JP3684811B2 - Solder and soldered articles - Google Patents

Solder and soldered articles Download PDF

Info

Publication number
JP3684811B2
JP3684811B2 JP01614298A JP1614298A JP3684811B2 JP 3684811 B2 JP3684811 B2 JP 3684811B2 JP 01614298 A JP01614298 A JP 01614298A JP 1614298 A JP1614298 A JP 1614298A JP 3684811 B2 JP3684811 B2 JP 3684811B2
Authority
JP
Japan
Prior art keywords
weight
solder
amount
examples
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01614298A
Other languages
Japanese (ja)
Other versions
JPH11216591A (en
Inventor
英清 高岡
清隆 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP01614298A priority Critical patent/JP3684811B2/en
Publication of JPH11216591A publication Critical patent/JPH11216591A/en
Application granted granted Critical
Publication of JP3684811B2 publication Critical patent/JP3684811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、半田ならびに半田付け物品に関するものである。
【0002】
【従来の技術】
従来より、電子機器や電子部品の電気的・機械的な接続を得るために半田が用いられている。この半田は、SnとPbを主成分としたもの(以下Sn−Pb系半田とする。)が一般的に用いられてきたが、地球環境を考慮してPbを含まないSnを主成分とし残部がAg,Bi,Cu,In,Sbなどからなる半田(以下、Pbフリー半田とする。)が用いられるようになってきている。
【0003】
近年においてはこのPbフリー半田を用いることによって、半田付け性が良好な電気的接合部を有する半田付け物品が製造されてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、Snが主成分である半田、特にPbフリー半田を用いた半田付け物品では、半田付け時に電極喰われが起こったり、高温放置や熱エージングを行った場合に、Snの拡散による電気的、機械的性質の劣化が起こるといった問題点があった。
【0005】
本発明の目的は、半田付け時または半田付け後熱エージングを行った時に、電極喰われや特性劣化が生じにくいPbフリー半田ならびに半田付け物品を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、上記の課題を解決するためにPbフリー半田ならびに半田付け物品を完成するに至った。本願第1の発明のPbフリー半田は、不可避不純物を除き、Co0.1〜1重量%,Fe0.1〜0.2重量%,Mn0.1〜0.2重量%およびCr0.1〜0.2重量%から選ばれる少なくとも1種類と、Cu0.5〜2重量%と、残部がSnと、からなることを特徴とするを特徴とする。
【0007】
また、本願第2の発明のPbフリー半田においては、不可避不純物を除き、Mn0.1〜0.2重量%およびCr0.1〜0.2重量%から選ばれる少なくとも1種類と、Ag0.5〜9重量%残部がSnと、からなることを特徴とするを特徴とする。また、本願第3の発明のPbフリー半田においては、不可避不純物を除き、Mn0.01〜0.2重量%およびCr0.01〜0.2重量%から選ばれる少なくとも1種類と、Sb0.5〜5重量%と、残部がSnと、からなることを特徴とする。
【0008】
また、本発明の半田付け物品は、溶融したSnへ拡散しやすい遷移金属導体を有する部品を半田により接合してなる半田付け物品であって、半田は、上述の第1または第2の発明のPbフリー半田を用いたことを特徴とする。
【0009】
また、本発明の半田付け物品においては、遷移金属導体は、Cu,Ag,Ni,Au,Pd,Pt,Znの単体もしくはそれらの合金のうち少なくとも1種類を用いることを特徴とする。
【0010】
以下本発明の実施の形態について説明する。本願第1の発明のPbフリー半田は、Co,Fe,MnおよびCrから選ばれる少なくとも1種類と、Cuと、Snと(ただしPdを含まず。)、を含有する組成である。また、本願第2の発明のPbフリー半田は、MnおよびCrから選ばれる少なくとも1種類と、AgおよびSbから選ばれる少なくとも1種類と、Snと(ただしPdを含まず。)、を含有する組成である。そして、本発明の半田付け物品は、溶融したSnへ拡散しやすい遷移金属導体を有する部品を半田により接合してなる半田付け物品であって、半田は、上述した第1または第2の発明のPbフリー半田を用いる。このような組成により、半田付け性、接合強度が良好であるとともに、十分な耐電極喰われ性を有する半田付け物品を提供することが可能となる。
【0011】
すなわち、微少量添加されたCo,Fe,Mn,Crが導体と半田の接合界面に偏析層を形成し、導体の溶融半田中への拡散を防ぎ、電極喰われを防止するためである。
【0012】
上記Coの添加量を全体100重量%のうち0.01〜1重量%としたのは、Coの添加量が0.01重量%未満の場合には耐電極喰われ性が劣化するからである。一方、Coの添加量が1重量%を超える場合には液相線温度が上昇し、溶融特性を阻害するからである。なお、より好ましいCo添加量は0.01〜0.5重量%の範囲であり、特にCo添加量が0.5重量%のときが好ましい。
【0013】
上記Feの添加量を全体100重量%のうち0.01〜0.2重量%としたのは、Feの添加量が0.01重量%未満の場合には耐電極喰われ性が劣化するからである。一方、Feの添加量が0.2重量%を超える場合には液相線温度が上昇し、溶融特性を阻害するからである。なお、より好ましいFe添加量は0.01〜0.1重量%の範囲であり、特にFe添加量が0.1重量%のときが望ましい。
【0014】
上記Mnの添加量を全体100重量%のうち0.01〜0.2重量%としたのは、Mnの添加量が0.01重量%未満の場合には耐電極喰われ性が劣化するからである。一方、Mnの添加量が0.2重量%を超える場合には液相線温度が上昇し、溶融特性を阻害するからである。なお、より好ましいMn添加量は0.01〜0.1重量%の範囲であり、特にMn添加量が0.1重量%のときが望ましい。
【0015】
上記Crの添加量を全体重量100重量%のうち0.01〜0.2重量%としたのは、Crの添加量が0.01重量%未満の場合には耐電極喰われ性が劣化するからである。一方、Crの添加量が0.2重量%を超える場合には液相線温度が上昇し、溶融特性を阻害するからである。なお、より好ましいCr添加量は0.01〜0.1重量%の範囲であり、特にCr添加量が0.1重量%のときが望ましい。
【0017】
上記Agの添加量を全体重量100重量%のうち0.5〜9としたのは、Agの添加量が0.5重量%未満の場合には強度改善効果が小さいからである。一方、Agの添加量が9重量%を超える場合には、過剰のAg3Sn金属間化合物が析出することによる接合強度低下と、半田液相線温度が上昇することによる溶融特性が阻害されるからである。
【0018】
上記Cuの添加量を全体重量100重量%のうち0.5〜2重量%としたのは、Cuの添加量が0.5重量%未満の場合には、強度改善効果が小さいからである。一方、Cuの添加量が2重量%を超える場合には、過剰のCu6Sn5,Cu3Sn金属間化合物が析出することによる接合強度低下と、半田液相線温度が上昇することによる溶融特性が阻害されるからである。
【0019】
上記Sbの添加量を全体重量100重量%のうち0.5〜5重量%としたのは、Sbの添加量が0.5重量%未満の場合には、強度改善効果が小さいからである。一方、Sbの添加量が5重量%を超える場合には、伸びが低下することによって熱衝撃性や加工性が阻害されるからである。
【0020】
本発明でいう溶融したSnへ拡散しやすい遷移金属導体の組成としては、Cu,Ag,Ni,Au,Pd,Pt,Znの単体などが代表的である。なお、これらの遷移金属の合金、例えばAg/Pd,Ag/Pt等でもよい。より好ましくは、Cu,Ag,Niの単体もしくはその合金である。このような電極喰われしやすい導体を有する物品に用いても、半田付け性、接合強度を維持しつつ電極喰われ抑制が可能となる。
【0021】
上記遷移金属導体には必要に応じてガラスフリットや種々の添加剤(金属酸化物など)が添加されるが、導電成分である金属組成が上記のような組成であれば同様の効果が得られることは勿論である。また、半田組成として、作業温度を下げる目的でBi,In等の低融点金属を添加した場合も同様の効果が得られる。
【0022】
ここで、本発明においては、半田組成として上記成分以外に不可避不純物を含むものであってもよい。不可避不純物としては、半田を製造するときに混入する元素もしくは元々入っていた元素、例えばPb,Bi,Cu,Naなどが挙げられる。
【0023】
本発明の半田付け物品は、例えば、主成分のSnに上記添加成分を溶解させたPbフリー半田をボール状に加工し、半田ボ−ルを部品上あるいは基板上に載せてフラックスを塗布した後、大気中で所定の温度に加熱して部品の導体を接合することにより容易に作成することが可能である。
【0024】
なお、一般的には半田付け性向上のためにN2雰囲気で半田付けすることが多いが、本発明ではCo,Fe,Mn,Crの添加量が少ないため、大気中で半田付けすることが可能である。
【0025】
本発明の半田付け物品とは、接合される部品そのものと、部品の導体同士を電気的、機械的に接合した半田接合部とを含めた全体を意味するものであり、さまざまな形態があるが、例えば、部品搭載基板に形成された導体と部品に形成された導体を電気的、機械的に接続させるために半田付けさせたものや、電子部品素子と端子を電気的、機械的に接続させるために半田付けさせたものや、電子部品素子の電極同士を電気的、機械的に接続させるために半田付けさせたものなどが代表的である。
【0026】
上記部品搭載基板としては、例えば、ガラスエポキシ製のプリント基板やフェノール製のプリント基板、アルミナなどのセラミック基板、金属の表面にセラミック等の絶縁膜を有する基板などが挙げられる。さらに、上記導体としては、プリント基板等の配線回路、電子部品の端子電極、リード端子などが挙げられる。
【0027】
このようにして作製された本発明のPbフリー半田ならびに半田付け物品は、半田付け性、接合強度が良好であり、かつ、優れた耐電極喰われ性を有しているため、半田付け温度を自由に設定することが可能で作業性に優れたものとなる。また、Ag等の高価な電極喰われ抑制元素の添加量を少なくすることが可能となる。次に、本発明を実施例に基づき、さらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。
【0028】
【実施例】
表1に本実施例で用いる半田組成を示す。なお、比較例の組成も表1に併せて示す。また、本発明には含まれないPdを、含有する参考例の組成も表1に併せて示す。なお、前記参考例は、実施例7〜11、実施例14〜16および実施例21〜23である。
【0029】
【表1】

Figure 0003684811
【0030】
さらに表1に示したPbフリー半田について、半田付け時の耐電極喰われ性、半田付け性の評価結果を表2に示す。
【0031】
【表2】
Figure 0003684811
【0032】
ここで、半田付け時の耐電極喰われ性評価は静電容量変化法で測定をおこなった。Cu電極(膜厚3μm)或いはAg電極(膜厚20μm)を印刷焼成した単板コンデンサを半田に浸漬し、浸漬前後の静電容量の差分値をとり、浸漬前の静電容量に対する前記差分値を求めて電極の残存率を算出した。評価を行った半田付け温度は表2に示す。Cu電極は10秒間浸漬後の容量変化、Ag電極は喰われ易いので3秒間浸漬後の容量変化を測定した。
【0033】
Cu電極において、いずれの場合も比較例と比較すると、本発明の添加元素が電極食われ抑制に効果があった。実施例1〜3、実施例5〜6、実施例8〜11、実施例12〜13、実施例15〜23は電極残存率が95%以上であり、いずれも非常に良好な耐電極喰われ性を示した。また、代表的なPbフリー半田である比較例1〜2では、電極残存率が90%以下であり、耐電極喰われ性に問題が見られた。
【0034】
実施例4、7は77〜86%の電極残存率であり他の実施例より電極喰われ抑制効果が小さいが、これは有効元素の添加量が少ないためである。但しいずれの組成も、半田付け条件次第では使用可能なレベルである。
【0035】
またAg電極においてもCuと類似の傾向があり、いずれの場合も比較例と比較すると本発明の添加元素が電極食われ抑制に効果があった。
【0036】
半田付け性については、半田広がり率(JISZ3197に準拠)を用いて評価をおこなった。実施例1、実施例4、実施例7〜8、実施例11、実施例14〜17、実施例21〜23については、いずれも半田広がり率が70%以上であり、非常に良好な半田付け性であった。また比較例1〜3についても、いずれも半田広がり率が70%以上であり、非常に良好な半田付け性であった。
【0037】
実施例3、実施例6、実施例9〜10は半田広がり率が低下しているが、これは有効元素の添加量が多いために液相温度が上昇し、半田の流動性が阻害されたためである。また実施例2〜3、実施例5〜6、実施例12〜13、実施例19〜20は他の実施例より低い半田広がり率を示しているが、これは有効元素(Mn、Cr)が酸化しやすいためである。但しいずれの組成も、半田付け条件次第では使用可能なレベルである。
【0038】
また実施例16、実施例23に示すように、Sb、Ag、Cuの添加量を増加すると半田広がり率が高くなっているが、これは液相温度の上昇に伴い半田付け温度を上昇させた影響がでたものである。
【0039】
【発明の効果】
このように本発明の半田付け物品を用いれば、半田接合部において半田付け性が良好であるとともに、優れた耐電極喰われ性を備えることが可能である。また、この耐電極喰われ性は、半田付け時の電極喰われにとどまらず、半田付け後の半田付け物品の高温放置時の電極喰われについても抑制可能である。
【0040】
また、Pbフリー半田で課題となっている電極喰われを抑制できるため、半田のPbフリー化がより実用的となり、環境にやさしい製品を提供することが可能になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to solder and soldered articles.
[0002]
[Prior art]
Conventionally, solder is used to obtain electrical and mechanical connections between electronic devices and electronic components. As this solder, Sn and Pb as main components (hereinafter referred to as Sn-Pb solder) has been generally used, but considering the global environment, Sn containing Pb as a main component and the remainder. However, solder made of Ag, Bi, Cu, In, Sb or the like (hereinafter referred to as Pb-free solder) has been used.
[0003]
In recent years, by using this Pb-free solder, a soldered article having an electrical joint having good solderability has been manufactured.
[0004]
[Problems to be solved by the invention]
However, in a soldered article using Sn as a main component, in particular, Pb-free solder, when the electrode is eroded during soldering, left at high temperature, or subjected to heat aging, There was a problem that mechanical properties deteriorated.
[0005]
An object of the present invention is to provide a Pb-free solder and a soldered article that are less likely to be eroded or deteriorated in characteristics when soldering or after heat aging.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has completed Pb-free solder and soldered articles. The Pb-free solder of the first invention of the present application , except for inevitable impurities, is Co 0.1 to 1 wt%, Fe 0.1 to 0.2 wt%, Mn 0.1 to 0.2 wt%, and Cr 0. It is characterized by comprising at least one selected from 1 to 0.2 wt%, Cu 0.5 to 2 wt%, and the balance Sn .
[0007]
In the Pb-free solder of the second invention of the present application , except for inevitable impurities, at least one selected from Mn 0.1 to 0.2% by weight and Cr 0.1 to 0.2% by weight, Ag0. It is characterized by comprising 5 to 9% by weight and the balance being Sn . In the Pb-free solder of the third invention of the present application, except for inevitable impurities, at least one selected from Mn 0.01 to 0.2 wt% and Cr 0.01 to 0.2 wt%, and Sb 0.5 to It is characterized by comprising 5% by weight and the balance being Sn.
[0008]
The soldering article of the present invention is a soldering article formed by joining parts having a transition metal conductor that easily diffuses into molten Sn by soldering, and the solder is the same as that of the first or second invention described above. Pb-free solder is used.
[0009]
In the soldered article of the present invention, the transition metal conductor is characterized by using at least one of a simple substance of Cu, Ag, Ni, Au, Pd, Pt, Zn or an alloy thereof.
[0010]
Embodiments of the present invention will be described below. This application Pb-free solder of the first aspect of the invention, Co, Fe, and at least one member selected either et Mn and Cr, and Cu, (not including but Pd.) Sn and a composition containing. Also, the Pb-free solder of the second invention, at least one kind selected or found Mn and Cr, and at least one selected from Ag and Sb, (not including but Pd.) Sn and contains Composition. The soldered article of the present invention is a soldered article formed by joining components having a transition metal conductor that is easy to diffuse into molten Sn by soldering, and the solder is the same as that of the first or second invention described above. Pb-free solder is used. With such a composition, it is possible to provide a soldered article having good solderability and bonding strength and having sufficient electrode erosion resistance.
[0011]
That is, Co, Fe, Mn, and Cr added in a small amount form a segregation layer at the interface between the conductor and the solder, prevent diffusion of the conductor into the molten solder, and prevent electrode erosion.
[0012]
The reason why the amount of Co added is 0.01 to 1% by weight out of 100% by weight is that when the amount of Co is less than 0.01% by weight, electrode erosion resistance deteriorates. . On the other hand, when the added amount of Co exceeds 1% by weight, the liquidus temperature rises and the melting characteristics are hindered. A more preferable Co addition amount is in the range of 0.01 to 0.5% by weight, and particularly preferable when the Co addition amount is 0.5% by weight.
[0013]
The reason why the addition amount of Fe is set to 0.01 to 0.2% by weight out of 100% by weight is that the resistance to electrode corrosion deteriorates when the addition amount of Fe is less than 0.01% by weight. It is. On the other hand, when the addition amount of Fe exceeds 0.2% by weight, the liquidus temperature rises and the melting characteristics are hindered. A more preferable Fe addition amount is in the range of 0.01 to 0.1% by weight, and it is particularly preferable when the Fe addition amount is 0.1% by weight.
[0014]
The reason why the amount of Mn added is 0.01 to 0.2% by weight out of 100% by weight is that when the amount of Mn added is less than 0.01% by weight, the electrode erosion resistance deteriorates. It is. On the other hand, when the amount of Mn added exceeds 0.2% by weight, the liquidus temperature rises and the melting characteristics are hindered. A more preferable amount of Mn added is in the range of 0.01 to 0.1% by weight, and it is particularly desirable when the amount of Mn added is 0.1% by weight.
[0015]
The reason why the amount of Cr added is 0.01 to 0.2% by weight out of 100% by weight is that when the amount of Cr is less than 0.01% by weight, the electrode erosion resistance deteriorates. Because. On the other hand, when the added amount of Cr exceeds 0.2% by weight, the liquidus temperature rises and the melting characteristics are hindered. A more preferable Cr addition amount is in the range of 0.01 to 0.1% by weight, and it is particularly desirable when the Cr addition amount is 0.1% by weight.
[0017]
The reason why the amount of Ag added is 0.5 to 9 out of the total weight of 100% by weight is that the strength improving effect is small when the amount of Ag added is less than 0.5% by weight. On the other hand, when the added amount of Ag exceeds 9% by weight, the bonding strength decreases due to the precipitation of excess Ag 3 Sn intermetallic compound, and the melting characteristics due to the increase in the solder liquidus temperature are hindered. Because.
[0018]
The reason why the amount of Cu added is 0.5 to 2% by weight out of the total weight of 100% by weight is that the effect of improving the strength is small when the amount of Cu added is less than 0.5% by weight. On the other hand, when the addition amount of Cu exceeds 2% by weight, the fusion strength decreases due to the precipitation of excess Cu 6 Sn 5 , Cu 3 Sn intermetallic compound, and the melting due to the increase of the solder liquidus temperature. This is because the properties are inhibited.
[0019]
The reason why the amount of Sb added is 0.5 to 5% by weight out of the total weight of 100% by weight is that the strength improving effect is small when the amount of Sb added is less than 0.5% by weight. On the other hand, when the added amount of Sb exceeds 5% by weight, the thermal shock resistance and workability are hindered by the decrease in elongation.
[0020]
As the composition of the transition metal conductor that easily diffuses into molten Sn in the present invention, a simple substance such as Cu, Ag, Ni, Au, Pd, Pt, and Zn is typical. An alloy of these transition metals, such as Ag / Pd, Ag / Pt, etc. may be used. More preferably, it is a simple substance of Cu, Ag, Ni or an alloy thereof. Even if it is used for an article having such a conductor that is easily eroded by electrodes, it is possible to suppress the erosion of electrodes while maintaining solderability and bonding strength.
[0021]
If necessary, glass frit and various additives (metal oxide, etc.) are added to the transition metal conductor, but the same effect can be obtained if the metal composition as the conductive component is as described above. Of course. The same effect can be obtained when a low melting point metal such as Bi or In is added as a solder composition for the purpose of lowering the working temperature.
[0022]
Here, in the present invention, the solder composition may contain inevitable impurities in addition to the above components. Inevitable impurities include elements that are mixed in when solder is manufactured or elements that were originally contained, such as Pb, Bi, Cu, and Na.
[0023]
The soldered article of the present invention is obtained, for example, by processing Pb-free solder in which the above-mentioned additive components are dissolved in Sn as a main component into a ball shape, and placing a solder ball on a component or a substrate and applying a flux. It can be easily produced by joining the conductors of components by heating to a predetermined temperature in the atmosphere.
[0024]
In general, soldering is often performed in an N 2 atmosphere in order to improve solderability. However, in the present invention, since the amount of Co, Fe, Mn, and Cr is small, soldering may be performed in the atmosphere. Is possible.
[0025]
The soldered article of the present invention means the whole including the parts to be joined and the solder joints where the conductors of the parts are joined together electrically and mechanically, and there are various forms. For example, a solder formed to electrically and mechanically connect a conductor formed on a component mounting board and a conductor formed on a component, or an electronic component element and a terminal are electrically and mechanically connected. Typical examples are soldered for this purpose, and soldered for electrically and mechanically connecting the electrodes of the electronic component element.
[0026]
Examples of the component mounting board include a glass epoxy printed board, a phenol printed board, a ceramic board such as alumina, and a board having an insulating film such as ceramic on a metal surface. Furthermore, examples of the conductor include a wiring circuit such as a printed board, a terminal electrode of an electronic component, and a lead terminal.
[0027]
The Pb-free solder and soldered article of the present invention thus produced have good solderability and bonding strength, and have excellent electrode erosion resistance. It can be set freely and has excellent workability. Moreover, it becomes possible to reduce the addition amount of expensive electrode erosion suppressing elements such as Ag. Next, the present invention will be described more specifically based on examples. However, the present invention is not limited to the examples.
[0028]
【Example】
Table 1 shows the solder composition used in this example. The composition of the comparative example is also shown in Table 1. In addition, Table 1 also shows the compositions of reference examples containing Pd not included in the present invention. The reference examples are Examples 7 to 11, Examples 14 to 16, and Examples 21 to 23.
[0029]
[Table 1]
Figure 0003684811
[0030]
Further, with respect to the Pb-free solder shown in Table 1, Table 2 shows the evaluation results of the electrode erosion resistance and solderability during soldering.
[0031]
[Table 2]
Figure 0003684811
[0032]
Here, the electrode erosion resistance evaluation at the time of soldering was measured by a capacitance change method. A single plate capacitor on which a Cu electrode (film thickness: 3 μm) or an Ag electrode (film thickness: 20 μm) is printed and baked is immersed in solder, and a difference value of capacitance before and after immersion is obtained. The residual ratio of the electrode was calculated. The evaluated soldering temperatures are shown in Table 2. The capacity change after immersion for 3 seconds was measured because the Cu electrode was easily eroded and the capacity change after immersion for 10 seconds.
[0033]
In each case, the additive element of the present invention was effective in suppressing the electrode biting in the Cu electrode as compared with the comparative example. In Examples 1 to 3, Examples 5 to 6, Examples 8 to 11, Examples 12 to 13, and Examples 15 to 23, the electrode residual ratio is 95% or more, and all have very good electrode erosion resistance. Showed sex. Further, in Comparative Examples 1 and 2 which are typical Pb-free solders, the electrode remaining rate was 90% or less, and there was a problem in electrode erosion resistance.
[0034]
Examples 4 and 7 have an electrode residual ratio of 77 to 86%, which is less effective in suppressing electrode erosion than the other examples. This is because the amount of effective elements added is small. However, both compositions are usable levels depending on the soldering conditions.
[0035]
In addition, the Ag electrode also has a tendency similar to Cu, and in any case, the additive element of the present invention was effective in suppressing the electrode erosion as compared with the comparative example.
[0036]
The solderability was evaluated using the solder spread ratio (based on JISZ3197). For Example 1, Example 4, Examples 7 to 8, Example 11, Examples 14 to 17, and Examples 21 to 23, the solder spread ratio is 70% or more, and very good soldering is performed. It was sex. Moreover, also about Comparative Examples 1-3, the solder spreading rate was 70% or more, and was very favorable solderability.
[0037]
In Example 3, Example 6, and Examples 9 to 10, the solder spreading ratio is reduced, but this is because the liquid phase temperature is increased due to the large amount of the effective element added, and the solder fluidity is hindered. It is. Moreover, although Examples 2-3, Examples 5-6, Examples 12-13, and Examples 19-20 have shown the solder spreading rate lower than another Example, this is effective element (Mn, Cr). It is because it is easy to oxidize. However, both compositions are usable levels depending on the soldering conditions.
[0038]
Moreover, as shown in Example 16 and Example 23, the solder spreading ratio increases as the addition amount of Sb, Ag, and Cu increases, but this increases the soldering temperature as the liquidus temperature increases. It was an influence.
[0039]
【The invention's effect】
As described above, when the soldered article of the present invention is used, it is possible to provide good solderability at the solder joint and to provide excellent electrode erosion resistance. Moreover, this electrode erosion resistance is not limited to the electrode erosion at the time of soldering, but can also suppress the electrode erosion when the soldered article after soldering is left at a high temperature.
[0040]
In addition, since it is possible to suppress the biting of the electrode, which is a problem with Pb-free solder, it becomes more practical to make the solder Pb-free, and it is possible to provide an environment-friendly product.

Claims (5)

不可避不純物を除き、
Co0.1〜1重量%,Fe0.1〜0.2重量%,Mn0.1〜0.2重量%およびCr0.1〜0.2重量%から選ばれる少なくとも1種類と、
Cu0.5〜2重量%と、
残部がSnと、からなることを特徴とする、電子部品接合用のPbフリー半田。
Excluding inevitable impurities,
Co 0.1 to 1 wt%, Fe 0.1 to 0.2 wt%, and at least one selected from Mn 0.1 to 0.2 wt% and Cr 0.1 to 0.2 wt%,
Cu 0.5-2 wt%,
A Pb-free solder for joining electronic parts , characterized in that the balance consists of Sn .
不可避不純物を除き、
Mn0.1〜0.2重量%およびCr0.1〜0.2重量%から選ばれる少なくとも1種類と、
Ag0.5〜9重量%
残部がSnと、からなることを特徴とする、電子部品接合用のPbフリー半田。
Excluding inevitable impurities,
At least one selected from Mn 0.1 to 0.2% by weight and Cr 0.1 to 0.2% by weight;
And Ag0.5~9% by weight,
A Pb-free solder for joining electronic parts , characterized in that the balance consists of Sn .
不可避不純物を除き、Excluding inevitable impurities,
Mn0.01〜0.2重量%およびCr0.01〜0.2重量%から選ばれる少なくとも1種類と、At least one selected from 0.01 to 0.2% by weight of Mn and 0.01 to 0.2% by weight of Cr;
Sb0.5〜5重量%と、Sb 0.5 to 5 wt%,
残部がSnと、からなることを特徴とする、電子部品接合用のPbフリー半田。A Pb-free solder for joining electronic components, characterized in that the balance consists of Sn.
溶融したSnへ拡散しやすい遷移金属導体を有する部品を半田により接合してなる半田付け物品であって、前記半田は、請求項1から3のいずれかに記載のPbフリー半田を用いたことを特徴とする、半田付け物品。A soldered article obtained by joining, with solder, a part having a transition metal conductor that easily diffuses into molten Sn, wherein the solder uses the Pb-free solder according to any one of claims 1 to 3. A feature of the soldering article. 前記遷移金属導体は、Cu,Ag,Ni,Au,Pd,Pt,Znの単体もしくは合金のうち少なくとも1種類を用いることを特徴とする請求項4に記載の半田付け物品。5. The soldered article according to claim 4, wherein the transition metal conductor uses at least one of Cu, Ag, Ni, Au, Pd, Pt, Zn alone or an alloy.
JP01614298A 1998-01-28 1998-01-28 Solder and soldered articles Expired - Lifetime JP3684811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01614298A JP3684811B2 (en) 1998-01-28 1998-01-28 Solder and soldered articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01614298A JP3684811B2 (en) 1998-01-28 1998-01-28 Solder and soldered articles

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002089344A Division JP3700668B2 (en) 2002-03-27 2002-03-27 Solder and soldered articles
JP2004116071A Division JP3685202B2 (en) 2004-04-09 2004-04-09 Solder and soldered articles

Publications (2)

Publication Number Publication Date
JPH11216591A JPH11216591A (en) 1999-08-10
JP3684811B2 true JP3684811B2 (en) 2005-08-17

Family

ID=11908256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01614298A Expired - Lifetime JP3684811B2 (en) 1998-01-28 1998-01-28 Solder and soldered articles

Country Status (1)

Country Link
JP (1) JP3684811B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544904B2 (en) * 1999-09-29 2004-07-21 株式会社トッパンNecサーキットソリューションズ Solder, surface treatment method of printed wiring board using the same, and mounting method of electronic component using the same
JP3599101B2 (en) * 2000-12-11 2004-12-08 株式会社トッパンNecサーキットソリューションズ Solder, surface treatment method of printed wiring board using the same, and mounting method of electronic component using the same
JP4152596B2 (en) * 2001-02-09 2008-09-17 新日鉄マテリアルズ株式会社 Electronic member having solder alloy, solder ball and solder bump
JP2003001482A (en) * 2001-06-19 2003-01-08 Tokyo Daiichi Shoko:Kk Lead-free solder alloy
US7172726B2 (en) * 2002-10-15 2007-02-06 Senju Metal Industry Co., Ltd. Lead-free solder
JP3724486B2 (en) * 2002-10-17 2005-12-07 千住金属工業株式会社 Lead-free solder ball alloys and solder balls
JP2005040847A (en) * 2003-07-25 2005-02-17 Hitachi Metals Ltd Manufacturing method of solder bowl
JP4577888B2 (en) * 2004-02-04 2010-11-10 千住金属工業株式会社 Fe erosion prevention solder alloy and Fe erosion prevention method
TW200529963A (en) 2004-02-04 2005-09-16 Senju Metal Industry Co Solder alloy for preventing Fe erosion and method for preventing Fe erosion
TW200603932A (en) * 2004-03-19 2006-02-01 Senju Metal Industry Co Lead free solder fall
JP2007038228A (en) * 2005-07-29 2007-02-15 Nihon Almit Co Ltd Solder alloy
US7749336B2 (en) 2005-08-30 2010-07-06 Indium Corporation Of America Technique for increasing the compliance of tin-indium solders
US9175368B2 (en) * 2005-12-13 2015-11-03 Indium Corporation MN doped SN-base solder alloy and solder joints thereof with superior drop shock reliability
US9260768B2 (en) * 2005-12-13 2016-02-16 Indium Corporation Lead-free solder alloys and solder joints thereof with improved drop impact resistance
JP4076182B2 (en) * 2006-07-27 2008-04-16 トピー工業株式会社 Lead-free solder alloy
WO2008084603A1 (en) * 2007-01-11 2008-07-17 Topy Kogyo Kabushiki Kaisha Manual soldering lead-free solder alloy
JP5080946B2 (en) * 2007-01-11 2012-11-21 株式会社日本フィラーメタルズ Lead-free solder alloy for manual soldering
JP4683015B2 (en) * 2007-07-04 2011-05-11 セイコーエプソン株式会社 Lead-free solder alloy
WO2015089470A1 (en) * 2013-12-13 2015-06-18 Schlumberger Canada Limited Tin-antimony-based high temperature solder for downhole components
JP7155677B2 (en) * 2018-07-05 2022-10-19 住友金属鉱山株式会社 Solder joint electrodes and tin alloy targets for film formation of solder joint electrodes

Also Published As

Publication number Publication date
JPH11216591A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP3684811B2 (en) Solder and soldered articles
US6139979A (en) Lead-free solder and soldered article
US7422721B2 (en) Lead-free solder and soldered article
JP3575311B2 (en) Pb-free solder and soldering article
JP3152945B2 (en) Lead-free solder alloy
JP3599101B2 (en) Solder, surface treatment method of printed wiring board using the same, and mounting method of electronic component using the same
JP3544904B2 (en) Solder, surface treatment method of printed wiring board using the same, and mounting method of electronic component using the same
JP2000197988A (en) Leadless solder alloy
JP4240356B2 (en) Pb-free solder composition and soldered article
JP2000153388A (en) Soldered article
JP2001334384A (en) Solder composition and soldered article
EP3590652B1 (en) Solder alloy, solder junction material, and electronic circuit substrate
JP3878978B2 (en) Lead-free solder and lead-free fittings
KR20080111304A (en) Lead free solder containing sn, ag and bi
JP2003332731A (en) ARTICLE SOLDERED WITH Pb-FREE SOLDER
JPH10193171A (en) Soldering article
JP3700668B2 (en) Solder and soldered articles
WO2007014530A1 (en) Lead-free sn-ag-cu-ni-al system solder alloy
JPH1131715A (en) Material and manufacturing method of electronic part electrode
JP2002185130A (en) Electronic circuit device and electronic part
JP3685202B2 (en) Solder and soldered articles
JP3597607B2 (en) Solder alloy and paste solder
JP2910527B2 (en) High temperature solder
CN103480978A (en) Environmentally-friendly lead-free anti-electrode-stripping solder wire
JPH10193170A (en) Soldered article

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term