JP2008221330A - Solder alloy - Google Patents

Solder alloy Download PDF

Info

Publication number
JP2008221330A
JP2008221330A JP2007067754A JP2007067754A JP2008221330A JP 2008221330 A JP2008221330 A JP 2008221330A JP 2007067754 A JP2007067754 A JP 2007067754A JP 2007067754 A JP2007067754 A JP 2007067754A JP 2008221330 A JP2008221330 A JP 2008221330A
Authority
JP
Japan
Prior art keywords
solder
mass
solder alloy
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007067754A
Other languages
Japanese (ja)
Inventor
Masayoshi Shimoda
将義 下田
Hirohiko Watanabe
裕彦 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2007067754A priority Critical patent/JP2008221330A/en
Publication of JP2008221330A publication Critical patent/JP2008221330A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Sn-Sb based high temperature solder alloy having excellent wettability and also having excellent mechanical properties (particularly, in ductility, and having a reduced aging change at high temperature), and in which an interfacial reaction layer grows slowly, and the reliability in the joint is excellent. <P>SOLUTION: The solder alloy has a composition comprising, by mass, 3.0 to 10.0% Sb, 0.01 to 1.0% Ni and 0.01 to 1.0% Ge, and the balance Sn with inevitable impurities. Alternatively, the solder alloy has a composition comprising 3.0 to 10.0% Sb, ≤1.0% (not including zero as the lower limit value in the range) Cu, 0.01 to 1.0% Ni and 0.01 to 1.0% Ge, and the balance Sn with inevitable impurities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、「はんだ合金」に関し、特に電子機器における金属接合において使用される鉛を含まない「鉛フリーはんだ合金」に関する。本はんだ合金は、電子機器全般に利用されるが、特に小型化や高機能化を有する回路基板あるいはマルチチップモジュール等において、挿入実装部品(IMD)、表面実装部品(SMD)および混載実装部品をプリント基板上に直接実装する分野において利用され、主に高温側の温度階層接続を必要とするはんだ接続に適用される。   The present invention relates to a “solder alloy”, and more particularly to a “lead-free solder alloy” that does not contain lead and is used in metal bonding in electronic equipment. This solder alloy is used in general electronic equipment. Especially in circuit boards or multi-chip modules with miniaturization and high functionality, insert mounting parts (IMD), surface mounting parts (SMD) and mixed mounting parts are used. It is used in the field of mounting directly on a printed circuit board, and is mainly applied to solder connections that require a temperature hierarchy connection on the high temperature side.

車載用電子機器や産業用電子機器等においては、はんだ接合部が220℃レベルの高温に曝される機会があり、このような高温での瞬時部分溶融防止には、SnSb系鉛フリーはんだ合金を使用して、SnとCuボール間の反応、Snと基板端子(Cu,Ni)との反応で、下限温度をSn(232℃)以上の245℃レベルに上昇させることができる。これにより、上記の220℃になっても部分溶融の心配はなくなる。   In automotive electronic equipment and industrial electronic equipment, solder joints are exposed to high temperatures of 220 ° C. To prevent instantaneous partial melting at such high temperatures, SnSb-based lead-free solder alloys are used. By using the reaction between Sn and Cu balls and the reaction between Sn and the substrate terminal (Cu, Ni), the lower limit temperature can be raised to a level of 245 ° C. higher than Sn (232 ° C.). Thereby, even if it becomes said 220 degreeC, there is no worry of partial melting.

ところで、電子部品をプリント基板等にリフロー法によりはんだ付けする場合、通常、リフロー温度の異なる少なくとも2種類のはんだを用いて、高温側および低温側の2回のはんだ付けを行う電子部品のはんだ付け方法、所謂、温度階層接続が行われる。例えば、半導体チップの基板への接続を高温工程で行い、プリント基板への配線接続を低温工程で行い、半導体チップの基板への接続部が溶融して接合状態が維持できないか、場合によっては分離する事態に至ることを防止する。   By the way, when an electronic component is soldered to a printed circuit board or the like by a reflow method, soldering of the electronic component is usually performed by performing soldering twice on the high temperature side and the low temperature side using at least two types of solder having different reflow temperatures. A method, so-called temperature hierarchy connection is performed. For example, the connection of the semiconductor chip to the substrate is performed in a high-temperature process, the wiring connection to the printed circuit board is performed in a low-temperature process, and the connection portion of the semiconductor chip to the substrate cannot be melted to maintain the bonded state, or in some cases separated To prevent it from happening.

従来、上記温度階層接続を行なう場合、通常、鉛入りはんだが使用されており、例えば、高温系鉛入りはんだとしては、Pb-5Sn(融点:314〜310℃)、Pb-10Sn(融点:302〜275℃)等を用いて330℃近傍の温度ではんだ付けし、その後、このはんだ付け部を溶かさないように、低温系鉛入りはんだのSn-37Pb共晶(融点:183℃)で接続することにより、温度階層接続を行なっていた。これらの鉛入りはんだは、柔軟で変形性に富むため破壊し易いSiチップ等を熱膨張係数の異なる基板に接合することができ、チップをフリップチップ接続するBGA、CSPなどの半導体装置などで適用されている。   Conventionally, when performing the above-described temperature hierarchy connection, lead-containing solder is usually used. For example, Pb-5Sn (melting point: 314 to 310 ° C.), Pb-10Sn (melting point: 302) are used as high-temperature lead-containing solder. Solder at a temperature of around 330 ° C using a soldering temperature of ~ 275 ° C), and then connect with Sn-37Pb eutectic (melting point: 183 ° C) of low-temperature lead-containing solder so as not to melt this soldered part Therefore, the temperature hierarchy connection was performed. These lead-containing solders are flexible and highly deformable, so it is possible to bond Si chips that are easy to break to substrates with different coefficients of thermal expansion, and are applied to semiconductor devices such as BGA and CSP where the chips are flip-chip connected. Has been.

上記のように、電子部品をプリント基板等にはんだ付けする場合、通常、そのはんだ合金は、従来、Sn−Pb共晶合金が用いられていた。   As described above, when soldering an electronic component to a printed circuit board or the like, an Sn—Pb eutectic alloy has been conventionally used as the solder alloy.

この鉛成分を含んだはんだ合金は、鉛が環境を汚染する見地から、その使用が規制され、その対策上、所謂「鉛フリーはんだ」の実用化が各企業で積極的に取り組まれてきた。代表的鉛フリーはんだ材料は、SnAg系はんだ材料(共晶組成3.5%Ag)であり、溶融点は220℃付近である。また、SnCu共晶系(融点:227℃)も使用されている。   The use of solder alloys containing this lead component is restricted from the standpoint that lead pollutes the environment, and so-called “lead-free solder” has been actively put into practical use by various companies as a countermeasure. A typical lead-free solder material is a SnAg solder material (eutectic composition 3.5% Ag), and its melting point is around 220 ° C. SnCu eutectic system (melting point: 227 ° C.) is also used.

社団法人 電子情報技術産業協会(JEITA: Japan Electronics and Information Technology Industries Association)は、NEDO委託事業の鉛フリー化実用化研究開発対応PGにより蓄積したデータに基づいて、2001年11月に鉛フリーはんだ実用化ロードマップを公表し、その中で、SnAgCu材料の推奨組成として、Sn-3.0Ag-0.5Cuを推奨した。上記背景により、現在の日本のSnAgCu系鉛フリーはんだはSn-3.0Ag-0.5Cuの採用が多い。   The Japan Electronics and Information Technology Industries Association (JEITA) is a leader in lead-free soldering in November 2001, based on data accumulated by the PG for research and development of lead-free implementation of NEDO commissioned business. Announcement roadmap was published, and Sn-3.0Ag-0.5Cu was recommended as the recommended composition of SnAgCu material. Due to the above background, Sn-3.0Ag-0.5Cu is often used in current Japanese SnAgCu-based lead-free solder.

上記鉛フリーはんだに関する特許出願も各社から広くなされている(例えば、特許文献1、2参照)。   Patent applications relating to the above lead-free solder are also widely made by various companies (for example, see Patent Documents 1 and 2).

特許文献1は、上記Sn-3.0Ag-0.5Cuを含むSnAgCu系鉛フリーはんだに関するものであり、下記を開示している。即ち、特許文献1の要約の記載を引用すると、「表面実装部品のはんだ付けを行った場合、電子部品やプリント基板に対して熱損傷を起こさせない250℃以下のリフロー温度ではんだ付けしてもパッケージ部品に対しては、はんだ付け部にボイドを発生させず、チップ部品のチップ立ちを起こさせない印刷性に優れた鉛フリーのソルダペーストを提供すること」を課題とし、その解決手段として「配合組成又は配合比率の異なる二種以上のはんだ合金粉末をAg:0〜8質量%、Cu:0〜5質量%、Sn:80〜100質量%から成り、これらの二種以上のはんだ合金粉末を混合して溶解した後の組成がAg:1〜5質量%、Cu:0.5〜3質量%、残部Snとなるように二種以上のはんだ合金粉末を調合してソルダペーストとする。」旨を開示する。   Patent Document 1 relates to a SnAgCu-based lead-free solder containing Sn-3.0Ag-0.5Cu, and discloses the following. That is, when the description of the summary of Patent Document 1 is cited, “When soldering a surface-mounted component, even if it is soldered at a reflow temperature of 250 ° C. or less that does not cause thermal damage to an electronic component or a printed circuit board, For package parts, the challenge is to provide a lead-free solder paste with excellent printability that does not cause voids in the soldered parts and does not cause chip standing of chip parts. Two or more kinds of solder alloy powders having different compositions or blending ratios are composed of Ag: 0 to 8% by mass, Cu: 0 to 5% by mass, and Sn: 80 to 100% by mass. Two or more kinds of solder alloy powders are mixed to form a solder paste so that the composition after mixing and dissolution is Ag: 1-5 mass%, Cu: 0.5-3 mass%, and the balance Sn. Disclose.

特許文献2は、実質的に本件出願人によって出願されたものであって、「Sn-Ag 合金を改良して、優れた強度を有するとともに熱的に安定であり、接合性も良好なSn-Ag 系はんだ合金を提供すること」を課題とし、その解決手段として「スズを主成分とし、銀を1.0〜4.0重量%、銅を2.0重量%以下、ニッケルを0.5重量%以下、リンを0.2重量%以下含有する。また、スズを主成分とし、銀を1.0〜4.0重量%、銅を2.0重量%以下、ニッケルを0.5重量%以下、ゲルマニウムを0.1重量%以下含有してもよい。Cuを添加すると、CuはSn中に固溶し、ぬれ性を損なうことなく合金の強度と耐熱性が向上する。Niを添加するとNiの溶融温度が高いために合金の熱的安定性が増す。またNiを添加すると結晶組織が微細化し、あるいはNi-Sn化合物が生成して強度や熱疲労特性が向上する。PおよびGeを添加するとはんだ溶融時に薄い酸化皮膜を形成し、Snなどのはんだ成分の酸化が抑制される。」旨を開示する。   Patent Document 2 was substantially filed by the applicant of the present application. “Sn—Ag alloys are improved to have excellent strength, thermal stability, and good bondability. “Providing an Ag-based solder alloy”, and as a means for solving the problem, “mainly tin, 1.0 to 4.0% by weight of silver, 2.0% by weight or less of copper, and 0.5% of nickel Less than wt%, less than 0.2wt% phosphorus, tin as the main component, 1.0-4.0 wt% silver, less than 2.0 wt% copper, 0.5 wt% nickel The content of germanium may be 0.1% or less by weight.When Cu is added, Cu dissolves in Sn, improving the strength and heat resistance of the alloy without impairing the wettability. This increases the thermal stability of the alloy due to the high melting temperature of Ni. Ni-Sn compounds are formed and the strength and thermal fatigue properties are improved. When P and Ge are added, a thin oxide film is formed when the solder is melted, and oxidation of solder components such as Sn is suppressed. " To do.

上記のように、Pbフリーはんだとしては、Sn-Ag-Cu共晶系(融点:221〜217℃)、Sn-Cu共晶系(融点:227℃)等が汎用されており、信頼性確保のため濡れ性を確保する必要性から、実装温度範囲は、例えばSn-Ag-Cu共晶系で235〜245℃くらいが実情である。従って、このはんだ付け温度に耐えられる階層用の高温側はんだとしては、融点が少なくとも250℃以上である必要がある。また、鉛フリーはんだの主成分がSnであることから、実装時における酸化を抑制することも求められる。   As mentioned above, Sn-Ag-Cu eutectic system (melting point: 221 to 217 ° C), Sn-Cu eutectic system (melting point: 227 ° C), etc. are widely used as Pb-free solder, ensuring reliability. Therefore, from the necessity of ensuring wettability, the actual mounting temperature range is, for example, about 235 to 245 ° C. in the Sn—Ag—Cu eutectic system. Therefore, the high-temperature side solder that can withstand this soldering temperature needs to have a melting point of at least 250 ° C. or higher. Moreover, since the main component of lead-free solder is Sn, it is also required to suppress oxidation during mounting.

前記のような条件を満足する高温側の鉛フリーはんだとして、Sn-Sb系高温はんだ合金が知られている(特許文献3および4参照)。   Sn-Sb high temperature solder alloys are known as lead-free solders on the high temperature side that satisfy the above-described conditions (see Patent Documents 3 and 4).

特許文献3は、「Sb10〜40質量%、Cu1〜9質量%、残部Snからなる高温鉛フリーはんだ合金であって、さらに機械的強度を向上させるために、Co、Fe、Mo、Cr、Ag、Biからなる群からえらばれた1種以上を添加したり、酸化抑制元素としてP、Ge、Gaから選ばれた1種以上を添加したりするはんだ合金。」を開示する。   Patent Document 3 states that “a high-temperature lead-free solder alloy consisting of Sb 10 to 40% by mass, Cu 1 to 9% by mass, and the balance Sn, and in order to further improve mechanical strength, Co, Fe, Mo, Cr, Ag , A solder alloy in which at least one selected from the group consisting of Bi is added or at least one selected from P, Ge, and Ga is added as an oxidation-inhibiting element is disclosed.

特許文献4は、「Sbを11〜15質量%、並びにNiおよびGeのうちの少なくとも1種を0.01〜1質量%含み、残部が実質的にSnからなる電子部品接合用はんだ合金。」を開示する。
特開2002−126893号公報 特許第3296289号公報 特開2004−298931号公報 特開2002−321084号公報
Patent Document 4 states that “a solder alloy for joining electronic components that contains 11 to 15% by mass of Sb and 0.01 to 1% by mass of at least one of Ni and Ge, with the balance being substantially made of Sn.” Is disclosed.
JP 2002-126893 A Japanese Patent No. 3296289 JP 2004-298931 A JP 2002-321084 A

ところで、上記のような特許文献3または4に記載されたSn-Sb系鉛フリー高温はんだ合金は、Sbの質量%が大きいことに起因して、結晶粒が粗大化する問題があり、外部の負荷応力によって結晶粒界に沿ってクラックが発生し、接合の信頼性が低い問題がある。   By the way, the Sn—Sb-based lead-free high-temperature solder alloy described in Patent Document 3 or 4 as described above has a problem that the crystal grains become coarse due to the large mass% of Sb, and the external Cracks are generated along the grain boundaries due to load stress, and there is a problem that the reliability of bonding is low.

また、濡れ性の向上を図り、かつ、高温環境下で長期使用した際のはんだと接合母材との界面に形成される界面反応層(合金層ともいう。)の成長を遅くすることにより、クラックの発生と伝播をさらに抑制し、接合の信頼性をさらに向上することが望まれる。   In addition, by improving the wettability and slowing the growth of the interface reaction layer (also referred to as the alloy layer) formed at the interface between the solder and the bonding base material when used for a long time in a high temperature environment, It is desired to further suppress the generation and propagation of cracks and further improve the reliability of bonding.

また、特に前記Sn-Ag系の鉛フリーはんだ合金に比較して、延性に優れ、高温での時効変化が少なくすることにより、高温寿命の向上を図ることが望まれる。   In particular, it is desired to improve the high-temperature life by excellent ductility and less aging change at high temperature as compared with the Sn-Ag lead-free solder alloy.

この発明は、上記のような状況に鑑みてなされたもので、この発明の課題は、濡れ性に優れ、かつ機械的特性が優れ(特に、延性に優れ、高温での時効変化が少なく)、さらに界面反応層の成長が遅く接合部の信頼性に優れたSn-Sb系高温はんだ合金を提供することにある。   The present invention has been made in view of the situation as described above, and the object of the present invention is excellent in wettability and mechanical properties (particularly excellent in ductility and little aging change at high temperature), It is another object of the present invention to provide a Sn—Sb high temperature solder alloy having a slow interface reaction layer growth and excellent joint reliability.

上記課題は、以下のはんだ合金により達成される。即ち、Sbを3.0〜10.0質量%、Niを0.01〜1.0質量%、Geを0.01〜1.0質量%含有し、残部はSn及び不可避的不純物からなることを特徴とする(請求項1)。   The said subject is achieved by the following solder alloys. That is, it is characterized by containing 3.0 to 10.0% by mass of Sb, 0.01 to 1.0% by mass of Ni and 0.01 to 1.0% by mass of Ge, with the balance being Sn and inevitable impurities (Claim 1).

また、Sbを3.0〜10.0質量%、Cuを1.0質量%以下(範囲下限値の零を含まず)、Niを0.01〜1.0質量%、Geを0.01〜1.0質量%含有し、残部はSn及び不可避的不純物からなることを特徴とする(請求項2)。   Also, it contains 3.0 to 10.0% by mass of Sb, 1.0% by mass or less of Cu (not including the lower limit of zero), 0.01 to 1.0% by mass of Ni, 0.01 to 1.0% by mass of Ge, and the balance is Sn and inevitable (Claim 2).

前記本発明における各成分含有量範囲の技術的根拠や各成分添加の効果は下記のとおりである。まず、Sbの含有量の上限について述べる。10.0質量%を超えると、凝固する際に晶出する粗大な結晶粒(Sn−Sb系化合物)を有する組織となる。その結晶粒は硬くて脆い性質を有するため、外部の負荷応力によって結晶粒界に沿ってクラックが発生し、接合信頼性の低下が問題となる。   The technical basis of each component content range and the effect of each component addition in the present invention are as follows. First, the upper limit of the Sb content will be described. When it exceeds 10.0 mass%, it will become a structure | tissue which has the coarse crystal grain (Sn-Sb type compound) which crystallizes when solidifying. Since the crystal grains are hard and brittle, cracks are generated along the crystal grain boundaries due to external load stress, resulting in a decrease in bonding reliability.

また、10.0質量%を超えると、液相線温度が約270℃以上になり、高い接合温度が要求される。なお、Sbの含有量の下限値の3.0質量%は、高温はんだとしての所望の融点を得る上で必要な含有量である。   Moreover, when it exceeds 10.0 mass%, liquidus temperature will be about 270 degreeC or more, and high joining temperature is requested | required. Note that 3.0% by mass of the lower limit of the Sb content is a content necessary for obtaining a desired melting point as a high-temperature solder.

次に、Ni添加の効果とその適性範囲について述べる。Ni添加により、濡れ性を向上させ、かつ、高温環境下で長期使用したときの接合部における合金層成長を抑えることが可能となる。   Next, the effect of Ni addition and its suitability range will be described. By adding Ni, it becomes possible to improve wettability and to suppress the growth of the alloy layer at the joint when used for a long time in a high temperature environment.

また添加されたNiは、はんだ中あるいは被接合体の電極中(SnまたはCu)へ固溶し、あるいはSnNi金属間化合物を形成するので、これにより、はんだ合金の熱的安定性が増し、耐熱性が向上する。しかしながら、SnNi金属間化合物が過度に形成されると延性が低下するので、Niを過多に添加することはできない。また、Niの添加量を増すと液相線が急激に上昇し、SnNi金属聞化合物が過多になる問題がある。はんだ凝固時に、SnNi金属聞化合物の濃度偏析を防止するためには、Niの添加量は1.0質量%以下とするのが好適である。   In addition, the added Ni is dissolved in the solder or in the electrode of the joined body (Sn or Cu), or forms an SnNi intermetallic compound, thereby increasing the thermal stability of the solder alloy and increasing the heat resistance. Improves. However, if the SnNi intermetallic compound is excessively formed, the ductility is lowered, so that Ni cannot be added excessively. Further, there is a problem that when the amount of Ni added is increased, the liquidus line rapidly rises and the SnNi metal compound becomes excessive. In order to prevent concentration segregation of the SnNi metal alloy during solder solidification, the amount of Ni added is preferably 1.0% by mass or less.

また、Ni添加により、はんだと接合母材(Cu)との界面に形成される界面反応層(合金層)の成長が抑制され、クラックの発生(及び伝播)を抑制することができる。なお、Niの添加量が0.01%未満では、充分な濡れ性を付与することが困難である。   Further, the addition of Ni suppresses the growth of the interface reaction layer (alloy layer) formed at the interface between the solder and the bonding base material (Cu), thereby suppressing the generation (and propagation) of cracks. In addition, if the addition amount of Ni is less than 0.01%, it is difficult to impart sufficient wettability.

次に、Ge添加の効果とその適性範囲について述べる。Ge添加により、濡れ性を向上させ、かつ、高温環境下で長期使用したときの合金層成長を抑えることができる。   Next, the effect of Ge addition and its suitable range will be described. Addition of Ge improves wettability and suppresses growth of the alloy layer when used for a long time in a high temperature environment.

Geの添加量範囲は、0.01〜1.0質量%好ましくは0.1〜1.0質量%であり、その理由は、0.01質量%未満では、充分な濡れ性を付与し難く、1.0質量%を越えると、冷間加工性が低下し、細線線引き加工や薄厚圧延やプリフォームの打ち抜き加工が難しくなるためである。   The addition amount range of Ge is 0.01 to 1.0% by mass, preferably 0.1 to 1.0% by mass. The reason is that if it is less than 0.01% by mass, it is difficult to impart sufficient wettability. This is because workability is lowered, and thin wire drawing, thin rolling, and preform punching are difficult.

次に、請求項2に係るCu添加の効果について述べる。Sn-Sb-Ni-Ge4元はんだ合金にCuを添加することにより、接合母材からはんだ中へのCuの拡散を抑止することができる。なお、Cu添加量は1.0質量%以下であれば、固相線温度の大幅な上昇はない。   Next, the effect of adding Cu according to claim 2 will be described. By adding Cu to the Sn—Sb—Ni—Ge quaternary solder alloy, diffusion of Cu from the joining base material into the solder can be suppressed. In addition, if Cu addition amount is 1.0 mass% or less, there will be no significant rise in solidus temperature.

この発明によれば、電子機器におけるはんだ接合に適用した場合に、濡れ性に優れ、かつ機械的特性が優れ(特に、延性に優れ、高温での時効変化が少なく)、さらに界面反応層の成長が遅く接合部の信頼性に優れたSn-Sb系はんだ合金が提供できる。また、このはんだ合金は、温度階層接続における高温側のはんだ合金としても好適である。   According to the present invention, when applied to solder bonding in electronic equipment, it has excellent wettability and excellent mechanical properties (particularly excellent ductility and little aging change at high temperature), and further the growth of the interface reaction layer Therefore, it is possible to provide a Sn—Sb solder alloy that is slow and excellent in reliability of the joint. This solder alloy is also suitable as a solder alloy on the high temperature side in the temperature hierarchy connection.

次に、本発明の実施例について、前記請求項1の発明に係るはんだ合金を対象として図1ないし図7に基づいて述べる。なお、前記請求項2の発明に係るはんだ合金に関しても同様の結果が得られる。   Next, an embodiment of the present invention will be described based on FIGS. 1 to 7 with the solder alloy according to the first aspect of the present invention as an object. Similar results can be obtained with the solder alloy according to the second aspect of the present invention.

まず、図1および図7に基づき、本発明に係るはんだ合金の濡れ性に関する実験結果について述べる。濡れ性実験に関わり、真空還元装置(最大加熱温度:約300℃)を用いて、DBC(Direct Bond Copper)基板上に、Sn-5SbはんだにNi添加量を変化させたはんだペレット(直径3.0mm×厚さ0.3mm)を溶融、凝固させ、図7に示すようなはんだフィレットを形成した。このフィレット(各添加量毎にサンプル数12)に基づき、図1に示すように、Sn-5SbはんだにNi添加量を変化させた高温はんだ合金に関して、次式に示すような濡れ広がり率ΔS(%)を算出した。   First, based on FIG. 1 and FIG. 7, the experimental result regarding the wettability of the solder alloy which concerns on this invention is described. In connection with the wettability experiment, using a vacuum reduction device (maximum heating temperature: about 300 ° C), solder pellets (diameter: 3.0mm) with Ni addition amount changed to Sn-5Sb solder on DBC (Direct Bond Copper) substrate X thickness 0.3 mm) was melted and solidified to form a solder fillet as shown in FIG. Based on this fillet (12 samples for each added amount), as shown in FIG. 1, with respect to the high temperature solder alloy in which the Ni added amount is changed to Sn-5Sb solder, the wetting spread rate ΔS ( %) Was calculated.

濡れ広がり率ΔS(%)=(加熱後の濡れ広がり面積−加熱前の濡れ広がり面積)
÷(加熱前の濡れ広がり面積)×100
図1において、左側のデータAはNi添加量0、中央Bは0.03質量%、右側Cは0.15質量%である。なお、上記において、Geは0.01質量%に固定した。
Wetting spread ratio ΔS (%) = (wetting spread area after heating−wetting spread area before heating)
÷ (wet spread area before heating) x 100
In FIG. 1, the data A on the left side is Ni addition amount 0, the center B is 0.03 mass%, and the right C is 0.15 mass%. In the above, Ge was fixed at 0.01% by mass.

図1によれば、Sn5Sbはんだ材(Ni添加量0)AではΔSが10%以下であるのに対して、BのNi
添加量が0.03%では、ΔSが10〜13%、CのNi添加量が0.15%では、ΔSが20〜30%の値を有して
おり、Ni添加による濡れ性向上の効果が確認された。ちなみに、サンプル数N=12における各種はんだ材のバラツキは標準偏差σとして、ΔSを平均値±σで示すと、上記A,B,CのΔSは
、それぞれ、4.1±1.7%,11.8±1.0%,24.3±3.0%である。
According to FIG. 1, in the Sn5Sb solder material (Ni addition amount 0) A, ΔS is 10% or less, whereas Ni in B
When the addition amount is 0.03%, ΔS has a value of 10 to 13%, and when the Ni addition amount of C is 0.15%, ΔS has a value of 20 to 30%, confirming the effect of improving the wettability by adding Ni. . By the way, the variation of various solder materials in the number of samples N = 12 is represented by the standard deviation σ, and ΔS is expressed as an average value ± σ. , 24.3 ± 3.0%.

なお、前述のように、Niを添加すると、はんだ中あるいは被接合体の電極中(SnまたはCu)へ固溶し、あるいはSnNi金属間化合物を形成して、合金の熱的安定性が増し、耐熱性が向上する。しかしながら、SnNi金属間化合物が過度に形成されると延性が低下するので、Niを過多に添加することはできない。また、Niの添加量を増すと液相線が急激に上昇し、SnNi金属聞化合物が過多になる。はんだ凝固時に際して、SnNi金属聞化合物の濃度偏析を防止するために Ni の添加量は1.0質量%以下が好適である。   As described above, when Ni is added, it dissolves in the solder or in the electrode of the joined body (Sn or Cu), or forms a SnNi intermetallic compound, increasing the thermal stability of the alloy, Heat resistance is improved. However, if the SnNi intermetallic compound is excessively formed, the ductility is lowered, so Ni cannot be added excessively. Further, when the amount of Ni added is increased, the liquidus line rises rapidly and the SnNi metal compound becomes excessive. In order to prevent concentration segregation of the SnNi metal compound during solidification of the solder, the amount of Ni added is preferably 1.0% by mass or less.

次に、機械的特性について述べる。まず、図2に示す引張強さの歪み速度依存性に関する実験結果の一例について述べる。はんだのように軟らかい材料の引張強さは、引張速度の影響を大きく受け、引張速度を下げると引張強さが減少する。これを引張強さの歪み速度依存性という。はんだの熱疲労特性を推定する方法として、ひずみ速度変化引張試験法が竹本等によって提案されている(詳細は、T.Takemoto,A.Matsunawa,M.Takahashi:Tensile test for estimation of thermal fatigue properties of solder alloys Journal of Materials Science 32 (1997) 4077-4084参照)。   Next, mechanical characteristics will be described. First, an example of an experimental result regarding the strain rate dependency of the tensile strength shown in FIG. 2 will be described. The tensile strength of a soft material such as solder is greatly affected by the tensile speed, and the tensile strength decreases when the tensile speed is lowered. This is called the strain rate dependence of tensile strength. Takemoto, A. Matsunawa, M. Takahashi: Tensile test for estimation of thermal fatigue properties of the strain rate change tensile test method has been proposed as a method for estimating thermal fatigue properties of solder. solder alloys Journal of Materials Science 32 (1997) 4077-4084).

図2において、縦軸は引張強さ(MPa)を示し、横軸は歪み速度(%/s)を示す。実験したはんだ合金は、図2に示すA(Sn-5Sb-0.03Ni-0.01Ge),B(Sn-5Sb-0.15Ni-0.01Ge),C(Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge)の3種であり、各サンプル数は5である。歪み速度0.2%/sおよび0.002%/sは各々、製品の信頼性検証項目であるパワーサイクル試験(0.2%/s)、ヒートサイクル試験(0.002%/s)に相当する。例えば、ヒートサイクル試験(-40℃⇔125℃)において、温度差ΔT=165℃でのはんだ接合部に作用する歪み成分の大きさが2.0%のとき、温度上昇(または下降)過程における歪み量εの変化(勾配=0.002 %/s)が歪み速度に対応する。   In FIG. 2, the vertical axis represents tensile strength (MPa), and the horizontal axis represents strain rate (% / s). The tested solder alloys are A (Sn-5Sb-0.03Ni-0.01Ge), B (Sn-5Sb-0.15Ni-0.01Ge), C (Sn-3.5Ag-0.5Cu-0.07Ni-0.01) shown in FIG. The number of samples is five. The strain rates of 0.2% / s and 0.002% / s correspond to the power cycle test (0.2% / s) and heat cycle test (0.002% / s), which are the reliability verification items of the product, respectively. For example, in a heat cycle test (-40 ° C to 125 ° C), when the magnitude of the strain component acting on the solder joint at a temperature difference ΔT = 165 ° C is 2.0%, the amount of strain in the temperature rise (or fall) process The change in ε (gradient = 0.002% / s) corresponds to the strain rate.

図2から明らかなように、本発明に係るSnSb高温鉛フリーはんだ(Ni添加量:0.03%、0.15%)は、SnAgCuの三元系鉛フリーはんだ(Ni,Geを微量添加、図2ではその%の記載を省略)したはんだ合金に比較して、歪み速度に関わらず大きな引張強度を有していることが分かる。   As is clear from FIG. 2, the SnSb high-temperature lead-free solder according to the present invention (Ni addition amount: 0.03%, 0.15%) is SnAgCu ternary lead-free solder (Ni and Ge are added in a small amount. It can be seen that it has a large tensile strength regardless of the strain rate compared to the solder alloy.

次に、図3について述べる。図3は、本発明に係るはんだ合金の延性に関する実験結果の一例を示す図である。   Next, FIG. 3 will be described. FIG. 3 is a diagram showing an example of an experimental result regarding the ductility of the solder alloy according to the present invention.

図3において、縦軸は破断絞り(%)を示し、横軸は歪み速度(%/s)を示す。実験したはんだ合金は、図3に示すA(Sn-5Sb-0.03Ni-0.01Ge),B(Sn-5Sb-0.15Ni-0.01Ge),C(Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge)の3種であり、各サンプル数は5である。破断絞り(%)は下記により定義される。   In FIG. 3, the vertical axis represents the fracture drawing (%), and the horizontal axis represents the strain rate (% / s). The tested solder alloys are A (Sn-5Sb-0.03Ni-0.01Ge), B (Sn-5Sb-0.15Ni-0.01Ge) and C (Sn-3.5Ag-0.5Cu-0.07Ni-0.01) shown in FIG. The number of samples is five. The fracture drawing (%) is defined by the following.

破断絞り(%) = (S1 − S2) / S1×100
ここで、S1:試験平行部の原断面積(mm2
S2:試験後の破断部における最小断面積(mm2
図3によれば、微量元素(Ni,Ge)を添加したSn-5Sb系はんだは合金は、破断絞り>80%であり、良好な破断特性を示し、Sn-3.5Ag -0.5Cu-Ni-Geはんだ合金に比べて破断絞り値が約20%大きい。即ち、本発明に係るはんだ合金は、延性に優れていることがわかる。
Fracture drawing (%) = (S 1 − S 2 ) / S 1 × 100
Where S 1 : Original cross-sectional area of test parallel part (mm 2 )
S 2 : Minimum cross-sectional area at the fractured part after the test (mm 2 )
According to FIG. 3, Sn-5Sb solder added with trace elements (Ni, Ge) has an alloy with a fracture drawing> 80% and exhibits good fracture characteristics, Sn-3.5Ag -0.5Cu-Ni- The fracture drawing value is about 20% larger than that of Ge solder alloy. That is, it can be seen that the solder alloy according to the present invention is excellent in ductility.

次に、図4について述べる。図4は、本発明に係るはんだ合金の高温時効の変化に関する実験結果の一例を示す図であり、初期品と高温時効品の各引張強さ(MPa)を縦軸に示す。実験したはんだ合金は、図3と同様に、A(Sn-5Sb-0.03Ni-0.01Ge),B(Sn-5Sb-0.15Ni-0.01Ge),C(Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge)の3種であり、各サンプル数は5である。   Next, FIG. 4 will be described. FIG. 4 is a diagram showing an example of an experimental result regarding a change in the high temperature aging of the solder alloy according to the present invention, and the vertical axis indicates the tensile strength (MPa) of the initial product and the high temperature aging product. The tested solder alloys are A (Sn-5Sb-0.03Ni-0.01Ge), B (Sn-5Sb-0.15Ni-0.01Ge), C (Sn-3.5Ag-0.5Cu-0.07Ni) as in FIG. -0.01 Ge), and each sample number is 5.

初期に対する高温時効(125℃×1000h)後の各引張強さは、上記A,B,Cにおいて、それぞれ、6.0%,12.8%,18.1%低下しており、本発明に係るA,Bは、Cに比較して各引張強さの低下度合いが小さい。即ち、本発明に係るはんだ合金は、高温での時効変化が少ないことがわかる。   The tensile strengths after high temperature aging (125 ° C. × 1000 h) with respect to the initial values are decreased by 6.0%, 12.8%, and 18.1% in A, B, and C, respectively. Compared with C, the degree of decrease in each tensile strength is small. That is, it can be seen that the solder alloy according to the present invention has little aging change at high temperature.

次に、本発明のはんだ合金が、「接合部における界面反応層の成長が遅く接合部の信頼性に優れる効果を奏する点」について、図5に基づいて詳述する。図5は、本発明に係るはんだ合金の界面反応層についての説明図であって、図5(a)は、Ni添加無しのSnSb系はんだ接合品の組織形態を、図5(b)はNi添加したSnSb系はんだ接合品の組織形態を模式的に示す。   Next, the solder alloy of the present invention will be described in detail with reference to FIG. 5 in terms of “the effect that the growth of the interface reaction layer at the joint is slow and the reliability of the joint is excellent”. FIG. 5 is an explanatory view of the interface reaction layer of the solder alloy according to the present invention. FIG. 5 (a) shows the microstructure of the SnSb solder joint product without addition of Ni, and FIG. 5 (b) shows Ni. The structure form of the added SnSb solder joint product is schematically shown.

図5(a)に示すように、Niを添加してないSn-Sb系はんだは、反応層A( Cu6(Sn,Sb)5化合物 )が凹凸状態で存在する。これに対して、図5(b)に示すNiを添加したSn-Sb系はんだは、反応層C( (Cu,Ni)6(Sn,Sb)5化合物 )が比較的平坦となる。また、高温時効後にともなう反応層D( (Cu,Ni)3(Sn,Sb)化合物 )の成長が抑えられる。 As shown in FIG. 5A, in the Sn—Sb solder to which Ni is not added, the reaction layer A (Cu 6 (Sn, Sb) 5 compound) exists in an uneven state. On the other hand, the reaction layer C ((Cu, Ni) 6 (Sn, Sb) 5 compound) is relatively flat in the Sn—Sb solder added with Ni shown in FIG. 5B. Further, the growth of the reaction layer D ((Cu, Ni) 3 (Sn, Sb) compound) accompanying high temperature aging can be suppressed.

即ち、Niを添加した場合、はんだ/接合母材界面の反応層はNiを含む化合物となり、反応層の成長が遅くなる。図5(a)に示すように、はんだ/接合母材界面の反応層が成長すると、外部の負荷応力によってクラックが発生しやすくなり、また、発生したクラックが伝播しやすくなる。これに対して、本発明に係る図5(b)の場合には、クラックの発生や伝播が抑制される。   That is, when Ni is added, the reaction layer at the solder / bonding base material interface becomes a compound containing Ni, and the growth of the reaction layer becomes slow. As shown in FIG. 5A, when the reaction layer at the solder / bonding base material interface grows, cracks are likely to occur due to external load stress, and the generated cracks are likely to propagate. On the other hand, in the case of FIG.5 (b) which concerns on this invention, generation | occurrence | production and propagation of a crack are suppressed.

次に、前記特許文献4に記載された発明と本発明との差異に関わり、上述した以外の点であって、「Sbの含有量の相違に基づく接合温度の相違の観点」から図6を参照して述べる。   Next, in relation to the difference between the invention described in Patent Document 4 and the present invention, it is a point other than those described above, and from FIG. 6 "from the viewpoint of the difference in bonding temperature based on the difference in Sb content". Please refer to.

本発明に係るはんだ合金は、特許文献4に記載されたはんだ合金に比べて、液相線温度と固相線温度との差が小さくなるため、製造プロセス管理が容易になることが1つの特徴である。液相線温度と固相線温度との差が大きい場合には、はんだ付け後、溶融はんだが固化するまでに時間がかかり、その間に振動や衝撃がはんだ付け部に加わると、はんだ付け部にひび割れやクラックが入る危険性があり、プロセス管理上、好ましくない。特に、電子機器のはんだ付けの場合、熱容量の異なるものが混在しているので、なおさらである。   One feature of the solder alloy according to the present invention is that manufacturing process management is facilitated because the difference between the liquidus temperature and the solidus temperature is smaller than that of the solder alloy described in Patent Document 4. It is. If the difference between the liquidus temperature and the solidus temperature is large, it takes time for the molten solder to solidify after soldering, and if vibration or impact is applied to the soldered part during that time, There is a risk of cracks and cracks, which is undesirable in terms of process management. This is especially true in the case of soldering electronic devices, since different heat capacities are mixed.

図6は、Sn−Sbの二元状態図であって、(b)図は(a)図の一部拡大図を示す。はんだ合金の接合温度は、図6に示すように、Sbの組成比率が11.0質量%で液相線温度が約270℃(固相線温度との差:約25℃)、Sbの組成比率が15.0質量%で液相線温度が約295℃(固相線温度との差:約50℃)であり、特許文献4のはんだ合金では高い接合温度(270℃以上)が要求される。これに対して、本発明に係るはんだ合金(Sb:3.0質量%〜10.0質量%)の液相線温度は約240℃〜265℃で、液相線温度と固相線温度との差は3℃〜21℃と小さくなる。なお、特許文献4のはんだ合金(Sb:11.0質量%〜15.0質量%)の固相線温度は、約245℃に対して、本発明に係るはんだ合金(Sb:3.0質量%〜10.0質量%)の固相線温度は約237℃〜245℃で、最大約8℃ほど低くなる。   FIG. 6 is a two-phase diagram of Sn-Sb, where FIG. 6 (b) shows a partially enlarged view of FIG. As shown in FIG. 6, the solder alloy has a Sb composition ratio of 11.0% by mass, a liquidus temperature of about 270 ° C. (difference from the solidus temperature: about 25 ° C.), and a Sb composition ratio of The liquidus temperature is about 295 ° C. at 15.0% by mass (difference from the solidus temperature: about 50 ° C.), and the solder alloy of Patent Document 4 requires a high bonding temperature (270 ° C. or higher). On the other hand, the liquidus temperature of the solder alloy according to the present invention (Sb: 3.0% by mass to 10.0% by mass) is about 240 ° C. to 265 ° C., and the difference between the liquidus temperature and the solidus temperature is 3 It becomes small with ℃ ~ 21 ℃. Note that the solidus temperature of the solder alloy of Patent Document 4 (Sb: 11.0% by mass to 15.0% by mass) is approximately 245 ° C., and the solder alloy according to the present invention (Sb: 3.0% by mass to 10.0% by mass). The solidus temperature is about 237 ° C. to 245 ° C., which is about 8 ° C. lower.

本発明に係るはんだ合金の濡れ性に関する実験結果の一例を示す図。The figure which shows an example of the experimental result regarding the wettability of the solder alloy which concerns on this invention. 本発明に係るはんだ合金の引張強さの歪み速度依存性に関する実験結果の一例を示す図。The figure which shows an example of the experimental result regarding the strain rate dependence of the tensile strength of the solder alloy which concerns on this invention. 本発明に係るはんだ合金の延性に関する実験結果の一例を示す図。The figure which shows an example of the experimental result regarding the ductility of the solder alloy which concerns on this invention. 本発明に係るはんだ合金の高温時効の変化に関する実験結果の一例を示す図。The figure which shows an example of the experimental result regarding the change of the high temperature aging of the solder alloy which concerns on this invention. 本発明に係るはんだ合金の界面反応層についての説明図。Explanatory drawing about the interface reaction layer of the solder alloy which concerns on this invention. Sn−Sbの二元状態図。Sn-Sb binary state diagram. 図1の濡れ性の実験に関わるはんだフィレットの形成図。FIG. 2 is a solder fillet formation diagram related to the wettability experiment of FIG. 1.

符号の説明Explanation of symbols

なし   None

Claims (2)

Sbを3.0〜10.0質量%、Niを0.01〜1.0質量%、Geを0.01〜1.0質量%含有し、残部はSn及び不可避的不純物からなることを特徴とするはんだ合金。   A solder alloy comprising 3.0 to 10.0% by mass of Sb, 0.01 to 1.0% by mass of Ni and 0.01 to 1.0% by mass of Ge, the balance being Sn and inevitable impurities. Sbを3.0〜10.0質量%、Cuを1.0質量%以下(範囲下限値の零を含まず)、Niを0.01〜1.0質量%、Geを0.01〜1.0質量%含有し、残部はSn及び不可避的不純物からなることを特徴とするはんだ合金。   Contains 3.0 to 10.0 mass% of Sb, 1.0 mass% or less of Cu (excluding the lower limit of zero), 0.01 to 1.0 mass% of Ni and 0.01 to 1.0 mass% of Ge, the balance being Sn and inevitable impurities A solder alloy characterized by comprising:
JP2007067754A 2007-03-16 2007-03-16 Solder alloy Pending JP2008221330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067754A JP2008221330A (en) 2007-03-16 2007-03-16 Solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067754A JP2008221330A (en) 2007-03-16 2007-03-16 Solder alloy

Publications (1)

Publication Number Publication Date
JP2008221330A true JP2008221330A (en) 2008-09-25

Family

ID=39840524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067754A Pending JP2008221330A (en) 2007-03-16 2007-03-16 Solder alloy

Country Status (1)

Country Link
JP (1) JP2008221330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005521A (en) * 2009-06-25 2011-01-13 Mitsui Mining & Smelting Co Ltd Sn-Sb SERIES SOLDER ALLOY
JP2011086768A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Power semiconductor device and manufacturing method therefor
WO2012077228A1 (en) * 2010-12-10 2012-06-14 三菱電機株式会社 Lead-free solder alloy, semiconductor device, and method for manufacturing semiconductor device
WO2015125855A1 (en) * 2014-02-24 2015-08-27 株式会社弘輝 Lead-free solder alloy, solder material, and joined structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461050A (en) * 1977-10-24 1979-05-17 Nippon Almit Kk Metal brazing alloy
JPS6186091A (en) * 1984-10-03 1986-05-01 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JPS6188996A (en) * 1984-10-05 1986-05-07 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JPS6192797A (en) * 1984-10-12 1986-05-10 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JPS62230493A (en) * 1986-03-31 1987-10-09 Taruchin Kk Solder alloy
JPH1158066A (en) * 1997-08-07 1999-03-02 Fuji Electric Co Ltd Solder alloy
JP2006320955A (en) * 2005-05-20 2006-11-30 Fuji Electric Device Technology Co Ltd Solder alloy, and semiconductor device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461050A (en) * 1977-10-24 1979-05-17 Nippon Almit Kk Metal brazing alloy
JPS6186091A (en) * 1984-10-03 1986-05-01 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JPS6188996A (en) * 1984-10-05 1986-05-07 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JPS6192797A (en) * 1984-10-12 1986-05-10 Furukawa Electric Co Ltd:The Sn-sb alloy solder
JPS62230493A (en) * 1986-03-31 1987-10-09 Taruchin Kk Solder alloy
JPH1158066A (en) * 1997-08-07 1999-03-02 Fuji Electric Co Ltd Solder alloy
JP2006320955A (en) * 2005-05-20 2006-11-30 Fuji Electric Device Technology Co Ltd Solder alloy, and semiconductor device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005521A (en) * 2009-06-25 2011-01-13 Mitsui Mining & Smelting Co Ltd Sn-Sb SERIES SOLDER ALLOY
JP2011086768A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Power semiconductor device and manufacturing method therefor
WO2012077228A1 (en) * 2010-12-10 2012-06-14 三菱電機株式会社 Lead-free solder alloy, semiconductor device, and method for manufacturing semiconductor device
JP5490258B2 (en) * 2010-12-10 2014-05-14 三菱電機株式会社 Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device
JPWO2012077228A1 (en) * 2010-12-10 2014-05-19 三菱電機株式会社 Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device
WO2015125855A1 (en) * 2014-02-24 2015-08-27 株式会社弘輝 Lead-free solder alloy, solder material, and joined structure
CN106061669A (en) * 2014-02-24 2016-10-26 株式会社弘辉 Lead-free solder alloy, solder material, and joined structure
JPWO2015125855A1 (en) * 2014-02-24 2017-03-30 株式会社弘輝 Lead-free solder alloy, solder material and joint structure
US9764430B2 (en) 2014-02-24 2017-09-19 Koki Company Limited Lead-free solder alloy, solder material and joined structure
EP3112080A4 (en) * 2014-02-24 2017-11-29 Koki Company Limited Lead-free solder alloy, solder material, and joined structure

Similar Documents

Publication Publication Date Title
JP5664664B2 (en) Bonding method, electronic device manufacturing method, and electronic component
JP4770733B2 (en) Solder and mounted products using it
KR101738841B1 (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
TW201615854A (en) Low temperature high reliability alloy for solder hierarchy
JPWO2014024715A1 (en) High temperature lead-free solder alloy
WO2019171978A1 (en) Solder alloy, solder paste, solder ball, resin-flux cored solder, and solder joint
JP5041102B2 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
JP2016040051A (en) Lead-free solder, lead-free solder ball, solder joint using lead-free solder, and semiconductor circuit having solder joint
JP2006035310A (en) Lead-free solder alloy
KR20190132566A (en) Method for soldering surface-mount component and surface-mount component
JP3353662B2 (en) Solder alloy
AU2012359292A1 (en) High-temperature lead-free solder alloy
KR102342394B1 (en) Solder Alloy, Solder Paste, Preform Solder, Solder Ball, Wire Solder, Resin Flux Cored Solder, Solder Joint, Electronic Circuit Board and Multilayer Electronic Circuit Board
JP5140644B2 (en) Soldering composition and electronic component
JP2008221330A (en) Solder alloy
JP4453473B2 (en) Lead-free solder alloys, solder materials and solder joints using them
JP5051633B2 (en) Solder alloy
JP6038187B2 (en) Solder alloy for die bonding
JP2004122223A (en) Electronic component and manufacturing method
JP3423387B2 (en) Solder alloy for electronic components
JP2910527B2 (en) High temperature solder
JP2008142721A (en) Lead-free solder alloy
KR100904652B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
JP7376842B1 (en) Solder alloys, solder balls, solder pastes and solder joints
JP2019076946A (en) Lead-free solder alloy and electronic circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Effective date: 20110930

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A02