JP3423387B2 - Solder alloy for electronic components - Google Patents

Solder alloy for electronic components

Info

Publication number
JP3423387B2
JP3423387B2 JP34980593A JP34980593A JP3423387B2 JP 3423387 B2 JP3423387 B2 JP 3423387B2 JP 34980593 A JP34980593 A JP 34980593A JP 34980593 A JP34980593 A JP 34980593A JP 3423387 B2 JP3423387 B2 JP 3423387B2
Authority
JP
Japan
Prior art keywords
weight
solder
alloy
elongation
fatigue resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34980593A
Other languages
Japanese (ja)
Other versions
JPH07195189A (en
Inventor
嘉明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP34980593A priority Critical patent/JP3423387B2/en
Publication of JPH07195189A publication Critical patent/JPH07195189A/en
Application granted granted Critical
Publication of JP3423387B2 publication Critical patent/JP3423387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱疲労特性に優れたは
んだ合金に関し、例えば、プリント回路基板に電子回路
部品をフロ−法によりはんだ付けする場合に使用される
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder alloy having excellent thermal fatigue resistance, and is used, for example, when an electronic circuit part is soldered to a printed circuit board by a flow method.

【0002】[0002]

【従来の技術】プリント回路基板に半導体素子等の電子
回路部品を実装する場合、リフロ−法またはフロ−法が
使用されている。リフロ−法においては、クリ−ムはん
だ(低融点はんだ粉末とフラックスと溶剤との混練物)
を使用し、このクリ−ムはんだの粘着力でチップタイプ
回路部品を所定の位置に仮固定し、次いで加熱炉に導
き、はんだを溶融してはんだ付けを行っている。
2. Description of the Related Art A reflow method or a flow method is used for mounting electronic circuit parts such as semiconductor elements on a printed circuit board. In the reflow method, cream solder (kneaded product of low melting point solder powder, flux and solvent)
The chip-type circuit component is temporarily fixed at a predetermined position by the adhesive force of the cream solder, and then introduced into a heating furnace to melt the solder for soldering.

【0003】また、フロ−法においては、プリント回路
基板のスルホ−ルにディスクリ−ト部品のリ−ドを挿入
し、この挿入箇所に溶融はんだを浸漬法や噴流法等によ
り付着させてはんだ付けを行っている。
Further, in the flow method, a lead of a discreet component is inserted into a spool of a printed circuit board, and molten solder is attached to the insertion portion by a dipping method, a jet method or the like to solder. I am adding.

【0004】上記のようにして実装された電子回路部品
においては、電子回路部品自体のジュ−ル熱や周囲条件
によりヒ−トサイクルを受け、接合部のはんだが膨張・
収縮し、熱応力が繰り返して発生するので、はんだ接合
部には、かかる繰返し応力に対する耐久性、即ち、耐熱
疲労性が要求される。
In the electronic circuit component mounted as described above, a heat cycle is caused by the heat of the electronic circuit component itself and ambient conditions, and the solder at the joint expands.
Since it contracts and thermal stress is repeatedly generated, the solder joint is required to have durability against such repeated stress, that is, thermal fatigue resistance.

【0005】従来、上記リフロ−法で使用する低融点は
んだの耐熱疲労特性を向上させるために、例えば、Sn
−Bi−Pb系合金に少量のCuを添加すること(S
n:20〜47重量%、Bi:2〜12重量%、Cu:
0.03〜0.5重量%、残部Pb)が提案されている
(特公平1−24599号公報)。
Conventionally, in order to improve the thermal fatigue resistance of the low melting point solder used in the above reflow method, for example, Sn is used.
-Adding a small amount of Cu to the Bi-Pb alloy (S
n: 20 to 47% by weight, Bi: 2 to 12% by weight, Cu:
0.03-0.5% by weight and the balance Pb) have been proposed (Japanese Patent Publication No. 1-24599).

【0006】[0006]

【発明が解決しようとする課題】上記フロ−法において
は、通常Sn−Pb系共晶はんだが使用されており、こ
のはんだは、上記低融点はんだよりも高融点であり、機
械的特性に優り、耐熱疲労特性にも秀れている。しかし
ながら、近来における電子機器の性能アップに伴い、こ
のSn−Pb系はんだにおいても、はんだ接合部の耐熱
疲労特性の一層の向上が要求され、例えば、Pbが10
〜90重量%、Cuが0.5〜3.0重量%、Agが
0.5〜4.0重量%、残部がSnの組成のはんだ合金
が提案されている(特開昭51−54056号公報)。
しかし、Agを添加成分としているため、高コストであ
る。
In the above flow method, Sn-Pb type eutectic solder is usually used, and this solder has a higher melting point than the low melting point solder and is excellent in mechanical properties. It also excels in heat fatigue resistance. However, with the recent improvement in the performance of electronic devices, even in this Sn-Pb-based solder, further improvement in heat resistance fatigue resistance of the solder joint is required.
.About.90% by weight, Cu: 0.5 to 3.0% by weight, Ag: 0.5 to 4.0% by weight, and a balance of Sn: solder alloy is proposed (JP-A-51-54056). Gazette).
However, since Ag is an additive component, the cost is high.

【0007】はんだ接合部の耐熱疲労特性の向上には、
はんだの引張り強度、伸び、クリ−プ等の機械的特性、
界面接合強度の向上が有効である。しかしながら、はん
だの適切な固相線や液相線(差が小で、液体から固体へ
の凝固、並びに固体から液体への溶解が瞬時に生じるこ
と)、溶融はんだの流動性若しくは濡れ性等もはんだ付
け作業性の面から重要である。
To improve the thermal fatigue resistance of solder joints,
Mechanical properties such as tensile strength, elongation and creep of solder,
It is effective to improve the interfacial bonding strength. However, suitable solidus and liquidus of solder (small difference, solidification from liquid to solid and dissolution from solid to liquid occur instantly), fluidity or wettability of molten solder, etc. It is important in terms of soldering workability.

【0008】本発明の目的は、フロ−法により電子回路
部品をプリント回路基板にはんだ付けする場合、Sn−
Pb系はんだにBi、Cu、Sb等の低廉な金属を特定
の範囲で添加することにより、はんだ付けの作業性を保
証しつつ耐熱疲労特性を向上できるはんだ合金を提供す
ることにある。
An object of the present invention is to use Sn-- when soldering electronic circuit parts to a printed circuit board by the flow method.
An object of the present invention is to provide a solder alloy capable of improving the thermal fatigue resistance while guaranteeing the workability of soldering by adding a low-priced metal such as Bi, Cu, Sb to the Pb-based solder in a specific range.

【0009】[0009]

【課題を解決するための手段】本発明に係る電子部品用
はんだ合金は、Snが50〜70重量%、Biが0.1
〜2.0重量%、Cuが0.03〜0.3重量%(0.
03重量%を除く)、Sbが0.1〜2.0重量%、残
部がPbからなることを特徴とする構成であり、この組
成100重量部にPを0.002〜0.5重量部添加す
ることもできる。
The solder alloy for electronic parts according to the present invention has a Sn content of 50 to 70 wt% and a Bi content of 0.1.
.About.2.0 wt%, Cu 0.03 to 0.3 wt% ( 0.
(Excluding 03% by weight) , Sb is 0.1 to 2.0% by weight, and the balance is Pb. 0.002 to 0.5 parts by weight of P is added to 100 parts by weight of this composition. It can also be added.

【0010】本発明の合金においては、添加元素(B
i,Cu,Sb)以外の成分を不純物として含有するの
が通常であり、JIS−Z−3282−表3に規定され
ているA級の化学成分に従い、Znを0.003重量%
以下、Feを0.03重量%以下、Alを0.005重
量%以下、Asを0.03重量%以下、Cdを0.00
5重量%以下の範囲で含有することが許容される。
In the alloy of the present invention, the additive element (B
i, Cu, Sb) is usually contained as an impurity, and 0.003% by weight of Zn is added in accordance with the Class A chemical components defined in JIS-Z-3282-Table 3.
Hereinafter, Fe is 0.03 wt% or less, Al is 0.005 wt% or less, As is 0.03 wt% or less, and Cd is 0.00.
It is allowed to be contained in the range of 5% by weight or less.

【0011】本発明のはんだ合金においては、既存のフ
ロ−設備をそのまま使用して電子回路部品をプリント回
路基板に実装すべく、Sn−Pb系をベ−スとしてお
り、Snを50〜70重量%としている理由は、50重
量%以下では、はんだ付けの作業性がSn−Pb共晶合
金に較べて相当に悪化し、液相線が高くなってプリント
回路基板や電子回路部品の熱衝撃が苛酷となり、70重
量%以上でも、同じく熱衝撃が苛酷となり、しかも高コ
ストとなるからである。
In the solder alloy of the present invention, the Sn-Pb system is used as a base for mounting electronic circuit components on a printed circuit board by using the existing flow equipment as it is, and the Sn content is 50 to 70 weight. %, The workability of soldering is considerably deteriorated as compared with the Sn-Pb eutectic alloy, and the liquidus line becomes high, so that the thermal shock of the printed circuit board or the electronic circuit parts is caused when the content is 50% by weight or less. This is because the heat shock becomes severe and the thermal shock becomes severe even at 70% by weight or more, and the cost becomes high.

【0012】上記Bi,Cu,Sbの添加は、はんだの
機械的強度を増強するためであり、Biの添加量を0.
1重量%以上に、Cuの添加量を0.03重量%に、
Sbの添加量を0.1重量%以上とした理由は、これ以
下では機械的強度を満足に増強し難いからである。Cu
添加量0.03重量%はJIS−Z−3282A級規定
の不純物としてのCu含有量の上限であり排除した。
iの添加量を2.0重量%以下とした理由は、これ以上
添加すると、はんだ組織の粗大化が招来されるばかり
か、はんだ自体の粘性が低下し、伸びが減少し、脆弱化
が避けられないからである。Cuの添加量を0.3重量
%以下とした理由は、これ以上添加すると液相線温度が
高くなってプリント回路基板や電子回路部品の熱衝撃が
苛酷となり、はんだの流動性が低下するからである。S
bの添加量を2.0重量%以下にした理由は、これ以上
添加すると、はんだが硬い脆弱な組織となり、伸びが低
下し、また界面接合強度が低下し、更に流動性が悪くな
り、はんだ付け作業性が低下するからである。
The addition of Bi, Cu, and Sb is to enhance the mechanical strength of the solder.
More than 1 wt%, the addition amount of Cu exceeds 0.03% by weight,
The reason why the amount of Sb added is 0.1% by weight or more is that it is difficult to satisfactorily increase the mechanical strength if the amount is less than 0.1%. Cu
Addition amount 0.03% by weight is specified in JIS-Z-3282A class
The upper limit of the Cu content as an impurity was excluded. B
The reason why the amount of i added is 2.0% by weight or less is that addition of more than this not only leads to coarsening of the solder structure, but also reduces the viscosity of the solder itself, reduces elongation, and avoids brittleness. Because I can't. The reason why the amount of Cu added is 0.3% by weight or less is that the liquidus temperature rises and the thermal shock of the printed circuit board and electronic circuit components becomes severe, and the fluidity of the solder decreases, if Cu is added more than this amount. Is. S
The reason why the addition amount of b is 2.0% by weight or less is that if it is added more than this, the solder becomes a hard and brittle structure, the elongation is lowered, the interfacial bonding strength is lowered, and the fluidity is further deteriorated. This is because the attaching workability is reduced.

【0013】而して、上記特定の量のBi,Cu,Sb
の添加は、これらの相乗効果によつてはんだ自体の機械
的強度、伸び性、クリ−プ等の機械的特性を高め、この
場合、固相線と液相線とをよく近接させ半溶融状態を極
力排除してはんだ組織の粗大化を防止し、その機械的特
性の向上を効果的に促進し、更に、はんだ付け界面に堅
牢な組織の合金層を形成させて接合強度を高めて耐熱疲
労特性を向上させているのである。
Thus, the specified amount of Bi, Cu, Sb
The addition of Al enhances mechanical properties such as mechanical strength, extensibility, and creep of the solder itself by these synergistic effects. In this case, the solidus line and the liquidus line are well brought close to each other and the semi-molten state is obtained. To prevent coarsening of the solder structure, effectively promote the improvement of its mechanical properties, and further form an alloy layer with a robust structure at the soldering interface to increase the bonding strength and heat fatigue resistance. The characteristics are improved.

【0014】上記請求項2記載の発明において、Pを添
加する理由は、溶融下での酸化を抑制し、その酸化物の
巻き込みによる接合部の機械的強度の低下を防止すると
共にCuやSbの添加による濡れ性の低下を補償するた
めであり、Pの添加量を0.002〜0.5重量部とし
た理由は、0.002重量部以下では当該効果を満足に
達成し難く、0.5重量部以上でははんだの脆弱化か招
来されるからである。本発明に係るはんだ合金において
は、フロ−法でのはんだ浴の他、棒状や線状、やに入り
はんだ、粉末状の形態でも使用可能である。
In the invention described in claim 2, the reason why P is added is that oxidation under melting is suppressed, deterioration of mechanical strength of the joint due to inclusion of the oxide is prevented, and Cu and Sb are added. This is to compensate for the decrease in wettability due to the addition, and the reason why the amount of P added is 0.002 to 0.5 parts by weight is that it is difficult to achieve the effect satisfactorily with 0.002 parts by weight or less. This is because if the amount is 5 parts by weight or more, the solder becomes brittle. The solder alloy according to the present invention can be used not only in the solder bath by the flow method but also in the form of rod-shaped or linear, slightly-cored solder or powder.

【0015】[0015]

【作用】液相線温度をほぼ185℃〜200℃程度に抑
えることができ、プリント回路基板や電子回路部品の熱
的破損の畏れなくフロ−法によるはんだ付けを安全に行
うことができる。また、液相線と固相線との温度差が小
さく、フロ−はんだが固化するまでの半溶融状態の期間
を充分に短くでき、接合部のはんだの組織粗大化をよく
防止でき、均一な細かい組織にできる。更に、フロ−は
んだの流動性若しくは濡れ性に優れている。
The liquidus temperature can be suppressed to about 185 ° C. to 200 ° C., and the soldering by the flow method can be performed safely without fear of thermal damage to the printed circuit board or electronic circuit parts. Further, the temperature difference between the liquidus line and the solidus line is small, the period of the semi-molten state until the flow solder is solidified can be sufficiently shortened, the coarsening of the structure of the solder at the joint can be well prevented, and the uniform Can be a fine organization. Furthermore, the flowability or wettability of the flow solder is excellent.

【0016】従って、はんだ付け欠陥を排除しつつ良好
な作業性でフロ−法によるはんだ付けを行うことができ
る。
Therefore, it is possible to perform soldering by the flow method with good workability while eliminating soldering defects.

【0017】本発明のはんだ合金においては、はんだ自
体の機械的強度、伸び等が優れており、また、はんだ接
合界面の接着強度を大にできるから、繰返し応力に対す
るはんだ接合部の耐久性、即ち、耐熱疲労特性に優れて
いる。従って、本発明によれば、良好な作業性を保証し
つつ優れた耐熱疲労特性でフロ−法によるはんだ付けを
行うことができる。
In the solder alloy of the present invention, the mechanical strength and elongation of the solder itself are excellent, and since the adhesive strength at the solder joint interface can be increased, the durability of the solder joint portion against repeated stress, that is, Excellent in heat fatigue resistance. Therefore, according to the present invention, it is possible to perform soldering by the flow method with excellent thermal fatigue resistance while ensuring good workability.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比しつつ
説明する。以下の実施例並びに比較例における引張り強
度並びに伸びは、各合金組成についてJIS−Z−22
01−4号の規定に準じて試験片を20個調整し、ロ−
ドセル方式万能試験機を用い、引張り速度5mm/mi
n、温度20℃にて測定した測定値の平均値である。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. The tensile strength and elongation in the following examples and comparative examples are JIS-Z-22 for each alloy composition.
Prepare 20 test pieces according to the regulations of No. 01-4, and
Tensile speed of 5 mm / mi using a docel type universal testing machine
n is an average value of measurement values measured at a temperature of 20 ° C.

【0019】また、ヒ−トサイクル試験の不良発生率
は、紙フエノ−ルプリント回路基板にディスクリ−ト部
品を噴流浴槽を使用し、フロ−法によりはんだ付けした
試料20個につき、125℃で1時間加熱、−55℃で
1時間冷却を1サイクルとして200サイクル、ヒ−ト
サイクル試験を行い、はんだ接合部に皺、クラック、剥
離等の不良の発生の有無を観察して求めた。
Further, the defect occurrence rate in the heat cycle test is 125 ° C. for 20 samples soldered by a flow method using a jet bath with discrete components on a paper phenol printed circuit board. The heat cycle test was carried out for 200 cycles with heating for 1 hour and cooling at -55 ° C for 1 hour as one cycle, and the presence or absence of defects such as wrinkles, cracks, and peeling at the solder joints was observed and determined.

【0020】なお、各実施例並びに比較例における添加
元素以外の不純物は、前記のJIS−Z−3282−表
3に規定された通りである。
Impurities other than the additive element in each of the Examples and Comparative Examples are as specified in JIS-Z-3282-Table 3 above.

【0021】実施例1 Sn:63重量%、Bi:0.6重量%、Cu:0.0
9重量%、Sb:0.6重量%、残部Pbの合金組成で
あり、引張り強度は6.767kg/mm 、伸びは34.2
3%であり、ヒ−トサイクル試験の不良発生率は0%で
あつた。液相線温度は、ほぼ190℃である。
Example 1 Sn: 63% by weight, Bi: 0.6% by weight, Cu: 0.0
The alloy composition is 9% by weight, Sb: 0.6% by weight, and the balance is Pb. The tensile strength is 6.767 kg / mm 2 and the elongation is 34.2.
The rate of occurrence of defects in the heat cycle test was 0%. The liquidus temperature is approximately 190 ° C.

【0022】比較例1 Sn:63重量%、残部Pbの共晶に近い合金組成であ
り、引張り強度は4.750kg/mm 、伸びは32.32
%であり、ヒ−トサイクル試験の不良発生率は40%で
あつた。液相線温度は、ほぼ185℃である。実施例1
のはんだ付け作業性は比較例1とほぼ同程度であった。
従って、実施例1によれば、はんだ付け作業性を損じる
ことなく、従来のSn−Pb系共晶はんだに対し、耐熱
疲労特性を充分に向上できることが明らかである。
Comparative Example 1 Sn: 63% by weight, the balance of Pb is an alloy composition close to the eutectic, tensile strength is 4.750 kg / mm, elongation is 32.32.
%, And the failure occurrence rate in the heat cycle test was 40%. The liquidus temperature is approximately 185 ° C. Example 1
The soldering workability was about the same as in Comparative Example 1.
Therefore, according to Example 1, it is clear that the thermal fatigue resistance can be sufficiently improved as compared with the conventional Sn-Pb-based eutectic solder without impairing the soldering workability.

【0023】比較例2 実施例1に対し、Bi並びにCuの添加を省略した以
外、実施例1と同一の組成とした(Sn:63重量%、
Sb:0.6重量%、残部Pb)。引張り強度は5.0
31kg/mm 、伸びは30.98%であり、ヒ−トサイク
ル試験の不良発生率は50%であつた。
Comparative Example 2 The same composition as in Example 1 except that the addition of Bi and Cu was omitted (Sn: 63% by weight,
Sb: 0.6% by weight, balance Pb). Tensile strength is 5.0
It was 31 kg / mm 2, the elongation was 30.98%, and the failure rate in the heat cycle test was 50%.

【0024】比較例3 実施例1に対し、Biの添加を省略した以外、実施例1
と同一の組成とした(Sn:63重量%、Cu:0.0
9重量%、Sb:0.6重量%、残部Pb)。引張り強
度は5.995kg/mm 、伸びは30.89%であり、ヒ
−トサイクル試験の不良発生率は40%であつた。
Comparative Example 3 Example 1 is the same as Example 1 except that the addition of Bi is omitted.
(Sn: 63% by weight, Cu: 0.0
9% by weight, Sb: 0.6% by weight, balance Pb). The tensile strength was 5.995 kg / mm 2, the elongation was 30.89%, and the failure rate in the heat cycle test was 40%.

【0025】比較例4 実施例1に対し、Cuの添加を省略した以外、実施例1
と同一の組成とした(Sn:63重量%、Bi:0.6
重量%、Sb:0.6重量%、残部Pb)。引張り強度
は6.185kg/mm 、伸びは32.71%であり、ヒ−
トサイクル試験の不良発生率は10%であつた。
Comparative Example 4 Example 1 is the same as Example 1 except that the addition of Cu is omitted.
(Sn: 63% by weight, Bi: 0.6
% By weight, Sb: 0.6% by weight, balance Pb). The tensile strength is 6.185 kg / mm, the elongation is 32.71%,
The failure occurrence rate in the cycle test was 10%.

【0026】比較例5 実施例1に対し、Sbの添加を省略した以外、実施例1
と同一の組成とした(Sn:63重量%、Bi:0.6
重量%、Cu:0.09重量%、残部Pb)。引張り強
度は6.274kg/mm 、伸びは31.69%であり、ヒ
−トサイクル試験の不良発生率は15%であつた。比較
例2〜5と実施例1との対比から、本発明において、B
i、Cu並びにSbの相乗的作用により、耐熱疲労特性
の向上が達成されることが明きらかである。
Comparative Example 5 Example 1 is the same as Example 1 except that the addition of Sb is omitted.
(Sn: 63% by weight, Bi: 0.6
% By weight, Cu: 0.09% by weight, balance Pb). The tensile strength was 6.274 kg / mm 2, the elongation was 31.69%, and the failure rate in the heat cycle test was 15%. From the comparison between Comparative Examples 2 to 5 and Example 1, in the present invention, B
It is clear that the thermal fatigue resistance is improved by the synergistic action of i, Cu and Sb.

【0027】実施例2〜4 実施例1の組成100重量部にPをそれぞれ0.01重
量部、0.1重量部、0.5重量部を添加した以外、実
施例1と同じ組成とした。引張り強度は6.5〜6.8
kg/mm 、伸びは33〜34.5%であり、ヒ−トサイク
ル試験の不良発生率は0であつて、耐熱疲労特性は実質
的に実施例1と変わらなかったが、はんだ浴槽での酸化
物の発生を著しく軽度にとどめることができた。従っ
て、はんだ浴槽の管理上、有利である。
Examples 2 to 4 The same composition as in Example 1 except that 0.01 parts by weight, 0.1 parts by weight, and 0.5 parts by weight of P were added to 100 parts by weight of the composition of Example 1. . Tensile strength is 6.5-6.8
kg / mm, the elongation was 33 to 34.5%, the failure rate in the heat cycle test was 0, and the thermal fatigue resistance was substantially the same as in Example 1, but in the solder bath. The generation of oxides could be suppressed to a very low level. Therefore, it is advantageous in managing the solder bath.

【0028】実施例5 Sn:63重量%、Bi:0.1重量%、Cu:0.0
3重量%、Sb:0.1重量%、残部Pbの合金組成で
あり、引張り強度は6.20kg/mm 、伸びは32.75
%であり、ヒ−トサイクル試験の不良発生率は0%であ
つた。液相線温度は、ほぼ185℃である。
Example 5 Sn: 63% by weight, Bi: 0.1% by weight, Cu: 0.0
The alloy composition is 3% by weight, Sb: 0.1% by weight, and the balance is Pb. The tensile strength is 6.20 kg / mm 2 and the elongation is 32.75.
%, And the failure occurrence rate in the heat cycle test was 0%. The liquidus temperature is approximately 185 ° C.

【0029】実施例6 Sn:63重量%、Bi:2.0重量%、Cu:0.3
重量%、Sb:2.0重量%、残部Pbの合金組成であ
り、引張り強度は6.53kg/mm 、伸びは33.75%
であり、ヒ−トサイクル試験の不良発生率は0%であつ
た。液相線温度は、ほぼ200℃である。
Example 6 Sn: 63% by weight, Bi: 2.0% by weight, Cu: 0.3
% By weight, Sb: 2.0% by weight, the balance is Pb, and the alloy composition is 6.53 kg / mm in tensile strength and 33.75% in elongation.
The failure rate in the heat cycle test was 0%. The liquidus temperature is approximately 200 ° C.

【0030】実施例5並びに6の試験結果から、、Bi
が0.1〜2.0重量%、Cuが0.03〜0.3重量
%、Sbが0.1〜2.0重量%の範囲で耐熱疲労特性
の向上に寄与することが推定できる。
From the test results of Examples 5 and 6, it was confirmed that Bi
It can be presumed that in the range of 0.1 to 2.0% by weight, Cu in the range of 0.03 to 0.3% by weight, and Sb in the range of 0.1 to 2.0% by weight, they contribute to the improvement of the thermal fatigue resistance.

【0031】実施例7 実施例1に対し、Snを70重量%とした以外、実施例
1と同じ組成とした。機械的特性は、実施例1よりもや
や優り、ヒ−トサイクル試験の不良発生率は0%であつ
た。しかし、Snの添加量が70重量%を超えると、液
相線温度が高くなり、プリント回路基板や電子回路部品
の熱的損傷が問題となる。
Example 7 The same composition as in Example 1 was used except that Sn was 70% by weight. The mechanical properties were slightly better than those of Example 1, and the failure rate in the heat cycle test was 0%. However, if the addition amount of Sn exceeds 70% by weight, the liquidus temperature becomes high, which causes a problem of thermal damage to the printed circuit board and electronic circuit components.

【0032】実施例8 実施例1に対し、Snを50重量%とした以外、実施例
1と同じ組成とした。機械的特性は、実施例1よりもや
や劣ったが、ヒ−トサイクル試験の不良発生率は0%で
あつた。Snの添加量が50重量%以下になると、液相
線温度が高くなり、プリント回路基板や電子回路部品の
熱的損傷が問題となる。
Example 8 The same composition as in Example 1 was used except that Sn was 50% by weight. The mechanical properties were slightly inferior to those of Example 1, but the failure rate in the heat cycle test was 0%. When the addition amount of Sn is 50% by weight or less, the liquidus temperature becomes high, which causes a problem of thermal damage to the printed circuit board and electronic circuit parts.

【0033】実施例1と実施例7並びに8の試験結果か
ら、Sn50〜70重量%の範囲において、上記耐熱疲
労特性の向上が有効に達成されることが推定できる。
From the test results of Example 1 and Examples 7 and 8, it can be estimated that the improvement of the above-mentioned thermal fatigue resistance is effectively achieved in the range of 50 to 70 wt% Sn.

【0034】[0034]

【発明の効果】本発明によれば、液相線温度や固相線温
度、流動性若しくは濡れ性を従来のSn−Pb系はんだ
に近似させつつ、引張り強度や伸びや界面接合強度を向
上させ得、既存のフロ−はんだ付け設備を使用して耐熱
疲労特性に優れたはんだ付けを行うことができ、電子回
路部品実装基板の導通信頼性、安定性を長期にわたり保
証できる。
According to the present invention, the liquidus temperature, solidus temperature, fluidity or wettability is approximated to that of the conventional Sn-Pb type solder, while the tensile strength, elongation and interfacial bonding strength are improved. As a result, the existing flow soldering equipment can be used to perform soldering excellent in thermal fatigue resistance, and the continuity reliability and stability of the electronic circuit component mounting board can be guaranteed for a long time.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23K 35/26 C22C 13/00 - 13/02 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B23K 35/26 C22C 13/00-13/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Snが50〜70重量%、Biが0.1〜
2.0重量%、Cuが0.03〜0.3重量%(ただし
0.03重量%を除く)、Sbが0.1〜2.0重量
%、残部がPbからなることを特徴とする電子部品用
んだ合金。
1. Sn is 50 to 70% by weight and Bi is 0.1 to 0.1%.
2.0 wt%, Cu 0.03-0.3 wt% ( however
0.03 excluding wt%), Sb 0.1 to 2.0 wt%, the electronic component'm <br/> alloy, characterized in that the balance of Pb.
【請求項2】請求項1記載の組成100重量部にPが
0.002〜0.5重量部添加されていることを特徴と
する電子部品用はんだ合金。
2. A solder alloy for electronic parts, wherein 0.002 to 0.5 part by weight of P is added to 100 parts by weight of the composition according to claim 1.
JP34980593A 1993-12-30 1993-12-30 Solder alloy for electronic components Expired - Fee Related JP3423387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34980593A JP3423387B2 (en) 1993-12-30 1993-12-30 Solder alloy for electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34980593A JP3423387B2 (en) 1993-12-30 1993-12-30 Solder alloy for electronic components

Publications (2)

Publication Number Publication Date
JPH07195189A JPH07195189A (en) 1995-08-01
JP3423387B2 true JP3423387B2 (en) 2003-07-07

Family

ID=18406239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34980593A Expired - Fee Related JP3423387B2 (en) 1993-12-30 1993-12-30 Solder alloy for electronic components

Country Status (1)

Country Link
JP (1) JP3423387B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783981B2 (en) * 1994-11-01 1998-08-06 石川金属株式会社 Solder alloy
JP2002153990A (en) 2000-11-21 2002-05-28 Senju Metal Ind Co Ltd Alloy for solder ball
KR100366131B1 (en) * 2001-11-21 2002-12-31 이재옥 Lead-free solder with lower melting point and lower dross
JP3682654B2 (en) * 2002-09-25 2005-08-10 千住金属工業株式会社 Solder alloy for soldering to electroless Ni plated parts
CA3055263A1 (en) * 2017-04-10 2018-10-18 Metallo Belgium Improved process for the production of crude solder

Also Published As

Publication number Publication date
JPH07195189A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
US6488888B2 (en) Lead-free solder alloys
JP3622788B2 (en) Lead-free solder alloy
JP3152945B2 (en) Lead-free solder alloy
JP3220635B2 (en) Solder alloy and cream solder
JP3199674B2 (en) Solder alloy
US8216395B2 (en) Lead-free solder alloy
JP5115915B2 (en) Lead-free solder, processed solder, solder paste and electronic component soldering board
JP3684811B2 (en) Solder and soldered articles
JP2002018589A (en) Lead-free solder alloy
JP4401671B2 (en) High temperature lead-free solder alloys and electronic components
JP3874031B2 (en) Lead-free solder alloy
EP0363740A1 (en) Low temperature melting solder alloys
WO2020067307A1 (en) Lead-free solder alloy
JP3673021B2 (en) Lead-free solder for electronic component mounting
JP5140644B2 (en) Soldering composition and electronic component
JP3423387B2 (en) Solder alloy for electronic components
EP1557235A1 (en) Lead-free solder and soldered article
JP3719627B2 (en) Solder alloy
JP2008221330A (en) Solder alloy
JP3107483B2 (en) No to low lead content solder alloy
JP3597607B2 (en) Solder alloy and paste solder
JP2910527B2 (en) High temperature solder
JP3254901B2 (en) Solder alloy
JPH10109187A (en) Solder alloy for fitting electronic parts
JP3254857B2 (en) Solder alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees