substrate.
[0020]
The electronic component of the present invention may contain a mechanical strength improving element as a high temperature solder alloy used inside. By adding such an element for improving mechanical strength, sufficient reliability can be obtained even when soldering a portion where mechanical strength is required.
Moreover, the electronic component of this invention may contain an oxidation suppression element as a high temperature solder alloy used inside. By containing such an oxidation-inhibiting element, oxidation of the solder alloy can be suppressed during the manufacture of the electronic component.
[0021]
The electronic component of the present invention is a coil component using a coil as a functional element, for example. Moreover, it is good also as an electronic component which used the functional component as the semiconductor element.
[0022]
【Example】
Table 1 shows examples and comparative examples of the present invention.
[0023]
[Table 1]
Figure 0004401671
In Nos. 1 to 15 in Table 1, the solidus temperature is around 240 ° C, but the heat of absorption at 260 ° C or higher is 50% or higher. In addition, the elongation at break in the tensile test is 0.3% or more, and it can be sufficiently used as solder. On the other hand, the heat of absorption at 260 ° C. or higher was inferior in heat resistance at 260 ° C. or higher.
Next, No. of this example. Using 1 to 15 high-temperature lead-free solder alloys, 100 coil parts each having an internal coil element and an external connection terminal joined thereto were produced, and a mounting experiment on a substrate was performed. For the coil component, the external connection terminal and the substrate were soldered and joined at a temperature of 260 ° C. using Sn-0.7Cu lead-free solder. After mounting on the substrate, the continuity of the coil components was confirmed, but all maintained good continuity and did not cause poor continuity. That is, it was confirmed that the bonding between the coil and the external connection terminal has good heat resistance.
[0024]
【The invention's effect】
As described above, the solder alloy of the present invention is almost solidified at 260 ° C. even though the solidus temperature is around 240 ° C. If the soldering temperature of the electronic component to be performed for the second time is 260 ° C or lower, a highly reliable soldering part that can securely hold the soldering part inside the electronic component can be obtained. is there.
[Brief description of the drawings]
FIG. 1 is a curve model (DSC curve) of an alloy system of the present invention obtained by measurement with a differential scanning line calorimeter.

Claims (9)

Sbが10〜40質量%、Cuが0.5〜10質量%、残部Snからなることを特徴とする形状が粉末およびソルダペーストを除く高温鉛フリーはんだ材料。A high-temperature lead-free solder material, excluding powder and solder paste, characterized by comprising 10 to 40% by mass of Sb, 0.5 to 10% by mass of Cu, and the balance of Sn. 前記、高温鉛フリーはんだ材料に、さらにNi、Fe、Mo、Cr、Mnの元素のいずれか1種または2種以上を合計で0.5質量%以下添加されたことを特徴とする請求項1記載の形状が粉末およびソルダペーストを除く高温鉛フリーはんだ材料。2. The high-temperature lead-free solder material further comprising one or more elements of Ni , Fe , Mo, Cr, and Mn added in a total amount of 0.5% by mass or less. High-temperature lead-free solder material excluding powder and solder paste. 前記、高温鉛フリーはんだ材料に、さらにAg、Biのいずれか1種以上を合計で1質量%以下添加されたことを特徴とする請求項1または請求項2に記載の形状が粉末およびソルダペーストを除く高温鉛フリーはんだ材料。The shape according to claim 1 or 2, wherein one or more of Ag and Bi is further added to the high-temperature lead-free solder material in a total amount of 1% by mass or less. Except high temperature lead-free solder material. 前記、高温鉛フリーはんだ材料に、さらにGe、Gaのいずれか1種以上を合計で1質量%以下添加されたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の形状が粉末およびソルダペーストを除く高温鉛フリーはんだ材料。The shape according to any one of claims 1 to 3 , wherein one or more of Ge and Ga are further added to the high-temperature lead-free solder material in a total amount of 1% by mass or less. High temperature lead-free solder materials excluding powder and solder paste. 機能性素子と外部接続端子とを、形状が粉末およびソルダペーストを除く高温鉛フリーはんだ材料を用いたはんだ付けにより接合された電子部品であって、前記高温鉛フリーはんだ材料は、Sbが10〜40質量%、Cuが0.5〜10質量%、残部Snからなる組成を有することを特徴とする電子部品。An electronic component in which a functional element and an external connection terminal are joined by soldering using a high-temperature lead-free solder material excluding powder and solder paste, and the high-temperature lead-free solder material has an Sb of 10 to An electronic component having a composition comprising 40% by mass, Cu of 0.5 to 10% by mass, and the remaining Sn. 前記、粉末およびソルダペーストを除く高温鉛フリーはんだ材料に、さらにNi、Fe、Mo、Cr、Mnの元素のいずれか1種または2種以上を合計で0.5質量%以下添加されたことを特徴とする高温鉛フリーはんだ材料を用いた請求項に記載の電子部品。One or more elements of Ni , Fe , Mo, Cr, and Mn are further added to the high-temperature lead-free solder material excluding the powder and solder paste, and a total of 0.5% by mass or less is added. The electronic component according to claim 5 , wherein a high temperature lead-free solder material is used. 前記、粉末およびソルダペーストを除く高温鉛フリーはんだ材料に、さらにAg、Biのいずれか1種以上を合計で1質量%以下添加されたことを特徴とする高温鉛フリーはんだ材料を用いた請求項5または請求項に記載の電子部品。The high-temperature lead-free solder material, wherein one or more of either Ag or Bi is added in total to 1% by mass or less to the high-temperature lead-free solder material excluding the powder and solder paste. The electronic component according to claim 5 or 6 . 前記、粉末およびソルダペーストを除く高温鉛フリーはんだ材料に、さらにGe、Gaのいずれか1種以上を合計で1質量%以下添加されたことを特徴とする高温鉛フリーはんだ材料を用いた請求項ないし請求項7のいずれか1項に記載の電子部品。The high-temperature lead-free solder material, wherein one or more of Ge and Ga are further added in a total amount of 1% by mass or less to the high-temperature lead-free solder material excluding the powder and the solder paste. The electronic component according to any one of claims 5 to 7 . 前記、機能性素子は、コイル素子である請求項5ないし8のいずれか1項に記載の電子部品。Wherein, the functional device is an electronic component according to any one of claims 5 to 8 which is a coil element.
JP2003095499A 2003-03-31 2003-03-31 High temperature lead-free solder alloys and electronic components Expired - Lifetime JP4401671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095499A JP4401671B2 (en) 2003-03-31 2003-03-31 High temperature lead-free solder alloys and electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095499A JP4401671B2 (en) 2003-03-31 2003-03-31 High temperature lead-free solder alloys and electronic components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009171526A Division JP5140644B2 (en) 2009-07-22 2009-07-22 Soldering composition and electronic component

Publications (2)

Publication Number Publication Date
JP2004298931A JP2004298931A (en) 2004-10-28
JP4401671B2 true JP4401671B2 (en) 2010-01-20

Family

ID=33407815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095499A Expired - Lifetime JP4401671B2 (en) 2003-03-31 2003-03-31 High temperature lead-free solder alloys and electronic components

Country Status (1)

Country Link
JP (1) JP4401671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801852A (en) * 2012-11-12 2014-05-21 恒硕科技股份有限公司 High-strength silver-free and lead-free soldering tin

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038228A (en) * 2005-07-29 2007-02-15 Nihon Almit Co Ltd Solder alloy
JP4972503B2 (en) * 2007-09-11 2012-07-11 株式会社日立製作所 Semiconductor power module
AT505664B1 (en) * 2008-03-03 2009-03-15 Miba Gleitlager Gmbh SLIDE BEARING ALLOY OF WHITE METAL ON TIN BASIS
CN101239425A (en) * 2008-03-13 2008-08-13 浙江省冶金研究院有限公司 Leadless high-temperature electronic solder and preparation
DE112009002570B4 (en) 2008-10-24 2024-05-23 Mitsubishi Electric Corporation Solder alloy and semiconductor component
JP5463845B2 (en) * 2009-10-15 2014-04-09 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
JP5490258B2 (en) * 2010-12-10 2014-05-14 三菱電機株式会社 Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device
JP5878290B2 (en) * 2010-12-14 2016-03-08 株式会社日本スペリア社 Lead-free solder alloy
CN102328157A (en) * 2011-09-09 2012-01-25 合肥工业大学 Method for manufacturing SnAgCu lead-free solder
CN102500948A (en) * 2011-11-04 2012-06-20 浙江亚通焊材有限公司 Lead-free high-temperature soft solder and preparation method thereof
AU2012359292A1 (en) * 2012-08-08 2014-02-27 Senju Metal Industry Co., Ltd High-temperature lead-free solder alloy
CN104520062B (en) * 2012-08-10 2016-01-06 千住金属工业株式会社 high-temperature lead-free solder alloy
CN114161023A (en) 2014-04-30 2022-03-11 日本斯倍利亚股份有限公司 Lead-free solder alloy
WO2016079881A1 (en) * 2014-11-21 2016-05-26 株式会社日立製作所 Semiconductor power module, method for manufacturing same and mobile object
CN108611522B (en) * 2018-05-03 2020-05-26 绍兴市天龙锡材有限公司 Tin alloy wire
EP4317496A1 (en) 2021-03-30 2024-02-07 Tamura Corporation Solder alloy
JP7474797B2 (en) 2021-03-30 2024-04-25 株式会社タムラ製作所 Solder Alloy
CN115255711B (en) * 2022-07-15 2024-04-26 郑州轻工业大学 Sn-based multielement low-temperature soft solder and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801852A (en) * 2012-11-12 2014-05-21 恒硕科技股份有限公司 High-strength silver-free and lead-free soldering tin

Also Published As

Publication number Publication date
JP2004298931A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4401671B2 (en) High temperature lead-free solder alloys and electronic components
JP5152150B2 (en) Lead-free solder alloy
CN108971793B (en) Low-temperature lead-free solder
JP4305511B2 (en) High temperature lead-free solder and semiconductor device storage package
JP4770733B2 (en) Solder and mounted products using it
JP3761678B2 (en) Tin-containing lead-free solder alloy, cream solder thereof, and manufacturing method thereof
WO1997012719A1 (en) Lead-free solder
JP5278616B2 (en) Bi-Sn high temperature solder alloy
WO2010122764A1 (en) Soldering material and electronic component assembly
JP2002018589A (en) Lead-free solder alloy
JP2000190090A (en) Lead free solder
JP2011156558A (en) Lead-free solder alloy
JP5140644B2 (en) Soldering composition and electronic component
JP3879582B2 (en) Solder paste, electronic component and step soldering method
JP4392020B2 (en) Lead-free solder balls
JP3299091B2 (en) Lead-free solder alloy
JP3878978B2 (en) Lead-free solder and lead-free fittings
JP2004148372A (en) Lead-free solder and soldered article
JP2005340275A (en) Electronic component junction, its manufacturing method and electronic device comprising same
JP2008221330A (en) Solder alloy
JPH09253882A (en) Lead free soldering alloy
JPH1058184A (en) Solder, connecting method for electronic part using the solder and electronic circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4401671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term