JPWO2012077228A1 - Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device - Google Patents

Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device Download PDF

Info

Publication number
JPWO2012077228A1
JPWO2012077228A1 JP2012547656A JP2012547656A JPWO2012077228A1 JP WO2012077228 A1 JPWO2012077228 A1 JP WO2012077228A1 JP 2012547656 A JP2012547656 A JP 2012547656A JP 2012547656 A JP2012547656 A JP 2012547656A JP WO2012077228 A1 JPWO2012077228 A1 JP WO2012077228A1
Authority
JP
Japan
Prior art keywords
mass
semiconductor device
lead
content
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012547656A
Other languages
Japanese (ja)
Other versions
JP5490258B2 (en
Inventor
浩次 山▲崎▼
浩次 山▲崎▼
卓 楠
卓 楠
山田 朗
朗 山田
健嗣 大津
健嗣 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5490258B2 publication Critical patent/JP5490258B2/en
Publication of JPWO2012077228A1 publication Critical patent/JPWO2012077228A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32501Material at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32505Material outside the bonding interface, e.g. in the bulk of the layer connector
    • H01L2224/32506Material outside the bonding interface, e.g. in the bulk of the layer connector comprising an eutectic alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48229Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48755Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48855Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81024Applying flux to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Die Bonding (AREA)

Abstract

高温動作する半導体装置においてパワーサイクルに対する接合信頼性の高い無鉛はんだ合金およびそれを用いた半導体装置を得ることを目的とする。無鉛はんだ合金として、アンチモン(Sb)を5質量%以上15質量%以下、銅(Cu)を0.5質量%以上3質量%以下、ニッケル(Ni)を0.01質量%以上0.15質量%以下、インジウム(In)を0.1質量%以上5質量%以下、を含有し、残部すず(Sn)および不可避的不純物からなるように組成を最適化した。An object of the present invention is to obtain a lead-free solder alloy having high bonding reliability with respect to a power cycle in a semiconductor device operating at a high temperature and a semiconductor device using the same. As lead-free solder alloy, antimony (Sb) is 5 mass% to 15 mass%, copper (Cu) is 0.5 mass% to 3 mass%, nickel (Ni) is 0.01 mass% to 0.15 mass. The composition was optimized so that it contains 0.1% by mass or less, indium (In) 0.1% by mass or more and 5% by mass or less, and the balance is tin (Sn) and inevitable impurities.

Description

本発明は、無鉛はんだ合金、およびそれを用いた半導体装置と半導体装置の製造方法に関し、とくに高温動作する半導体装置に適した、Sn系の無鉛はんだ合金に関する。   The present invention relates to a lead-free solder alloy, a semiconductor device using the lead-free solder alloy, and a method for manufacturing the semiconductor device, and more particularly to a Sn-based lead-free solder alloy suitable for a semiconductor device that operates at a high temperature.

近年、半導体装置に対する信頼性の要求はますます高まり、特に熱膨張係数差の大きい半導体素子と回路基板との接合部についての寿命信頼性の向上が求められている。従来、半導体素子としては、シリコン(Si)やガリウム砒素(GaAs)を基材としたものが多く使われ、その動作温度は100℃〜125℃である。これらの素子を回路基板に接合するはんだ材としては、製造時の多段階はんだ接合に対応するための高融点、起動・停止に伴う繰り返し熱応力に対する耐クラック性、さらにデバイスの汚染耐性が求められる。その要求に対して、Siデバイスでは95Pb−5Sn(質量%)、ガリウム砒素デバイスでは80Au−20Sn(質量%)などが使われてきた。しかしながら、有害な鉛(Pb)を大量に含有する95Pb−5Snは、環境負荷低減の観点から問題があり、また貴金属を多く含む80Au−20Snは、貴金属高騰や埋蔵量の点から問題があり、ともに代替材が強く望まれていた。   In recent years, there has been an increasing demand for reliability of semiconductor devices, and in particular, there has been a demand for improvement in lifetime reliability of a junction between a semiconductor element having a large difference in thermal expansion coefficient and a circuit board. Conventionally, many semiconductor elements based on silicon (Si) or gallium arsenide (GaAs) are used, and the operating temperature is 100 ° C. to 125 ° C. Solder materials for bonding these elements to circuit boards are required to have a high melting point to support multi-step solder bonding during manufacturing, crack resistance to repeated thermal stresses associated with start / stop, and device contamination resistance. . In response to this requirement, 95Pb-5Sn (mass%) has been used for Si devices, and 80Au-20Sn (mass%) has been used for gallium arsenide devices. However, 95Pb-5Sn containing a large amount of harmful lead (Pb) has a problem from the viewpoint of reducing the environmental load, and 80Au-20Sn containing a large amount of noble metal has a problem from the viewpoint of rising noble metal and reserves. In both cases, alternative materials were strongly desired.

一方、省エネルギーの観点から次世代デバイスとしてシリコンカーバイド(SiC)や窒化ガリウム(GaN)を基材としたデバイスの開発が盛んになされている。これらは、ロス低減の観点からその動作温度が175℃以上とされており、将来的には300℃になるとも言われている。   On the other hand, development of devices based on silicon carbide (SiC) or gallium nitride (GaN) as a next-generation device from the viewpoint of energy saving has been actively conducted. These have an operating temperature of 175 ° C. or higher from the viewpoint of reducing loss, and are said to be 300 ° C. in the future.

上記のように、従来および次世代デバイスにおいて、融点が高く、しかも耐熱性(耐パワーサイクル特性、耐ヒートサイクル特性)に優れた高温はんだ合金が求められている。このような要求にこたえるはんだ合金として、Sn系無鉛はんだ合金が提案されている。例えば、特許文献1には、濡れ性に優れ、かつ機械的特性が優れ(特に、延性に優れ、高温での時効変化が少なく)、さらに界面反応層の成長が遅く接合部の信頼性に優れた高温無鉛はんだ合金として、Sbが3.0〜10.0質量%、Cuが1.0質量%以下(下限値の零を含まず)、Niが0.01〜1.0質量%、Geが0.01〜1.0質量%含有された合金組成が開示されている。また、特許文献2には、はんだ材の硬さを制御することで、ヒートサイクル時の半導体素子の割れを抑制し、さらにはんだ材の耐クラック性を向上させる高信頼なSn系無鉛はんだ合金として、Sbを5〜15重量%以下、Cuを3〜8重量%以下、Niを0.01〜0.15重量%以下、Inを0.5〜5重量%以下とした合金組成が開示されている。   As described above, high-temperature solder alloys having high melting points and excellent heat resistance (power cycle resistance, heat cycle resistance) are required in conventional and next-generation devices. Sn-based lead-free solder alloys have been proposed as solder alloys that meet these requirements. For example, Patent Document 1 discloses excellent wettability and mechanical properties (particularly excellent ductility and little aging change at high temperature), and further, the interface reaction layer grows slowly and has excellent joint reliability. As a high temperature lead-free solder alloy, Sb is 3.0 to 10.0% by mass, Cu is 1.0% by mass or less (not including the lower limit of zero), Ni is 0.01 to 1.0% by mass, Ge Discloses an alloy composition containing 0.01 to 1.0% by mass. Patent Document 2 discloses a highly reliable Sn-based lead-free solder alloy that controls the hardness of the solder material to suppress cracking of the semiconductor element during the heat cycle and further improve the crack resistance of the solder material. An alloy composition in which Sb is 5 to 15 wt% or less, Cu is 3 to 8 wt% or less, Ni is 0.01 to 0.15 wt% or less, and In is 0.5 to 5 wt% or less is disclosed. Yes.

特開2008−221330号公報(段落0031〜0048、図1〜図7)JP 2008-221330 A (paragraphs 0031 to 0048, FIGS. 1 to 7) 国際公開番号WO2010/047139A1(段落0013〜0046、図5〜図8)International Publication Number WO2010 / 047139A1 (paragraphs 0013 to 0046, FIGS. 5 to 8)

ところで、本発明者らは、高温動作する半導体装置においては、材料としての機械特性や適用した部品単体としての耐ヒートサイクル性だけではなく、実際の動作を伴うパワーサイクルによって、装置としての信頼性を確保することが重要であると考え、パワーサイクルでの信頼性試験を行った。その結果、パワーサイクルでは、接合層に対して垂直方向に生じる縦クラックの抑制が、接合信頼性の向上に重要であることを見出した。しかしながら、特許文献1に開示された合金は、ヒートサイクルやパワーサイクルに対する信頼性向上のための対策がなされていない。また、特許文献2では、ヒートサイクル時に接合層に対して水平方向に生じる横クラックを抑制するための対策がなされているものの、パワーサイクルでの縦クラック発生を抑制するための対策がなされていない。   By the way, in the semiconductor device that operates at a high temperature, the present inventors not only have the mechanical characteristics as a material and the heat cycle resistance as a single component applied, but also the reliability as a device by the power cycle accompanied by the actual operation. The reliability test in the power cycle was carried out. As a result, in the power cycle, it was found that suppression of vertical cracks generated in the direction perpendicular to the bonding layer is important for improving the bonding reliability. However, the alloy disclosed in Patent Document 1 does not take measures for improving reliability with respect to heat cycle and power cycle. Moreover, in patent document 2, although the countermeasure for suppressing the horizontal crack produced in a horizontal direction with respect to a joining layer at the time of a heat cycle is made, the countermeasure for suppressing the generation | occurrence | production of the vertical crack in a power cycle is not made. .

本発明は、上記のような問題点を解決するためになされたものであり、高温動作する半導体装置においてパワーサイクルに対する接合信頼性の高い無鉛はんだ合金およびそれを用いた半導体装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a lead-free solder alloy having high bonding reliability with respect to a power cycle in a semiconductor device operating at a high temperature and a semiconductor device using the same. And

本発明にかかる無鉛はんだ合金は、Sbを5質量%以上15質量%以下、Cuを0.5質量%以上3質量%以下、Niを0.01質量%以上0.15質量%以下、Inを0.1質量%以上5質量%以下、を含有し、残部Snおよび不可避的不純物からなることを特徴とする。   In the lead-free solder alloy according to the present invention, Sb is 5 to 15% by mass, Cu is 0.5 to 3% by mass, Ni is 0.01 to 0.15% by mass, In 0.1 mass% or more and 5 mass% or less is contained, and it consists of remainder Sn and an unavoidable impurity.

また、本発明にかかる半導体装置は、回路パターンが形成された回路基板と、前記回路パターン上に実装された半導体素子と、を備え、前記半導体素子の前記回路パターンへの接合に、上述した無鉛はんだ合金を用いたことを特徴とする。   The semiconductor device according to the present invention includes a circuit board on which a circuit pattern is formed and a semiconductor element mounted on the circuit pattern, and the lead-free lead mentioned above is bonded to the circuit pattern of the semiconductor element. It is characterized by using a solder alloy.

また、本発明にかかる半導体装置の製造方法は、半導体装置を構成する回路基板の回路パターン上の所定範囲に、上述した無鉛はんだ合金で形成されたはんだ材を配置する工程と、前記配置したはんだ材上に半導体素子を設置する工程と、前記はんだ材が溶融するように加熱して、前記半導体素子を前記回路パターンの所定位置に接合する工程と、を備えたことを特徴とする。   In addition, a method of manufacturing a semiconductor device according to the present invention includes a step of arranging a solder material formed of the above lead-free solder alloy in a predetermined range on a circuit pattern of a circuit board constituting the semiconductor device, and the arranged solder. A step of installing a semiconductor element on the material; and a step of heating the solder material so as to melt and bonding the semiconductor element to a predetermined position of the circuit pattern.

この発明によれば、高温動作する半導体装置において、高温時のメタライズ拡散による割れのみならず、パワーサイクルにおける縦クラックに起因する剥離をも防止することができるので、接合信頼性の高い半導体装置を得ることができる。   According to the present invention, in a semiconductor device that operates at a high temperature, not only cracking due to metallization diffusion at high temperatures but also peeling due to vertical cracks in a power cycle can be prevented. Can be obtained.

本発明の実施の形態1にかかる無鉛はんだ合金を用いて製造した半導体装置の構成を説明するため図である。It is a figure for demonstrating the structure of the semiconductor device manufactured using the lead-free solder alloy concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる無鉛はんだ合金を用いて半導体装置を製造する方法を説明するための図である。It is a figure for demonstrating the method to manufacture a semiconductor device using the lead-free solder alloy concerning Embodiment 1 of this invention. Sn系無鉛はんだ合金を用いて半導体素子を接合したものを高温保持した場合の接合部の剥離メカニズムを説明するための半導体装置の部分を示す図である。It is a figure which shows the part of the semiconductor device for demonstrating the peeling mechanism of the junction part at the time of hold | maintaining high temperature what joined the semiconductor element using Sn type lead-free solder alloy. Sn系無鉛はんだ合金を用いて製造した半導体装置でパワーサイクル試験をしたときの接合部の剥離メカニズムを説明するための半導体装置の部分を示す図である。It is a figure which shows the part of the semiconductor device for demonstrating the peeling mechanism of the junction part when a power cycle test is performed with the semiconductor device manufactured using Sn system lead-free solder alloy. 無鉛はんだ合金におけるSb含有率と機械特性との関係を示す図である。It is a figure which shows the relationship between Sb content rate and a mechanical characteristic in a lead-free solder alloy. 無鉛はんだ合金におけるIn含有率と接合時のボイド率との関係を示す図である。It is a figure which shows the relationship between In content rate and the void rate at the time of joining in a lead-free solder alloy.

実施の形態1.
図1〜図6は、本発明の実施の形態1にかかる無鉛はんだ合金およびそれを用いて製造した電力用半導体装置について説明するためのものである。図1は、無鉛はんだ合金のはんだ材を用いて製造した電力用半導体装置を説明するためのもので、電力用半導体装置のうちの、絶縁基板に実装された半導体素子と、その半導体素子とリボンにより電気的に接合された端子部分、および半導体素子の部分を抜き出したもので、図1(a)は上面図、図1(b)は図1(a)のA−A線による断面図、図1(c)は、図1(b)中の半導体素子の基材に形成された層構造を説明するための部分拡大図である。図2は、無鉛はんだ合金のはんだ材を用いて半導体素子を絶縁基板に実装する方法を説明するための工程ごとの変化を示したもので、図1(c)の部分に対応する。図3は、無鉛はんだ合金のはんだ材により半導体素子を接合したものを高温保持したときの接合部の層構造変化と剥離発生の様子を説明するための図で、図3(a)は接合直後の状態、図3(b)は接合後に高温で保持したときの途中段階の状態、図3(c)は接合後に高温で保持して剥離が生じやすくなったときの状態を示す。図4は、無鉛はんだ合金のはんだ材で半導体素子を接合して製造した半導体装置をパワーサイクルにかけた時の剥離の発生メカニズムを説明するための図である。また、図5、図6は、無鉛はんだ合金の組成の最適範囲を定めるために、合金組成を変化させたときの試験結果を示す図である。
Embodiment 1 FIG.
FIGS. 1-6 is for demonstrating the lead-free solder alloy concerning Embodiment 1 of this invention, and the semiconductor device for electric power manufactured using it. FIG. 1 illustrates a power semiconductor device manufactured using a lead-free solder alloy solder material. Of the power semiconductor device, a semiconductor element mounted on an insulating substrate, the semiconductor element, and a ribbon FIG. 1 (a) is a top view, FIG. 1 (b) is a cross-sectional view taken along the line AA of FIG. 1 (a), and FIG. 1 (a) is a top view. FIG.1 (c) is the elements on larger scale for demonstrating the layer structure formed in the base material of the semiconductor element in FIG.1 (b). FIG. 2 shows changes for each process for explaining a method of mounting a semiconductor element on an insulating substrate using a lead-free solder alloy solder material, and corresponds to the part of FIG. FIG. 3 is a diagram for explaining the change in the layer structure of the joint and the occurrence of peeling when a semiconductor element joined with a lead-free solder alloy solder material is held at a high temperature, and FIG. FIG. 3 (b) shows a state in the middle stage when held at a high temperature after bonding, and FIG. 3 (c) shows a state when peeling tends to occur due to holding at a high temperature after bonding. FIG. 4 is a diagram for explaining a mechanism of occurrence of peeling when a semiconductor device manufactured by joining semiconductor elements with a lead-free solder alloy solder material is subjected to a power cycle. 5 and 6 are diagrams showing test results when the alloy composition is changed in order to determine the optimum range of the composition of the lead-free solder alloy.

ここで、無鉛はんだ合金の組成について説明する前に、本発明の実施の形態1にかかる無鉛はんだ合金(厳密には無鉛はんだ合金から形成されたはんだ材)を適用する半導体装置の構成、およびその構成に基づきパワーサイクル試験において見出すことができた剥離のメカニズムについて説明する。   Here, before describing the composition of the lead-free solder alloy, the configuration of the semiconductor device to which the lead-free solder alloy according to the first embodiment of the present invention (strictly, the solder material formed from the lead-free solder alloy) is applied, and The peeling mechanism that could be found in the power cycle test based on the configuration will be described.

<半導体装置の構成>
電力用半導体装置10は、図1に示すように、窒化アルミニウム、窒化ケイ素、アルミナなどのセラミックス材料からなる絶縁性セラミック板4の回路面4f上に図示しないろう材などで接合された回路パターン4Ea、4Eb(後述する4Erも含め、まとめて4E)が配置されている。回路パターン4Eは銅、アルミニウムなどの導電性材料またはそれらを主成分とする合金材料からなる。さらに、回路パターン4Eの表面は、酸化防止やはんだ材の濡れ性を考慮して、ニッケルなどのめっき被膜が形成されている。なお、以降は、表裏に回路パターン4Eを有する絶縁性セラミックス板全体を回路基板4と呼ぶことにする。また、図示しないが回路基板4の回路面4fの反対側の面(図では回路パターン4Erが形成されている面)には放熱板が形成されていても良い。
<Configuration of semiconductor device>
As shown in FIG. 1, the power semiconductor device 10 includes a circuit pattern 4Ea bonded to a circuit surface 4f of an insulating ceramic plate 4 made of a ceramic material such as aluminum nitride, silicon nitride, or alumina by a brazing material (not shown). 4Eb (4E collectively including 4Er described later) is arranged. The circuit pattern 4E is made of a conductive material such as copper or aluminum or an alloy material containing them as a main component. Furthermore, the surface of the circuit pattern 4E is formed with a plating film such as nickel in consideration of oxidation prevention and wettability of the solder material. Hereinafter, the entire insulating ceramic plate having the circuit pattern 4E on both sides will be referred to as a circuit board 4. Although not shown, a heat sink may be formed on the surface of the circuit board 4 opposite to the circuit surface 4f (the surface on which the circuit pattern 4Er is formed in the drawing).

図1では、回路パターン4Ea上に無鉛はんだ合金で形成されたはんだ(接合前のはんだをはんだ材3M、接合後のはんだをはんだ層3と区別する)を介して半導体素子(チップ)2が接合されている。半導体素子2は、シリコンウエハを基材とした一般的な素子でも良いが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料への適用を目的としており、特に炭化ケイ素を用いた半導体素子に適用される。デバイス種類としては、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようなスイッチング素子、またはダイオードのような整流素子である。MOSFETの場合、半導体素子2の回路パターン4Ea側の面にはドレイン電極が形成されている。そして、ドレイン電極と反対側(図で上側)の面には、ゲート電極やソース電極が、領域を分けて形成されているが、説明を簡略化するため、上側の面は、大電流が流れるソース電極のみを記載して説明する。   In FIG. 1, a semiconductor element (chip) 2 is joined via solder formed of a lead-free solder alloy on the circuit pattern 4Ea (the solder before joining is distinguished from the solder material 3M and the solder after joining from the solder layer 3). Has been. The semiconductor element 2 may be a general element based on a silicon wafer. In the present invention, the semiconductor element 2 has a wider band gap than silicon such as silicon carbide (SiC), gallium nitride (GaN), or diamond. It is intended to be applied to a band gap semiconductor material, and is particularly applied to a semiconductor element using silicon carbide. Device types include switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal Oxide Semiconductor Field-Effect-Transistors), or rectifying elements such as diodes. In the case of a MOSFET, a drain electrode is formed on the surface of the semiconductor element 2 on the circuit pattern 4Ea side. A gate electrode and a source electrode are formed on the surface opposite to the drain electrode (upper side in the figure), but a large current flows on the upper surface to simplify the explanation. Only the source electrode will be described.

そして、半導体素子2の上側の面には、アルミニウム(Al)ないし銅(Cu)のリボン、あるいはワイヤ等の配線部材5の一端が接合され、他端側を電極4Ebに接合している。これにより、半導体素子2から図示しない外部回路等への給電経路が形成される。なお、図1では、説明を簡略化するため、配線部材5として、1本のリボンのみを示しているが、電流容量を確保するため、複数本を並べて配置してもよい。   One end of a wiring member 5 such as a ribbon of aluminum (Al) or copper (Cu) or a wire is joined to the upper surface of the semiconductor element 2, and the other end is joined to the electrode 4Eb. Thereby, a power feeding path from the semiconductor element 2 to an external circuit (not shown) or the like is formed. In FIG. 1, only one ribbon is shown as the wiring member 5 for simplification of description, but a plurality of them may be arranged side by side in order to ensure current capacity.

このように、半導体素子2の上面と下面を、他の金属材料と接合するために、半導体素子2は、半導体基材2Bの両面には、図1(c)に示すように複数の被覆層が形成されている。例えば、半導体素子2は、炭化珪素材料の基材2Bに対して、はんだ材3Mにより回路基板4と接合する面側(図中下側)には、基板側オーミック層2Lr1と、Niめっき層などを有する基板側メタライズ層2Lr2と、合金層2Lr3が形成されている。また、リボン5が接続される面側(図中下側)には、配線部材側オーミック層2Lf1、配線部材側メタライズ層2Lf2が形成されている。基板側オーミック層2Lr1は、半導体材料である基材2Bと金属との接合をオーミック接合とするためのものであり、基材2Bと接するように形成されている。基板側メタライズ層2Lr2は、基板側オーミック層2Lr1とはんだ層3との良好な接合を得るためのものであり、基板側オーミック層2Lr1と接するように形成されている。合金層2Lr3は、後述するように、半導体素子2をはんだ材3Mで回路基板4(厳密には4Ea)に接合する際に、生じたはんだ層3(はんだ接合層)とメタライズ層2Lr2との間に生じる層である。Thus, in order to join the upper surface and the lower surface of the semiconductor element 2 to another metal material, the semiconductor element 2 has a plurality of coating layers on both sides of the semiconductor substrate 2B as shown in FIG. Is formed. For example, the semiconductor element 2 has a substrate-side ohmic layer 2L r1 and a Ni plating layer on the surface side (lower side in the figure) that is bonded to the circuit board 4 by the solder material 3M with respect to the silicon carbide material base material 2B. A substrate side metallization layer 2L r2 and an alloy layer 2L r3 are formed. Further, a wiring member side ohmic layer 2L f1 and a wiring member side metallization layer 2L f2 are formed on the surface side (lower side in the figure) to which the ribbon 5 is connected. The substrate-side ohmic layer 2L r1 is for making the junction between the base material 2B, which is a semiconductor material, and a metal an ohmic junction, and is formed so as to be in contact with the base material 2B. The substrate side metallized layer 2L r2 is for obtaining a good bond between the substrate side ohmic layer 2L r1 and the solder layer 3, and is formed so as to be in contact with the substrate side ohmic layer 2L r1 . As will be described later, the alloy layer 2L r3 includes the solder layer 3 (solder bonding layer) and the metallized layer 2L r2 generated when the semiconductor element 2 is bonded to the circuit board 4 (strictly 4Ea) with the solder material 3M. It is a layer that occurs between

半導体素子2の上面側に形成される配線部材側オーミック層2Lf1は、半導体材料である基材2Bと金属との接合をオーミック接合とするためのものであり、基材2Bと接するように形成されている。配線部材側メタライズ層2Lf2は、配線部材側オーミック層2Lf1とはんだ層3の良好な接合を得るためのものであり、配線部材側オーミック層2Lf1と接するように形成されている。The wiring member side ohmic layer 2L f1 formed on the upper surface side of the semiconductor element 2 is for making the junction between the base material 2B, which is a semiconductor material, and a metal an ohmic junction, and is formed so as to be in contact with the base material 2B. Has been. The wiring member side metallized layer 2L f2 is for obtaining a good bond between the wiring member side ohmic layer 2L f1 and the solder layer 3, and is formed so as to be in contact with the wiring member side ohmic layer 2L f1 .

基板側オーミック層2Lr1としては、たとえば100nm厚程度のTi(チタン)が用いられる。また基板側メタライズ層2Lr2としては、たとえば500nm厚程度のNiが用いられている。合金層2Lr3としては、半導体素子2側からたとえばNi−Sn(スズ)−Cu(銅)相が形成され、次いでCu−Sn相とSn−Sb(アンチモン)相との混合相が形成されている。はんだ層3は、後述するように、Sbを5質量%以上15質量%以下、Cuを0.5質量%以上3質量%未満、Niを0.01質量%以上0.15質量%以下、Inを0.1質量%以上5質量%以下で残部Snとするいわゆる鉛フリーはんだ合金である。当然ながら、他に不可避的不純物を含むことはある。As the substrate-side ohmic layer 2L r1 , for example, Ti (titanium) having a thickness of about 100 nm is used. As the substrate side metallization layer 2L r2 , for example, Ni having a thickness of about 500 nm is used. As alloy layer 2L r3, for example, a Ni—Sn (tin) —Cu (copper) phase is formed from the semiconductor element 2 side, and then a mixed phase of a Cu—Sn phase and a Sn—Sb (antimony) phase is formed. Yes. As will be described later, the solder layer 3 has Sb of 5% by mass to 15% by mass, Cu of 0.5% by mass to less than 3% by mass, Ni of 0.01% by mass to 0.15% by mass, In Is a so-called lead-free solder alloy in which the balance Sn is 0.1 mass% or more and 5 mass% or less. Of course, other inevitable impurities may be included.

配線部材側オーミック層2Lf1としては、たとえば100nm厚程度のTi(チタン)が用いられる。また配線部材側メタライズ層2Lf2としては、たとえば1000nm厚程度のAlが用いられている。配線部材5としては、例えば、厚さ200μm、幅2000μmのリボン、あるいは、φ100μmなどのAlワイヤが用いられており、超音波装置などによって所定の超音波エネルギーを加えることによってボンディングされている。As the wiring member side ohmic layer 2L f1 , for example, Ti (titanium) having a thickness of about 100 nm is used. As the wiring member side metallization layer 2L f2 , for example, Al having a thickness of about 1000 nm is used. As the wiring member 5, for example, a ribbon having a thickness of 200 μm and a width of 2000 μm or an Al wire having a diameter of 100 μm is used and bonded by applying predetermined ultrasonic energy by an ultrasonic device or the like.

次に、この半導体装置1の製造方法について図2を用いて説明する。
たとえば、図2(a)に示すように、厚さ0.25mmで7mm角の炭化珪素半導体基材2Bの表面には、基板側オーミック層2Lr1と基板側メタライズ層2Lr2、配線部材側オーミック層2Lf1、配線部材側メタライズ層2Lf2とが順に積層し、半導体素子2として形成する。次に、回路基板4(の電極4Ea)に対して、はんだ材3Mにより半導体素子2を接合する。このはんだ接合に際しては、まず、回路基板4の表面上に、はんだ層3となるはんだペレット3Mが載置される。このはんだペレット3Mは、たとえばSn−10Sb−2Cu−0.1Ni−1In(インジウム)の組成の合金よりなっており、その両面にフラックス3fが塗布されている。また、このはんだペレット3Mは、たとえば厚さ0.1mmで8mm角の寸法を有している。そして、載置されたはんだペレット3Mの上にさらに半導体素子2が載置される。この際、はんだペレット3Mに基板側メタライズ層2Lr2が接するように半導体素子2が載置される。
Next, a method for manufacturing the semiconductor device 1 will be described with reference to FIG.
For example, as shown in FIG. 2A, a substrate-side ohmic layer 2L r1 , a substrate-side metallized layer 2L r2 , and a wiring member-side ohmic are formed on the surface of a silicon carbide semiconductor substrate 2B having a thickness of 0.25 mm and a 7 mm square. The layer 2L f1 and the wiring member side metallization layer 2L f2 are sequentially stacked to form the semiconductor element 2. Next, the semiconductor element 2 is joined to the circuit board 4 (the electrode 4Ea thereof) with the solder material 3M. In this solder joining, first, solder pellets 3M to be the solder layer 3 are placed on the surface of the circuit board 4. This solder pellet 3M is made of an alloy having a composition of Sn-10Sb-2Cu-0.1Ni-1In (indium), for example, and flux 3f is applied to both surfaces thereof. Moreover, this solder pellet 3M has a dimension of 8 mm square with a thickness of 0.1 mm, for example. Then, the semiconductor element 2 is further placed on the placed solder pellet 3M. At this time, the semiconductor element 2 is placed so that the substrate-side metallized layer 2L r2 is in contact with the solder pellet 3M.

このように、回路基板4とはんだペレット3Mと半導体素子2とを積み重ねたものを、回路基板4を下にして300℃の温度に設定されたホットプレート上に載置して、2分間加熱する。これにより、はんだペレット3Mが溶融して溶融状態のはんだ層3となる。そして、基板側メタライズ層2Lr2中の成分とはんだ層3中の成分とが相互に拡散して、図2(b)に示すように、基板側メタライズ層2Lr2とはんだ層3との間に合金層2Lr3が形成される。加熱終了により、溶融状態のはんだ層3が冷却されて固化する。その後、フラックス残渣を除去し、配線部材側メタライズ層2Lf2に、厚さ200μmのAlリボンが、図示しないボンディングツールによって所定の超音波エネルギーを加える事によってボンディングされる。以上のプロセスにより、図1に示したような半導体装置10が製造される。In this manner, the stack of the circuit board 4, the solder pellet 3M, and the semiconductor element 2 is placed on a hot plate set at a temperature of 300 ° C. with the circuit board 4 down, and heated for 2 minutes. . As a result, the solder pellets 3M are melted to form a molten solder layer 3. Then, the components in the substrate side metallized layer 2L r2 and the components in the solder layer 3 diffuse to each other, and as shown in FIG. 2B, between the substrate side metallized layer 2L r2 and the solder layer 3 Alloy layer 2L r3 is formed. Upon completion of heating, the molten solder layer 3 is cooled and solidified. Thereafter, the flux residue is removed, and an Al ribbon having a thickness of 200 μm is bonded to the wiring member side metallization layer 2L f2 by applying predetermined ultrasonic energy with a bonding tool (not shown). Through the above process, the semiconductor device 10 as shown in FIG. 1 is manufactured.

なお、上術した「Sn−10Sb−2Cu−0.1Ni−1In(質量%)」とは、質量%でSbを10%、Cuを2%、Niを0.1%、Inを1%含み、かつ残部がSnとなるはんだ合金を示し、当然のことながら、不可避的不純物については記載していない。以下の記述において、これと同様の表記は同様の質量%(図や表ではwt%と表記)における組成を意味するものとする。また、はんだ材としては、はんだペレット3Mの例を示したが、ペレットに限らず、バー、ペースト、あるいはパウダー等の他の形態であってもよい。   In addition, “Sn-10Sb-2Cu-0.1Ni-1In (mass%)” operated above includes 10% by mass of Sb, 2% of Cu, 0.1% of Ni, and 1% of In. In addition, a solder alloy in which the balance is Sn is shown, and naturally, inevitable impurities are not described. In the following description, the same notation shall mean the composition in the same mass% (denoted wt% in the figures and tables). Moreover, although the example of the solder pellet 3M was shown as a solder material, other forms, such as not only a pellet but a bar, a paste, or powder, may be sufficient.

<剥離メカニズム>
つぎに、上記のような構成の半導体装置において発生し、本発明の実施の形態にかかる無鉛はんだ合金での克服対象である、2種類の接合部の剥離について説明する。ひとつめは、高温で保持された場合に生じるメタライズ拡散にともなう剥離であり、ふたつめは、本発明者が見出したパワーサイクルにおける縦クラックにともなう剥離である。
<Peeling mechanism>
Next, peeling of two types of joints, which occurs in the semiconductor device having the above-described configuration and is an object to be overcome by the lead-free solder alloy according to the embodiment of the present invention, will be described. The first is delamination due to metallization diffusion that occurs when held at a high temperature, and the second is delamination due to longitudinal cracks in the power cycle found by the present inventors.

ひとつめの、メタライズ拡散による基板側オーミック層2Lr1と合金層2Lr3との間で発生する剥離について説明する。図3は、半導体素子2と回路基板4との接合部分のうち、半導体素子2の基材2B側からはんだ層3までの部分を拡大した概略断面図の時間経過による変化を示すものであり、図3(a)は接合直後、図3(b)は接合して200℃で保持してからしばらくたった状態、図3(c)は200℃で保持した状態でさらに長時間放置したときの状態である。図に示すように、半導体装置を200℃程度の高温で保持すると、合金層2Lr3と基板側オーミック層2Lr1との間のメタライズ層2Lr2が徐々に薄くなり、ついには、消滅して合金層2Lr3と基板側オーミック層2Lr1とが直接接触するようになる。このとき、基板側オーミック層2Lr1の厚さはほとんど変化しないが、合金層2Lr3は基板側メタライズ層2Lr2とはんだ層3の一部とを熱拡散により取り込むことで成長し、厚くなっていく。図3(c)に示すように、メタライズ層2Lr2が消滅して、基板側オーミック層2Lr1と合金層2Lr3とが直接接触するような状態となると、両層2Lr1、2Lr3の間の密着強度は低いので、比較的小さい力でも、基板側オーミック層2Lr1と合金層2Lr3との間で剥離Bが生じてしまう。First, peeling that occurs between the substrate-side ohmic layer 2L r1 and the alloy layer 2L r3 due to metallization diffusion will be described. FIG. 3 shows the change over time of the schematic cross-sectional view in which the portion from the base material 2B side of the semiconductor element 2 to the solder layer 3 in the joint portion between the semiconductor element 2 and the circuit board 4 is expanded. 3A is a state immediately after joining, FIG. 3B is a state after joining and holding at 200 ° C. for a while, and FIG. 3C is a state after being left at 200 ° C. for a longer time. It is. As shown in the figure, when the semiconductor device is held at a high temperature of about 200 ° C., the metallized layer 2L r2 between the alloy layer 2L r3 and the substrate-side ohmic layer 2L r1 gradually becomes thin, and eventually disappears to form an alloy. The layer 2L r3 and the substrate-side ohmic layer 2L r1 come into direct contact. At this time, the thickness of the substrate-side ohmic layer 2L r1 hardly changes, but the alloy layer 2L r3 grows by taking in the substrate-side metallized layer 2L r2 and a part of the solder layer 3 by thermal diffusion and becomes thicker. Go. As shown in FIG. 3C, when the metallized layer 2L r2 disappears and the substrate-side ohmic layer 2L r1 and the alloy layer 2L r3 are in direct contact with each other, between the two layers 2L r1 and 2L r3 Since the adhesion strength of is low, peeling BD occurs between the substrate-side ohmic layer 2L r1 and the alloy layer 2L r3 even with a relatively small force.

ふたつめの、半導体装置1としてパワーサイクルを行ったときに発生する縦クラックにともなう剥離について説明する。図4は、図示しない通電装置および温度制御装置によって、例えば40℃に10秒、200℃に10秒を1サイクルとして、5kサイクル程度のパワーサイクルを実施した後に、はんだ層3(接合部)内に生じたクラックCの発生状態を示したものである。なお、図中、縦(v)方向に発生するクラックを縦クラックCv、水平(h)方向に発生するクラックを水平クラックChとし、まとめてクラックCと称する。図において、通電時、リボン5直下の部分が局所的に加熱され、はんだ層3が熱膨張しようとするが、温度の低い周辺部に拘束されるため、内部に圧縮応力が発生する。このときはんだ層3の組織内に析出物3pのような脆弱な部分があると、析出部3pを起点として縦クラックCvが生じる。更に上記を繰返すと、はんだ層3の縦クラック幅拡大,クラック発生領域面積の増加を生じ、更に継続し続けると、例えば複数の縦クラックCv1、Cv伝いに水平クラックChが発生し、ついには剥離する。この水平クラックChは接合時のボイド率、パワーサイクル後の縦クラックCvの量にも関係するが、材料自体(バルク)の強度、伸びにも関係し、ある程度の強度、伸びを有する材料でなければ、早期に水平クラックChが、縦クラックCvあるいは析出物3p、または後述するボイド伝いに発生する。A description will be given of peeling due to a vertical crack generated when a power cycle is performed as the second semiconductor device 1. FIG. 4 shows an example in which a power cycle of about 5 k cycles is performed by using a current supply device and a temperature control device (not shown) for 10 seconds at 40 ° C. and 10 seconds at 200 ° C., and then in the solder layer 3 (joint). This shows the state of occurrence of cracks C. In the drawing, a crack generated in the vertical (v) direction is referred to as a vertical crack Cv, and a crack generated in the horizontal (h) direction is referred to as a horizontal crack Ch. In the figure, the portion immediately below the ribbon 5 is locally heated when energized, and the solder layer 3 tends to thermally expand. However, since it is constrained by the peripheral portion having a low temperature, a compressive stress is generated inside. At this time, if there is a fragile portion such as the precipitate 3p in the structure of the solder layer 3, a vertical crack Cv is generated starting from the precipitate 3p. If the above is repeated further, the vertical crack width of the solder layer 3 increases and the crack generation area increases, and if it continues further, for example, a horizontal crack Ch is generated along a plurality of vertical cracks Cv 1 and Cv 2. Peels off. This horizontal crack Ch is related to the void ratio at the time of joining and the amount of the vertical crack Cv after the power cycle, but is also related to the strength and elongation of the material itself (bulk), and must be a material having a certain strength and elongation. For example, the horizontal crack Ch occurs at an early stage along the vertical crack Cv or the precipitate 3p or a void described later.

上述した脆弱部となる析出物3pについては、はんだ層3を構成する材料を中心に、様々な組成のものがあるが、その中でも、特にCuの析出物が縦クラックCv増加に起因していることがわかった。これはSn−Cu共晶合金組成がSn−0.7Cuであり、それ以上Cuを添加(増大)すると、一部のCuは接合界面にCuリッチ相を形成するが、同時に母相内にも析出する。この母相内に析出したCuリッチ相は、パワーサイクルによる熱によって、凝集し、粗大化する。すると、母相に比べ、Cuリッチ相は硬く、塑性変形しにくいため、両者の塑性、クリープ性の違いにより、Cuリッチ相を基点として縦クラックCvが発生するのである。なお、Sb、Inについても検討を行ったが、Sb、Inについても含有率を増やすと、析出物が増大するが、この場合、同時に強度、伸びが向上するため、縦クラックCvから水平クラックChへ移行することがなく、致命的な不良(接合部の急激な抵抗上昇)とならないことがわかった。   The above-described precipitate 3p which becomes a weak part has various compositions, mainly the material constituting the solder layer 3, and among them, the Cu precipitate is particularly caused by an increase in the vertical crack Cv. I understood it. This is because the Sn-Cu eutectic alloy composition is Sn-0.7Cu, and when Cu is further added (increased), a part of Cu forms a Cu-rich phase at the bonding interface, but at the same time in the parent phase. Precipitate. The Cu-rich phase precipitated in the matrix phase aggregates and becomes coarse due to heat generated by the power cycle. Then, compared to the parent phase, the Cu rich phase is hard and difficult to be plastically deformed, and therefore vertical cracks Cv are generated based on the Cu rich phase due to the difference in plasticity and creep properties between the two. In addition, although Sb and In were also examined, when the content of Sb and In is increased, precipitates increase. In this case, since strength and elongation are improved at the same time, the vertical crack Cv is changed to the horizontal crack Ch. It was found that no fatal failure (abrupt increase in resistance at the joint) occurred.

なお、上記析出物の凝集は、ヒートサイクルにおいても発生するが、明確な縦クラックCvが発生するまでには至らない。これは、パワーサイクルの場合、一度上記のような接合劣化が生じると、接合部の放熱性が低下し、発熱量が増大する。すると接合部の温度が上昇し、さらに接合劣化が加速する。このようにヒートサイクルでは設定温度固定であるのに対し、パワーサイクルでは温度が固定されず、半導体装置が熱暴走を起こすため、ヒートサイクルとは異なる接合劣化(縦クラックCv)を生じる。この縦クラックCvは特にリボン5やワイヤ等の配線部材との接合部直下の高温部付近で発生しやすく、例えばリボン5が中央付近にボンディングされていれば、中央部から縦クラックCvが生じ、端部には縦クラックCvは見られない。   In addition, although the said aggregation of a precipitate generate | occur | produces also in a heat cycle, it does not reach until a clear vertical crack Cv generate | occur | produces. This is because, in the case of a power cycle, once the above-described bonding deterioration occurs, the heat dissipation of the bonding portion decreases and the amount of heat generated increases. As a result, the temperature of the joint rises and the joint deterioration further accelerates. In this way, while the set temperature is fixed in the heat cycle, the temperature is not fixed in the power cycle, and the semiconductor device undergoes thermal runaway, resulting in junction deterioration (vertical crack Cv) different from the heat cycle. This vertical crack Cv is particularly likely to occur near the high temperature portion immediately below the joint with the wiring member such as the ribbon 5 or the wire. For example, if the ribbon 5 is bonded near the center, the vertical crack Cv is generated from the central portion, There is no vertical crack Cv at the end.

したがって、パワーサイクル時の接合劣化は主に縦クラックCvとそれに付随する水平クラックChによる剥離からなり、その評価は、実装時の抵抗増加率IR(パワーサイクル後の抵抗をRAP、パワーサイクル前の抵抗をRBPとすると、(RAP−RBP)/RBPとして表される)で行うことができる。そして、試験上、抵抗増加率が10%を超えるあたりから加速的に抵抗RAPが増大することがわかったので、抵抗増加率IRが10%となるサイクル数、あるいは所定サイクル数で抵抗増加率IRが10%に増大するか否かを製品のパワーサイクル性評価基準とする。Therefore, the joint deterioration during the power cycle mainly consists of peeling due to the vertical crack Cv and the accompanying horizontal crack Ch, and the evaluation is based on the resistance increase rate IR R (the resistance after the power cycle is R AP , If the previous resistance is R BP , it can be performed as (R AP −R BP ) / R BP ). Then, the test on, the resistance increase rate was found to increase the acceleration a resistance R AP from around more than 10% increase in resistance Cycles resistance increase rate IR R is 10%, or at a predetermined number of cycles rate IR R is a whether or not the power cycle evaluation criteria product increased to 10%.

<合金組成の最適化理由>
次に、上記2つのクラックに対する対策として、本発明の実施の形態にかかる無鉛はんだ合金の各成分の役割と最適化する際の考え方について説明する。
<Reason for optimization of alloy composition>
Next, as countermeasures against the above two cracks, the role of each component of the lead-free solder alloy according to the embodiment of the present invention and the concept for optimization will be described.

<Sb:5wt%〜15wt%>
Sbは、後述するパラメータ試験1を行った結果、5質量%以上15質量%以下を最適範囲として規定したものであり、基本的に、はんだ材として重要な物性である引張強度と伸びを調整するために最適化した。
パラメータ試験(結果は後述)においては、例えば、Sn−xSb−2Cu−1In−0.1Ni(質量%:x=0〜20)というように、所定のCu、Ni、Inを含有するSnベースの無鉛はんだ合金におけるSb含有率を変化させて引張強度と伸びを測定し、最適範囲を定めるようにした。その結果、引張強度は、Sb含有率の増大に伴って増大するが、含有率を5質量%以上にしないと、効果的に引張強度を上げることができないことが分かった。一方、伸びはSb含有率が15質量%を超えると、劇的に低下することがわかった。
<Sb: 5 wt% to 15 wt%>
As a result of the parameter test 1 described later, Sb is defined as an optimal range of 5% by mass or more and 15% by mass or less, and basically adjusts tensile strength and elongation which are important physical properties as a solder material. Optimized for.
In a parameter test (results will be described later), for example, Sn-xSb-2Cu-1In-0.1Ni (mass%: x = 0 to 20), a Sn-based material containing predetermined Cu, Ni, and In is used. The tensile strength and elongation were measured by changing the Sb content in the lead-free solder alloy so as to determine the optimum range. As a result, the tensile strength increased with an increase in the Sb content, but it was found that unless the content was increased to 5% by mass or more, the tensile strength could not be increased effectively. On the other hand, it has been found that the elongation decreases dramatically when the Sb content exceeds 15% by mass.

はんだ材の引張強度が高くかつ伸びが低いと、はんだ層3で応力緩和されずに上記で説明したとおり、パワーサイクル時に縦クラックCv伝いに水平クラックChが生じやすい。またSb含有率を増大しすぎるとはんだ層3のSb析出量が増大し、パワーサイクル時に縦クラックCvが生じやすい。よって、はんだ層3の引張強度と伸びが共に高く、またSbの析出量が少ないことが望ましく、これより、Sbの含有率は、引張強度を維持するための下限値である5質量%と、伸びを維持するための上限値である15%により定められた範囲を最適範囲とした。   When the tensile strength of the solder material is high and the elongation is low, the stress is not relaxed in the solder layer 3 and, as described above, the horizontal crack Ch tends to occur along the vertical crack Cv during the power cycle. On the other hand, if the Sb content is increased too much, the amount of Sb deposited on the solder layer 3 increases, and vertical cracks Cv are likely to occur during power cycling. Therefore, it is desirable that both the tensile strength and the elongation of the solder layer 3 are high and the amount of Sb deposited is small. From this, the Sb content is 5% by mass, which is the lower limit for maintaining the tensile strength, The range defined by 15%, which is the upper limit for maintaining the elongation, was determined as the optimum range.

<Cu:0.5wt%〜3wt%、およびNi:0.01wt%〜0.15wt%>
CuとNiは、後述するパラメータ試験2を行った結果、それぞれ0.5質量%以上3質量%以下、0.01質量%以上0.15質量%以下を最適範囲として規定したものである。指標としては、CuとNiの組成をマトリクス状のパラメータとし、はんだ材としての割れにくさを示す延性が確保できる範囲、縦クラックCvの起点となる析出物の発生の指針となるボイド率が所定割合以下となる範囲、およびパワーサイクルを行ったときのNi拡散にともなう割れが許容できる状況となる範囲、そして、パワーサイクルによる縦クラックにともなう抵抗増加で判断した性能劣化が許容値以内となる範囲、の全てを満たす範囲を最適値とした。
<Cu: 0.5 wt% to 3 wt%, and Ni: 0.01 wt% to 0.15 wt%>
Cu and Ni are defined as the optimum ranges of 0.5 mass% to 3 mass% and 0.01 mass% to 0.15 mass%, respectively, as a result of a parameter test 2 described later. As an index, the composition of Cu and Ni is used as a matrix-like parameter, a range in which ductility indicating difficulty in cracking as a solder material can be secured, and a void ratio serving as a guideline for the generation of precipitates as the starting point of the longitudinal crack Cv is predetermined. The range where the ratio is less than or equal to, the range in which cracking due to Ni diffusion during power cycling is acceptable, and the range in which the performance degradation determined by the increase in resistance due to vertical cracking due to power cycling is within the allowable value The range satisfying all of the above was set as the optimum value.

Cuについては、Cuの含有率を増大させると、延性が低下し、ボイド率が増大し、残Ni厚が増大するという傾向がある。延性が低下するのは、Cuの添加により大部分を占めるSnの粒界にCuSnなどの金属間化合物相が析出し、Cuの含有率増大に伴いその析出量も増大することにより、Snの粒界滑りが生じにくくなるためである。またボイド率が増大するのは、Cuの含有率増大に伴い液相線温度が上昇し、析出される固相が増大することにより粘度が上昇して、フラックスのガスが抜けにくくなるためである。さらに、残Ni厚が増大するのは、添加されたCuが溶融はんだ層中の接合界面に移動し、メタライズであるNiと主成分であるSnとで3元合金が生成するが、これがNiとSnとの2元合金と比較して成長速度が小さいためである。For Cu, increasing the Cu content tends to decrease ductility, increase the void fraction, and increase the residual Ni thickness. The ductility decreases because an intermetallic compound phase such as Cu 6 Sn 5 precipitates at the grain boundaries of Sn, which occupies most due to the addition of Cu, and the amount of precipitation increases as the Cu content increases. This is because Sn grain boundary sliding is less likely to occur. In addition, the void ratio increases because the liquidus temperature rises as the Cu content increases, and the viscosity increases due to an increase in the precipitated solid phase, making it difficult for the flux gas to escape. . Furthermore, the remaining Ni thickness increases because the added Cu moves to the joint interface in the molten solder layer, and a ternary alloy is formed by Ni as the metallization and Sn as the main component. This is because the growth rate is lower than that of the binary alloy with Sn.

延性については、Ni含有率が低い領域では、Cu含有率が少ないほどよく、Ni含有率が高い場合は、逆に一定以上の量が必要であったが、想定しているNi含有率の範囲ではCu含有率による大きな変化は見られなかった。ボイド率については、5質量%程度のCu含有率の範囲では顕著な変化はなかった。一方、Ni割れの結果からは、メタライズ層2Lr1のNiが拡散されるのを抑制するには、Cuを0.5質量%以上添加する必要があることがわかった。しかしながら、Cuに関しては、本発明者が見出したように、縦クラックのCvの主因がCu析出物であるので、Cu析出物を抑制するための上限値を定める必要がある。その点に着目してパワーサイクル試験を実施すると、Cuの含有率が3質量%を超えると、上記Cu化合物相中の析出物3pの量が増大し、縦クラックCvの基点となることが明らかとなった。そこで、Cuの含有率は、上限値を3質量%とした。Regarding the ductility, in the region where the Ni content is low, the lower the Cu content, the better. When the Ni content is high, a certain amount or more is necessary, but the range of the Ni content is assumed. Thus, no significant change was observed due to the Cu content. As for the void ratio, there was no significant change in the range of the Cu content of about 5% by mass. On the other hand, it was found from the results of Ni cracking that it is necessary to add 0.5 mass% or more of Cu in order to suppress diffusion of Ni in the metallized layer 2L r1 . However, regarding Cu, as the present inventors have found, since the main cause of Cv of vertical cracks is Cu precipitates, it is necessary to determine an upper limit value for suppressing Cu precipitates. When a power cycle test is carried out paying attention to this point, it is clear that when the Cu content exceeds 3 mass%, the amount of precipitates 3p in the Cu compound phase increases and becomes the base point of the vertical crack Cv. It became. Therefore, the upper limit of the Cu content is 3% by mass.

上記の結果に基づき、Sn−10Sb−1Inをベースとした合金では、Cuを0.5質量%以上3質量%以下の範囲で含有することにより、高信頼な接合が得られる。なお、Cuの含有率は、Ni拡散抑制効果、ボイド率、延性、Cu化合物析出量のバランスにより、2質量%前後が最も望ましい。また、パワーサイクルに関しては、Niの含有率を0.01質量%以上0.15質量%以下に設定すると、Cuの含有率が0.5質量%以上3質量%以下であれば、抵抗上昇は10%以下と高信頼な接合が得られている。   Based on the above results, in an alloy based on Sn-10Sb-1In, Cu is contained in a range of 0.5 mass% or more and 3 mass% or less, whereby a highly reliable joint is obtained. The Cu content is most preferably about 2% by mass due to the balance of Ni diffusion suppression effect, void ratio, ductility, and Cu compound precipitation. Regarding the power cycle, when the Ni content is set to 0.01% by mass or more and 0.15% by mass or less, if the Cu content is 0.5% by mass or more and 3% by mass or less, the resistance increase is A highly reliable bond of 10% or less is obtained.

Niについては、Niの含有率が増大するほど、メタライズの拡散速度が遅く、高温における接合強度が長く保たれる。つまり耐熱性が優れている。その効果は、0.01質量%以上で顕著である。一方、Niの含有率が0.15質量%を超えると顕著にボイドが増加する。ボイドが多いと半導体デバイスの発熱を逃がす点で不利となるので、現状では約0.15質量%以下が目安となる。従って、Ni含有率が0.15質量%以下に制御されることで、高信頼な接合が得られる。なお、Ni含有率の下限については、0.01質量%未満でも効果は得られるが、効果が顕著に現われる0.01質量%以上が望ましい。また、Niの含有率については、はんだ付温度270℃でのSn中への固溶限界に近い0.1質量%前後が最も望ましい。   As for the Ni content, as the Ni content increases, the metallization diffusion rate decreases and the bonding strength at a high temperature is maintained longer. That is, heat resistance is excellent. The effect is remarkable at 0.01 mass% or more. On the other hand, when the Ni content exceeds 0.15% by mass, voids increase remarkably. When there are many voids, it is disadvantageous in that the heat generated by the semiconductor device is released, so at present, the reference is about 0.15% by mass or less. Therefore, highly reliable joining is obtained by controlling the Ni content to 0.15% by mass or less. In addition, about the minimum of Ni content rate, although an effect is acquired even if it is less than 0.01 mass%, 0.01 mass% or more from which an effect appears notably is desirable. The Ni content is most preferably about 0.1% by mass, which is close to the solid solution limit in Sn at a soldering temperature of 270 ° C.

<In:0.1wt%〜5wt%>
Inは、後述するパラメータ試験3を行った結果、0.1質量%以上5質量%以下を最適範囲として規定したものであり、基本的に、はんだ材として重要な物性である延性強化とボイド率を抑えるために最適化した。
上述したSb添加によって、はんだ材は硬化する。そこで、硬くなりすぎたはんだ材にInを添加し、In相が分散されることによる延性強化で、割れにくく応力を緩和できる金属組織を形成する。また、Inを添加することではんだ材の濡れ性が向上する。これは融点が低下することによって反応性が向上するためである。しかしながら、Inが活性な元素であるため、添加しすぎるとはんだ材が酸化されてかえって濡れ性が低下する。濡れ性についても、ボイド率で評価でき、Inについては、ボイド率が一定値以下となるための上限値と下限とによって組成の最適範囲を規定した。
<In: 0.1 wt% to 5 wt%>
As a result of performing parameter test 3 to be described later, In is defined as 0.1% by mass or more and 5% by mass or less as an optimum range, and basically, ductility strengthening and void ratio which are important physical properties as a solder material. Optimized to suppress.
The solder material is cured by the above-described addition of Sb. Therefore, In is added to the solder material that has become too hard, and a ductile strengthening due to the dispersion of the In phase forms a metal structure that is hard to crack and can relieve stress. Moreover, the wettability of the solder material is improved by adding In. This is because the reactivity is improved by lowering the melting point. However, since In is an active element, if it is added too much, the solder material is oxidized and the wettability is lowered. The wettability can also be evaluated by the void ratio. For In, the optimum range of the composition is defined by the upper limit and the lower limit for the void ratio to be below a certain value.

つぎに、上述した各組成の最適範囲を定めるために行ったパラメータ試験について詳細に説明する。
<パラメータ試験1:Sb>
試験は、Cu、Ni、Inの組成を一定とし、SnをベースとしてSb組成を変化させた無鉛はんだ合金で丸棒を作成し、引張強度と伸びを測定した。試験対象としては、Sn−xSb―2Cu−1In−0.1Ni(質量%:x=0、2.5、5、10、15、16、18、20、30、40)の10種類の合金を試作した。具体的には、純度99.5%のSn、Sb、Cu、In、Niとを、合計で2kgになるように、xの値の異なる合金毎に秤量する。そして、高周波溶解炉で最高温度が700℃程度になるまで加熱し、溶け残りが無いことを確認した上で、直径40×長さ250mmの鋳型で鋳造して鋳造サンプルを作成する。さらに、凝固後、中央部を基準として直径25mm×長さ180mmの丸棒に機械加工し、引張試験のチャック部として直径25mm×長さ40mm、平行部直径8mm×長さ90mmにさらに機械加工した引張試験片を作成した。作成した組成の異なる無鉛はんだ合金の引張試験片に対し引張速度0.5mm/分の速度で引張試験を実施した。
Next, a detailed description will be given of a parameter test performed to determine the optimum range of each composition described above.
<Parameter test 1: Sb>
In the test, a round bar was made of a lead-free solder alloy in which the composition of Cu, Ni, and In was constant and the Sb composition was changed based on Sn, and the tensile strength and elongation were measured. As a test object, Sn-xSb-2Cu-1In-0.1Ni (mass%: x = 0, 2.5, 5, 10, 15, 16, 18, 20, 30, 40) was used. Prototype. Specifically, Sn, Sb, Cu, In, and Ni having a purity of 99.5% are weighed for each alloy having a different value of x so that the total is 2 kg. And it heats with a high frequency melting furnace until the maximum temperature becomes about 700 degreeC, After confirming that there is no unmelted, it casts with the casting mold of diameter 40x length 250mm, and produces a casting sample. Further, after solidification, it was machined into a round bar having a diameter of 25 mm × length of 180 mm with the center as a reference, and further machined as a chuck part for tensile testing to a diameter of 25 mm × length of 40 mm and a parallel part diameter of 8 mm × length of 90 mm. Tensile test pieces were prepared. Tensile tests were performed at a tensile rate of 0.5 mm / min on the tensile test specimens of lead-free solder alloys having different compositions.

なお、上述の引張試験片を加工する際に、2つのチャック部の近傍からドリルで切粉を採取して発光分析による定量分析も行った。その結果、各組成については、有効数字1桁で狙い値通りの含有率となっていることが確認できた。また外観チェックによりはんだボイド、表面欠陥および変色がないことを確認した。   In addition, when processing the above-described tensile test piece, chips were collected from the vicinity of the two chuck portions and quantitative analysis was performed by emission analysis. As a result, for each composition, it was confirmed that the content was as intended with a single significant digit. The appearance check confirmed that there were no solder voids, surface defects, and discoloration.

図5は、上記引張試験での引張強度と伸びの測定結果を示しており、図中横軸はSb含有率で、縦軸は、左側が引張強度(●:黒丸)、右側が伸び(◇:ひし形)である。図に示すように、引張強度については、Sbを添加していくほど向上するが、5質量%まではSb含有率に対して顕著に引張強度が増大し、それ以降は引張強度の伸びは緩やかとなる。逆にいえば、Sb含有率が5質量%を下回ると引張強度が大きく低下し、しかも含有率の変化に敏感に変化する。はんだ材にとって、高く安定した引張強度が望ましいので、引張強度の点からはSbの含有率は5%以上が望ましいことが分かる。一方、伸びについてはSb含有率増大に伴い低下し、15質量%以降で急激に低下することがわかった。はんだ材にとって、高く安定した伸びが望ましいので、伸びの点からは、Sb含有率を15質量%以下に抑えることが望ましいことが分かる。   FIG. 5 shows the measurement results of tensile strength and elongation in the above tensile test, where the horizontal axis is the Sb content, the vertical axis is the tensile strength (●: black circle) on the left side, and the elongation on the right side (◇ : Diamond). As shown in the figure, the tensile strength improves as Sb is added, but the tensile strength increases remarkably with respect to the Sb content up to 5% by mass, and thereafter, the tensile strength increases slowly. It becomes. In other words, if the Sb content is less than 5% by mass, the tensile strength is greatly reduced, and changes sensitively to changes in the content. Since a high and stable tensile strength is desirable for the solder material, it is understood that the Sb content is preferably 5% or more from the viewpoint of tensile strength. On the other hand, it was found that the elongation decreased with an increase in the Sb content, and rapidly decreased after 15% by mass. Since high and stable elongation is desirable for the solder material, it is understood that it is desirable to suppress the Sb content to 15% by mass or less from the viewpoint of elongation.

つまり、引張強度と伸びを両立させるためには、機械強度による下限値5質量%と、伸びによる上限値15質量%に挟まれた範囲ORSb(5wt%〜15wt%)がSbの最適範囲であるといえる。That is, in order to achieve both tensile strength and elongation, the range OR Sb (5 wt% to 15 wt%) sandwiched between the lower limit value of 5 mass% due to mechanical strength and the upper limit value of 15 mass% due to elongation is the optimum range of Sb. It can be said that there is.

また、上記鋳造サンプルのうち、Sb含有率が0〜30質量%のものについては、ほぼ中央部から数十mg程度をDSC用サンプル(DSC−1〜DSC−9)として取出し、DSC(Differential Scanning Calorimeter:示差走査熱量計)測定によって、固相線温度と液相線温度とを算出した。ここで、固相線温度は、一定の昇温速度(5K/min)で加熱した場合に得られる吸熱カーブで最初に表れるピークの最低温度と定義している。また、液相線温度は、一定の冷却速度(−K/min)で冷却した場合に得られる発熱カーブで最初に表れるピークの最高温度と定義している。そのため、加熱時のピークの最低温度と冷却時のピークの最高温度から、それぞれ固相線温度と液相線温度とを算出する事ができる。表1に、DSC測定によって算出した固相線温度および液相線温度のSb含有率依存性を示す。   Further, among the above cast samples, those having an Sb content of 0 to 30% by mass, about several tens mg from the central part are taken out as DSC samples (DSC-1 to DSC-9), and DSC (Differential Scanning) Calorimeter: differential scanning calorimeter) was used to calculate the solidus temperature and the liquidus temperature. Here, the solidus temperature is defined as the lowest temperature of the peak first appearing in the endothermic curve obtained when heating at a constant rate of temperature increase (5 K / min). The liquidus temperature is defined as the maximum temperature of the peak first appearing in the exothermic curve obtained when cooling at a constant cooling rate (−K / min). Therefore, the solidus temperature and the liquidus temperature can be calculated from the lowest peak temperature during heating and the highest peak temperature during cooling, respectively. Table 1 shows the Sb content dependency of the solidus temperature and the liquidus temperature calculated by DSC measurement.

Figure 2012077228
Figure 2012077228

表1に示すように、Sb含有率の増加に伴って液相線温度が上昇する。その上昇は、Sb含有率が15質量%(DSC−5)までは緩やかであるが、15質量%を超えると(DSC−6)、急激になっている。図1で示した伸びの低下は、Sb含有率の増大に伴って微細に分散していたSbが粗大化し、Sb含有率が15質量%を超えるとSb析出量が急激に増大するためと考えられる。DSC試験において液相線が急激に上昇するSb含有率の値と、伸びの変化についての閾値との間に相関が得られていることから、上記伸びの閾値が確かなものであることが確認できた。はんだ材3Mは、引張強度と伸びが共に高く、かつSbの析出量が少ないことが望ましいので、Sbの含有率を5質量%以上15質量%以下の範囲と定める。   As shown in Table 1, the liquidus temperature rises with increasing Sb content. The increase is gradual until the Sb content is 15% by mass (DSC-5), but is abrupt when it exceeds 15% by mass (DSC-6). The decrease in elongation shown in FIG. 1 is thought to be due to the fact that the finely dispersed Sb becomes coarser as the Sb content increases, and that the Sb precipitation amount increases abruptly when the Sb content exceeds 15 mass%. It is done. In the DSC test, the correlation between the Sb content value at which the liquidus increases rapidly and the threshold value for the change in elongation is obtained, so it is confirmed that the threshold value for elongation is certain. did it. Since it is desirable that the solder material 3M has both high tensile strength and elongation and a small amount of Sb is precipitated, the Sb content is determined to be in the range of 5% by mass to 15% by mass.

また、表1に示すように、Sb含有率の増大に伴い、液相線温度は上昇するが、固相線温度はさほど上昇しない。接合温度が固液共存領域(固相線温度以上液相線温度以下の領域)になるとボイドができやすくなるので、通常良好な濡れ性を得られるためのはんだの接合温度としては、液相線温度+30℃程度以上が望ましい。Sbの含有率が15質量%の場合(DSC−5)の液相線温度は255℃であり。一般の加熱ヒータの上限が300℃であるので、15質量%以下のSb添加であれば300℃を超えるような特殊加熱装置を用いる必要が無い。一方、Sbの含有率が16質量%以上の場合(DSC−6)の液相線温度は290℃であり、その場合、良好な濡れ性を得るためには、特殊なヒータが必要となる。したがって、装置の簡素化、低コスト化の観点からもSbの含有率を15質量%以下に定めることが望ましい。   Moreover, as shown in Table 1, the liquidus temperature rises with increasing Sb content, but the solidus temperature does not rise so much. Voids are easily formed when the bonding temperature is in the solid-liquid coexistence region (the region between the solidus temperature and the liquidus temperature), so the soldering temperature for obtaining good wettability is usually the liquidus. A temperature of about + 30 ° C or higher is desirable. When the Sb content is 15 mass% (DSC-5), the liquidus temperature is 255 ° C. Since the upper limit of a general heater is 300 ° C., there is no need to use a special heating device exceeding 300 ° C. if Sb is added in an amount of 15% by mass or less. On the other hand, when the Sb content is 16% by mass or more (DSC-6), the liquidus temperature is 290 ° C. In that case, a special heater is required to obtain good wettability. Therefore, it is desirable to set the Sb content to 15% by mass or less from the viewpoint of simplification of the apparatus and cost reduction.

また固相線温度以上で基板側メタライズ層2Lr2の拡散速度が顕著に大きくなることから、固液共存領域(固相線温度以上液相線温度以下の領域)は狭いことが望ましい。Sbの含有率が15質量%の場合(DSC−5)の固液共存領域の温度差は21℃であり、16質量%の場合(DSC−6)の56℃や、20質量%の場合(DSC−8)の81℃に比べて狭い。したがって、Sb含有率を15質量%以下にすることは、パワーサイクルに対する耐性にとっても望ましい組成であるといえる。Further, since the diffusion rate of the substrate-side metallization layer 2L r2 is significantly increased above the solidus temperature, it is desirable that the solid-liquid coexistence region (region above the solidus temperature and below the liquidus temperature) is narrow. When the Sb content is 15% by mass (DSC-5), the temperature difference in the solid-liquid coexistence region is 21 ° C., and when 16% by mass (DSC-6) is 56 ° C. or 20% by mass ( Narrower than 81 ° C. of DSC-8). Therefore, it can be said that setting the Sb content to 15% by mass or less is a desirable composition for resistance to power cycle.

なお、Sb組成の最適化については、後述する他の成分のパラメータ試験で得た最適範囲の上限値、下限値に相当する、Cu含有率が0.5質量%以上3質量%未満、In含有率が0.1質量%以上5質量%以下、Ni含有率が0.01質量%以上0.15質量%以下の範囲においても同様の試験を実施したが、同様の効果が得られることが確認できた。   As for the optimization of the Sb composition, the Cu content corresponding to the upper limit and lower limit of the optimum range obtained in the parameter test of other components described later is 0.5 mass% or more and less than 3 mass%, In content The same test was performed in the range where the rate was 0.1% by mass or more and 5% by mass or less and the Ni content was 0.01% by mass or more and 0.15% by mass or less, but it was confirmed that the same effect was obtained. did it.

<パラメータ試験2:Cu,Ni>
試験は、Sb、Inの組成を一定とし、SnをベースとしてCuとNi組成を変化させた無鉛はんだ合金を作成し、材料としての延性と、その無鉛はんだ合金で形成したはんだ材を用いて半導体装置を作成した時のはんだ層中のボイド率、作成した半導体装置をパワーサイクルにかけた時のメタライズ拡散によるNi割れの発生の有無、および本発明者が見出したパワーサイクル時の縦クラックによる剥離を評価するための抵抗増加率を測定した。試験対象としては、Sn−10Sb−1In−xCu−yNi(質量%:x=0、0.25、0.5、1、2、2.5、3、5,y=0、0.01、0.1、0.15、0.16、0.17、0.20)の56種類の合金を試作した。具体的には、純度99.5%のSn、Sb、Cu、In、Niとを、合計で2kgになるように、x、yの値の異なる合金毎に秤量する。そして、各材料を窒素雰囲気中で高周波溶解し、700℃になったことと溶け残りが無いことを確認した上で、幅20mm×高さ10mm×長さ150mmの鋳型で鋳塊を鋳造した。
<Parameter test 2: Cu, Ni>
In the test, a lead-free solder alloy in which the composition of Sb and In is constant and the composition of Cu and Ni is changed on the basis of Sn is prepared, and the semiconductor is formed using ductility as a material and a solder material formed of the lead-free solder alloy. The void ratio in the solder layer when the device was created, the presence or absence of Ni cracking due to metallization diffusion when the created semiconductor device was subjected to power cycle, and the peeling caused by the longitudinal crack during power cycle found by the present inventors The resistance increase rate for evaluation was measured. As a test object, Sn-10Sb-1In-xCu-yNi (mass%: x = 0, 0.25, 0.5, 1, 2, 2.5, 3, 5, y = 0, 0.01, Trial of 56 types of alloys (0.1, 0.15, 0.16, 0.17, 0.20). Specifically, Sn, Sb, Cu, In, and Ni having a purity of 99.5% are weighed for each alloy having different values of x and y so as to be 2 kg in total. Each material was melted at high frequency in a nitrogen atmosphere, and after confirming that the temperature reached 700 ° C. and that there was no undissolved material, an ingot was cast with a mold having a width of 20 mm × height of 10 mm × length of 150 mm.

この鋳塊の両端と中央部について、ドリルで切粉を採取し、切粉のSb、Cu、Niについて、プラズマ融合発光分析で、定量分析を行い、有効数字1桁で狙い値通りの鋳塊が得られていることを確認した。その後、この鋳塊を圧延機で厚さ0.1mmに加工して、表面を10%塩酸で洗浄した後、十分に水洗し、カッターにより8mm角のペレット状に切断したものを試験サンプルとした。表2に試験対象である56種の無鉛はんだ合金のCuとNiの組成を示す。また、表2において、サンプル名に「実施例」と記したものが、パラメータ試験2の試験結果を総合して設定した最適範囲に適合する組成の合金、「比較例」と記したものが、最適範囲からはずれた組成の合金である。   For both ends and the center of this ingot, the chips are collected with a drill, the Sb, Cu, and Ni of the chips are quantitatively analyzed by plasma fusion emission spectrometry, and the ingot is exactly as intended with a single digit. It was confirmed that Thereafter, this ingot was processed into a thickness of 0.1 mm with a rolling mill, and the surface was washed with 10% hydrochloric acid, then sufficiently washed with water, and cut into 8 mm square pellets with a cutter as a test sample. . Table 2 shows the composition of Cu and Ni of 56 kinds of lead-free solder alloys to be tested. Moreover, in Table 2, what is described as "Example" in the sample name is an alloy having a composition that fits the optimal range set by comprehensively setting the test results of Parameter Test 2, and what is described as "Comparative Example" An alloy with a composition deviating from the optimum range.

Figure 2012077228
Figure 2012077228

<パラメータ試験2A:延性評価>
無鉛はんだ合金の材料としての延性は、鋳塊を圧延機で厚さ0.1mmに圧延する際に割れが生じるか否かで評価した。このとき、切断中に一部割れが生じたものを不可(×:バツ)、割れなかったものを良(○:まる)とした。また、延性にのみついて考えると、Ni、Cuを含有しない場合が優れているので、別途、Sn−10Sb−1In(x=y=0)の合金について同様に圧延したときの状態を最良とし、○評価のうち、目視による相対評価で、最良状態に匹敵する場合を優(◎:二重丸)とした。その評価結果を表3に示す。
<Parameter test 2A: Ductility evaluation>
The ductility of the lead-free solder alloy as a material was evaluated by whether or not cracking occurred when the ingot was rolled to a thickness of 0.1 mm with a rolling mill. At this time, the case where a partial crack was generated during cutting was determined to be unacceptable (x: x), and the sample that did not crack was determined to be good (o: circle). Further, considering only ductility, the case where Ni and Cu are not contained is excellent. Therefore, the state when separately rolled for an alloy of Sn-10Sb-1In (x = y = 0) is best, ○ Out of the evaluation, the case where it was comparable to the best state by visual relative evaluation was evaluated as excellent (優: double circle). The evaluation results are shown in Table 3.

Figure 2012077228
Figure 2012077228

表3に示すように、もっとも延性がよい優となるのは、CuおよびNi含有率がともに低い領域(Cu:1wt%以下、Ni:0.01%以下)である。また、Ni含有率が0.16%を超えるとCu含有率を1質量%以下、0.25質量%以下というように、さらに低くしなければ不可になるという結果が得られた。そして、CuとNiの組成の組合せ全体を見ると、「良」以上が得られる組成は、表中太線より左側に位置する範囲となる。   As shown in Table 3, the most excellent ductility is excellent in a region where both Cu and Ni contents are low (Cu: 1 wt% or less, Ni: 0.01% or less). Further, when the Ni content exceeds 0.16%, the Cu content is 1% by mass or less, 0.25% by mass or less, and the result is that it becomes impossible unless the content is further lowered. When looking at the overall combination of Cu and Ni compositions, the composition that yields “good” or higher is in the range located on the left side of the thick line in the table.

<パラメータ試験2B:ボイド率評価>
ボイド率は、合金の種類ごとに半導体装置を製造し、製造した半導体装置中のはんだ層3部分の透過X線画像を用いて評価した。具体的には、上述した製造方法(図2)により、合金の種類ごとに、10個の半導体装置1を製造する。そして、透過X線装置を用いて、製造した半導体装置1の半導体素子2の表面からX線を入射させ、得られた画像を画像処理装置で2値化し、得られた面積の和の平均値を平均ボイド率として算出した。表4に、製造された半導体装置1の合金の種類(実施例、比較例)ごとのはんだ層3中のボイド率を示す。なお、ボイド率の値は、合金の種類(実施例、比較例)ごとに作成したそれぞれ10個の半導体装置に対して算出したボイド率の平均値である。
<Parameter test 2B: Void rate evaluation>
The void ratio was evaluated by manufacturing a semiconductor device for each type of alloy and using a transmission X-ray image of the solder layer 3 portion in the manufactured semiconductor device. Specifically, ten semiconductor devices 1 are manufactured for each type of alloy by the above-described manufacturing method (FIG. 2). Then, using a transmission X-ray device, X-rays are made incident from the surface of the semiconductor element 2 of the manufactured semiconductor device 1, the obtained image is binarized by the image processing device, and the average value of the sum of the obtained areas Was calculated as an average void fraction. Table 4 shows the void ratio in the solder layer 3 for each type of alloy (Example, Comparative Example) of the manufactured semiconductor device 1. In addition, the value of a void ratio is an average value of the void ratio calculated with respect to each of ten semiconductor devices created for each type of alloy (Examples and Comparative Examples).

Figure 2012077228
Figure 2012077228

表4に示すように、ボイド率は主にNi含有率の影響を受け、Niの含有率増大に伴い、ボイド率が増大し、とくにNiの含有率が0.15質量%を超えると顕著にボイド率が増大した。ボイド率が高くなる(ボイドが多くなる)と、熱伝導率が低下するので、半導体デバイスの発熱を逃がす点で不利となる。そのため、実効的な熱伝導率を得るには、ボイド率を14%以下に抑える必要があることが、実験的に得られている。したがって、表4に示す結果から、熱伝導率を一定以上に保てるボイド率に抑えることができる組成は、表中太線より左側に位置するNi含有率が0.15%以下の範囲となる。   As shown in Table 4, the void ratio is mainly influenced by the Ni content, and as the Ni content increases, the void ratio increases, particularly when the Ni content exceeds 0.15% by mass. Void rate increased. If the void ratio increases (the number of voids increases), the thermal conductivity decreases, which is disadvantageous in terms of releasing the heat generated by the semiconductor device. Therefore, it has been experimentally obtained that the void ratio needs to be suppressed to 14% or less in order to obtain an effective thermal conductivity. Therefore, from the results shown in Table 4, the composition that can suppress the void ratio that can keep the thermal conductivity above a certain level has a Ni content located to the left of the thick line in the table in the range of 0.15% or less.

<パラメータ試験2C:パワーサイクル寿命評価>
はんだ接合部の主たる2つの劣化原因のうち、メタライズ拡散にともなう剥離をパワーサイクル時のNi割れで、縦クラックにともなう剥離を抵抗増加率によって評価した。具体的には、パラメータ試験2Bと同様に、合金の種類ごとに、10個の半導体装置1を製造する。そして、パワーサイクルとしては、パワーオフ時を40℃、パワーオン時を200℃と設定して、パワーオフ10秒、パワーオン10秒を1サイクルとして、5000サイクルのパワーサイクル処理をおこなった。パワーオン時は、リボン5と端子4Ea間に電流を流して半導体素子2の表面温度をサーモグラフィーで測定し、表面の最高温度が200℃になるように電流を調整した。なお、サイクル初期において表面の最高温度が200℃になる条件は170A(印加電圧15V)であった。
<Parameter test 2C: Power cycle life evaluation>
Of the two main causes of deterioration of the solder joints, peeling due to metallization diffusion was evaluated by Ni cracking during power cycle, and peeling due to vertical cracking was evaluated by a resistance increase rate. Specifically, ten semiconductor devices 1 are manufactured for each type of alloy as in the parameter test 2B. As the power cycle, the power off process was set to 40 ° C., the power on time was set to 200 ° C., and the power cycle process of 5000 cycles was performed with the power off 10 seconds and the power on 10 seconds as one cycle. When the power was turned on, a current was passed between the ribbon 5 and the terminal 4Ea, the surface temperature of the semiconductor element 2 was measured by thermography, and the current was adjusted so that the maximum surface temperature was 200 ° C. It should be noted that the condition that the maximum surface temperature was 200 ° C. at the beginning of the cycle was 170 A (applied voltage 15 V).

そして、パワーサイクル後、Ni拡散により全てのサンプルで剥離が(Ni割れ)生じた合金を致命的な不良と評価して「×:バツ」、一部剥離が生じたサンプルがあった合金を「△:三角」、剥離が生じなかった合金を良と評価して「○:丸」を付した。表5に、製造された半導体装置1の合金の種類(実施例、比較例)ごとのパワーサイクル後のNi割れについての評価結果を示す。   Then, after power cycling, an alloy in which peeling (Ni cracking) occurred in all samples due to Ni diffusion was evaluated as a fatal failure, and “x: x”, “Δ: Triangle”, an alloy that did not peel off was evaluated as good, and “◯: Circle” was attached. In Table 5, the evaluation result about the Ni crack after the power cycle for every kind (Example, comparative example) of the alloy of the manufactured semiconductor device 1 is shown.

Figure 2012077228
Figure 2012077228

表5に示すように、Sn−10Sb−1Inはんだ合金で、Niが添加されていない場合(0.00%)は、Cuの含有率にかかわらず、メタライズであるNiの拡散により、一部あるいはサンプル全てで剥離が生じている。さらに、Cu含有率が0.5%を下回る場合(0.25%以下)は、Niの含有率にかかわらず、メタライズであるNiの拡散により、一部あるいはサンプル全てで剥離が生じている。つまり、Ni割れの結果からは、メタライズ層2Lr1のNiが拡散されるのを抑制するには、表中太線より右上に位置するCuを0.5質量%以上、Niを0.01%以上含有する組成が有効であることがわかった。As shown in Table 5, in the case of Sn-10Sb-1In solder alloy, when Ni is not added (0.00%), it is partially or All samples have delamination. Further, when the Cu content is less than 0.5% (0.25% or less), peeling is caused in a part or all of the sample due to diffusion of Ni as metallization regardless of the Ni content. That is, from the result of Ni cracking, in order to suppress diffusion of Ni in the metallized layer 2L r1 , Cu located at the upper right of the thick line in the table is 0.5% by mass or more and Ni is 0.01% or more. It was found that the contained composition is effective.

また、パワーサイクル後の抵抗増加率((RAP−RBP)/RBP)を算出した結果、サンプル全てが10%以下であった合金を良と評価して「○:丸」、各サンプルの抵抗増加率の平均値は10%以下であったが、個別に10%以上となるサンプルがあった合金を△、サンプル全ての抵抗増加率が10%以上になった合金を不良と評価して「×:ばつ」を付した。表6に、製造された半導体装置1の合金の種類(実施例、比較例)ごとのパワーサイクル後の抵抗増加率による評価結果を示す。Moreover, as a result of calculating the rate of increase in resistance after power cycle ((R AP -R BP ) / R BP ), an alloy in which all the samples were 10% or less was evaluated as good. The average value of the rate of increase in resistance was 10% or less. However, an alloy having a sample with 10% or more individually was evaluated as △, and an alloy with a resistance increase rate of 10% or more in all samples was evaluated as defective. "X: Batsu". Table 6 shows the evaluation results based on the resistance increase rate after the power cycle for each type of alloy (Example, Comparative Example) of the manufactured semiconductor device 1.

Figure 2012077228
Figure 2012077228

表6に示す評価結果のうち、破線より左下の領域では、上記のようにNi割れを生じているので、抵抗増加の原因として縦クラックCvが関与しているか否かは不明である。しかし、破線より右上の領域では、Ni割れが生じていないので、Ni割れ以外の原因で抵抗が増大したことになるので、破線より右上の領域について検討する。Cuの含有率が3質量%を超える(5wt%)と、Cu化合物相中の析出物3pの量が増大し、縦クラックCvの基点となる。また、Niの含有率が0.15質量%を超えると、抵抗増加率により不良と判定する率が急増し、0.16質量%の場合、Cu含有率が0.5wt%と1wt%のときを除き、×または△となった。これは、NiやCuの含有率が多くなることで、縦クラックの基点が増加し、またボイド伝い、あるいは縦クラック伝いに水平クラックが発生したためと考えられる。そして、この考え方は、縦クラックCvの起点となる析出物の指標となる初期接合時のボイド率を評価した表4においてNi含有率が0.16質量%以上でボイド率が急増する事実、さらには表3で示した延性が低下する傾向と一致している。   Among the evaluation results shown in Table 6, in the lower left region from the broken line, Ni cracking occurs as described above, and therefore it is unclear whether or not the vertical crack Cv is involved as a cause of the increase in resistance. However, since the Ni crack does not occur in the upper right area from the broken line, the resistance has increased due to a cause other than the Ni crack. Therefore, the upper right area from the broken line is examined. When the Cu content exceeds 3% by mass (5 wt%), the amount of the precipitate 3p in the Cu compound phase increases, which becomes the base point of the vertical crack Cv. Further, when the Ni content exceeds 0.15% by mass, the rate of determination as defective due to the resistance increase rate increases rapidly. When the Ni content is 0.16% by mass, the Cu content is 0.5 wt% and 1 wt%. Except for, x or Δ. This is considered to be because the base point of the vertical crack increased as the content of Ni or Cu increased, and the horizontal crack occurred along the void or along the vertical crack. And this idea is based on the fact that in Table 4 in which the void ratio at the time of initial bonding, which is an index of the precipitate that becomes the starting point of the vertical crack Cv, was evaluated, the void ratio rapidly increased when the Ni content was 0.16% by mass or more, Is consistent with the tendency for ductility to decrease as shown in Table 3.

つまり、縦クラックCvにともなう抵抗増加率の結果からは、Cu含有率を3%以下に抑えるとともに、Ni含有率についても表中太線より右側の位置になるように上限値を設定する事が縦クラックに起因する接合劣化を防止するために望ましいことが分かる。   That is, from the result of the resistance increase rate with the vertical crack Cv, it is possible to suppress the Cu content to 3% or less and to set the upper limit value so that the Ni content is also on the right side of the thick line in the table. It can be seen that it is desirable to prevent joint degradation due to cracks.

したがって、パラメータ試験2A、2B、およびパワーサイクルを考慮した2Cの結果、すべての条件を満たす範囲として、Cu含有率を0.5質量%以上、3%質量%以下、かつNi含有率を0.01%以上、0.15%とする。なお、Ni含有率の下限については、0.01質量%未満でも効果は得られるが、効果の発現が確認された0.01質量%を下限値とした。   Therefore, as a result of the parameter tests 2A and 2B and 2C in consideration of the power cycle, the Cu content is 0.5% by mass or more and 3% by mass or less and the Ni content is 0. 01% or more and 0.15%. In addition, about the minimum of Ni content rate, although an effect is acquired even if it is less than 0.01 mass%, 0.01 mass% by which expression of the effect was confirmed was made into the minimum value.

なお、パラメータ試験1で設定したSb含有率が5質量%以上15質量%以下の範囲、また後述するパラメータ試験3で設定したIn含有率が0.1質量%以上5質量%以下の範囲で作成した無鉛はんだ合金で、上述同様の実験においても、全く同様の効果が得られることが確認された。   The Sb content set in the parameter test 1 is in the range of 5 to 15% by mass, and the In content set in the parameter test 3 to be described later is in the range of 0.1 to 5% by mass. It was confirmed that the same effect was obtained with the lead-free solder alloy obtained in the same experiment as described above.

<パラメータ試験3:In>
試験は、Sb、Cu、Niの組成を一定とし、SnをベースとしてIn組成を変化させてはんだペレットを作成し、パラメータ試験2B同様に半導体装置を試作して画像解析によりボイド率を評価した。試験対象としては、Sn−10Sb―2Cu−xIn−0.1Ni(質量%:x=0、0.1、0.5、1、3、5、6、7、8)の9種類の合金を試作した。また、Inは、希少金属(レアメタル)の1種であるので、合金組成毎のコストについても試算した。コストは、Sn−10Sb−2Cu−0.1Niを1kg当たり3000円、インジウムを1kg当たり6万円とし、In無添加合金(比較例37)の価格に対する価格比として算出した。表7に合金種(実施例、比較例)ごとにボイド率を測定した平均値と試算したコスト比を示す。
<Parameter test 3: In>
In the test, the composition of Sb, Cu, and Ni was made constant, and the In composition was changed based on Sn to create solder pellets. Similar to the parameter test 2B, a semiconductor device was prototyped and the void ratio was evaluated by image analysis. As test objects, nine types of alloys of Sn-10Sb-2Cu-xIn-0.1Ni (mass%: x = 0, 0.1, 0.5, 1, 3, 5, 6, 7, 8) were used. Prototype. In addition, since In is a kind of rare metal, the cost for each alloy composition was also estimated. The cost was calculated as a price ratio with respect to the price of In-free alloy (Comparative Example 37) with Sn-10Sb-2Cu-0.1Ni of 3000 yen per kg and indium of 60,000 yen per kg. Table 7 shows the average value of the void ratio measured for each alloy type (Example, Comparative Example) and the estimated cost ratio.

Figure 2012077228
Figure 2012077228

また、図6は、パラメータ試験3における、ボイド率の測定結果を示しており、図中横軸はIn含有率で、縦軸が平均ボイド率である。Inは低融点(156℃)であるため、わずかの量(0.1質量%)を添加することで、融点が下がるとともに反応性が向上するので、ボイド率が大きく低下(改善)する。一方、Inは他の材料に比べ、酸化しやすいため、5質量%よりも多く添加すると、析出したInが酸化し、濡れ性を阻害するため、かえってボイド率が上昇(悪化)する。そのため、ボイド率の上限の閾値Thを14%とすると、ボイド率を閾値Th以下に保つためには、In含有率を0.1質量%以上5質量%以下の範囲ORInに設定する事が望ましいことがわかる。Moreover, FIG. 6 has shown the measurement result of the void rate in the parameter test 3, and a horizontal axis is In content rate in a figure, and a vertical axis | shaft is an average void rate. Since In has a low melting point (156 ° C.), the addition of a slight amount (0.1% by mass) lowers the melting point and improves the reactivity, so that the void ratio is greatly reduced (improved). On the other hand, In is easily oxidized as compared with other materials, if it is added in an amount of more than 5% by mass, the precipitated In is oxidized and the wettability is inhibited, so that the void ratio is increased (deteriorated). Therefore, assuming that the upper limit threshold Th V of the void ratio is 14%, in order to keep the void ratio below the threshold Th V , the In content is set to a range OR In of 0.1 mass% or more and 5 mass% or less. I understand that things are desirable.

また、表に示すように、Inは高価であるため、Inを多く添加するほどコストが上昇するので、In含有率は、3質量%以下に抑えることがさらに望ましい。   In addition, as shown in the table, since In is expensive, the cost increases as more In is added. Therefore, the In content is more preferably suppressed to 3% by mass or less.

なお、In組成の最適化については、上述した他のパラメータ試験で設定した最適範囲の上限値、下限値に相当する、Sb含有率が5質量%以上15質量%以下、Cu含有率が0.5質量%以上3質量%未満、In含有率が0.1質量%以上5質量%以下、Ni含有率が0.01質量%以上0.15質量%以下の範囲においても同様の試験を実施したが、同様の効果(ボイド率低減効果)が得られることが確認できた。   As for the optimization of the In composition, the Sb content is 5% by mass or more and 15% by mass or less and the Cu content is 0. 0% corresponding to the upper and lower limits of the optimum range set in the other parameter test described above. The same test was performed in the range of 5% by mass to less than 3% by mass, In content of 0.1% by mass to 5% by mass, and Ni content of 0.01% by mass to 0.15% by mass. However, it was confirmed that the same effect (void ratio reduction effect) was obtained.

<他の添加材料の効果確認試験>
上述のようにSb、Cu、In、Niの組成範囲を最適化した無鉛はんだ合金に対し、P、Ge、Ga、Biよりなる群から選ばれる1種以上を合計で0.01質量%以上1質量%以下含有するように添加した無鉛はんだ合金を製造した。そして、上述したのと同様の条件でそのはんだ合金を使用して炭化ケイ素の半導体素子2を回路基板4の金属電極4Eaに接合した半導体装置1を試作し、パラメータ試験2B同様にボイド率を測定した。その結果、全ての合金組成において、2%〜10%の改善効果(平均ボイド率の低下)がみられた。なお、P、Ge、Ga、Biよりなる群から選ばれる1種以上を合計で0.005質量%含有した合金組成では顕著な改善効果は確認できなかった。またP、Ge、Ga、Biよりなる群から選ばれる1種以上を合計で1.5質量%および3質量%含有する合金組成では、かえってボイド率は上昇する傾向を示した。
<Effect confirmation test of other additive materials>
As described above, one or more selected from the group consisting of P, Ge, Ga, and Bi is added in a total of 0.01% by mass or more to the lead-free solder alloy having the optimized composition range of Sb, Cu, In, and Ni. The lead-free solder alloy added so that it might contain below mass% was manufactured. Then, the semiconductor device 1 in which the silicon carbide semiconductor element 2 is bonded to the metal electrode 4Ea of the circuit board 4 using the solder alloy under the same conditions as described above is manufactured, and the void ratio is measured in the same manner as the parameter test 2B. did. As a result, in all the alloy compositions, an improvement effect of 2% to 10% (reduction in average void ratio) was observed. In addition, the remarkable improvement effect was not able to be confirmed in the alloy composition which contained 1 or more types chosen from the group which consists of P, Ge, Ga, Bi in total 0.005 mass%. Moreover, in the alloy composition containing 1.5% by mass and 3% by mass in total of one or more selected from the group consisting of P, Ge, Ga, and Bi, the void ratio tended to increase.

<他の接合相手での効果確認試験>
上記組成を最適化するためのパラメータ試験や他の添加材料の試験においては、半導体素子2をはんだ材3Mで接合する相手が、回路基板4上に形成された銅の回路パターン4Eaであったが、本確認試験では、接合相手として、回路基板に形成されたCu/Inver/Cu、およびCu/Mo/Cuからなる回路パターンを用いた。Cu/Inver/Cuの場合の各層の厚さは、0.4/0.4/0.4mmである。またCu/Mo/Cuの場合の各層の厚さは、0.4/0.4/0.4mmである。Cu/Inver/Cuを接合相手としたときのクラック率はCuの回路パターン4Eaと比べて約1/2、Cu/Mo/Cuを接合相手としたときのクラック率は約1/3となることが確認された。また、Cuも含めて、回路パターン表面にNiめっきを施さない場合について同様の実験が行われたが、クラック率およびメタライズの拡散ともに20%程度改善された。以上より、電極材料や表面処理によらずに効果が得られることが確認された。
<Effect confirmation test with other bonding partner>
In the parameter test for optimizing the composition and the test of other additive materials, the counterpart to join the semiconductor element 2 with the solder material 3M was the copper circuit pattern 4Ea formed on the circuit board 4. In this confirmation test, a circuit pattern made of Cu / Inver / Cu and Cu / Mo / Cu formed on the circuit board was used as a bonding partner. The thickness of each layer in the case of Cu / Inver / Cu is 0.4 / 0.4 / 0.4 mm. The thickness of each layer in the case of Cu / Mo / Cu is 0.4 / 0.4 / 0.4 mm. The crack rate when Cu / Inver / Cu is used as the bonding partner is about 1/2 compared to the Cu circuit pattern 4Ea, and the crack rate when Cu / Mo / Cu is used as the bonding partner is about 1/3. Was confirmed. In addition, a similar experiment was conducted in the case where Ni plating was not applied to the circuit pattern surface including Cu, but both the crack rate and the diffusion of metallization were improved by about 20%. From the above, it was confirmed that the effect can be obtained regardless of the electrode material and the surface treatment.

さらに、半導体素子について、いくつかの異なる大きさ、またメタライズ仕様のチップでの上記同様の実験においても、全く同様の効果が得られた。さらに、GaN(窒化ガリウム)やダイヤモンドを基材とする半導体素子や従来のSi(シリコン)素子に対しても、上記同様の試験を行い、全く同様の効果が得られた。   Further, the same effect was obtained in the same experiment as described above with several different sizes of metal elements and chips with metallized specifications. Furthermore, the same test was performed on a semiconductor device based on GaN (gallium nitride) or diamond or a conventional Si (silicon) device, and the same effect was obtained.

なお、半導体装置は、モジュール、パッケージ、基板に搭載されたもののいずれでも適用される。また、本実施の形態においては、オーミック層としてTi(チタン)が用いられたが、Ti以外の金属、例えばNi(ニッケル)やAl(アルミニウム)、Mo(モリブデン)、またはTiが含まれたこれら元素のシリサイドなどの化合物、さらにこれらを組み合わせた多層構造などが用いられることが可能である。また、オーミック層が除かれることも可能である。   The semiconductor device may be any of a module, a package, and a device mounted on a substrate. In this embodiment, Ti (titanium) is used as the ohmic layer, but metals other than Ti, for example, Ni (nickel), Al (aluminum), Mo (molybdenum), or Ti are contained. It is possible to use compounds such as elemental silicides and a multilayer structure combining these compounds. It is also possible to remove the ohmic layer.

上記のように最適化した組成の無鉛はんだ合金で形成されたはんだ材3Mを用いて作成した半導体装置10を動作させると、動作温度が200℃以上に上昇し、一時的には数百度まで上昇することがある。しかし、本実施の形態のような無鉛はんだ合金のはんだ材3Mを用いて半導体素子2を電極4Eに接合していると、半導体素子の動作温度以内であれば、強固に接合強度を維持することができる。   When the semiconductor device 10 made using the solder material 3M formed of the lead-free solder alloy having the optimized composition as described above is operated, the operating temperature rises to 200 ° C. or higher, and temporarily rises to several hundred degrees. There are things to do. However, when the semiconductor element 2 is bonded to the electrode 4E using the lead-free solder alloy solder material 3M as in the present embodiment, the bonding strength is firmly maintained within the operating temperature of the semiconductor element. Can do.

ここで、たとえば、スイッチング素子や整流素子として機能する半導体素子に、炭化ケイ素や、窒化ガリウム系材料又はダイヤモンドを用いた場合、従来から用いられてきたケイ素で形成された素子よりも電力損失が低いため、電力用半導体装置の高効率化が可能となる。また、耐電圧性が高く、許容電流密度も高いため、電力用半導体装置の小型化が可能となる。さらにワイドバンドギャップ半導体素子は、耐熱性が高いので、高温動作が可能であり、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力用半導体装置の一層の小型化が可能になる。   Here, for example, when silicon carbide, a gallium nitride-based material, or diamond is used for a semiconductor element that functions as a switching element or a rectifying element, power loss is lower than that of a conventionally formed element made of silicon. Therefore, the efficiency of the power semiconductor device can be increased. Further, since the withstand voltage is high and the allowable current density is also high, the power semiconductor device can be downsized. In addition, wide band gap semiconductor elements have high heat resistance, so they can operate at high temperatures, and the heat sink fins can be downsized and the water cooling section can be air cooled. Is possible.

一方、ワイドバンドギャップ半導体素子の性能を発揮するには、半導体素子に電流が流れるときの電気抵抗を下げるとともに、半導体素子で発生した熱を効率よく放熱する必要がある。そのため、本発明の実施の形態に記載した無鉛はんだ合金のはんだ材を用いて半導体素子を実装すれば、放熱特性、電気伝導性にも優れるとともに、製造時や駆動時の熱サイクル下でも強固な接合を維持できるので、信頼性の高い半導体装置や半導体モジュールを得ることができる。   On the other hand, in order to exhibit the performance of the wide band gap semiconductor element, it is necessary to reduce the electrical resistance when current flows through the semiconductor element and to efficiently dissipate the heat generated in the semiconductor element. Therefore, if a semiconductor element is mounted using the lead-free solder alloy solder material described in the embodiment of the present invention, it has excellent heat dissipation characteristics and electrical conductivity, and is strong even under the thermal cycle during manufacturing and driving. Since the bonding can be maintained, a highly reliable semiconductor device or semiconductor module can be obtained.

以上のように、本実施の形態にかかる無鉛はんだ合金によれば、Sbを5質量%以上15質量%以下、Cuを0.5質量%以上3質量%以下、Niを0.01質量%以上0.15質量%以下、Inを0.1質量%以上5質量%以下、を含有し、残部Snおよび不可避的不純物からなるように構成したので、高温時のメタライズ拡散による接合劣化を抑制するのはもちろんのこと、パワーサイクル時の劣化も抑制することができるので、高温動作する半導体装置においてパワーサイクルに対する接合信頼性を高めることができる。   As described above, according to the lead-free solder alloy according to the present embodiment, Sb is 5% by mass to 15% by mass, Cu is 0.5% by mass to 3% by mass, and Ni is 0.01% by mass or more. Containing 0.15% by mass or less, In 0.1% by mass or more and 5% by mass or less, and composed of the remainder Sn and inevitable impurities, so that the deterioration of the junction due to metallization diffusion at high temperature is suppressed. Needless to say, deterioration during power cycle can also be suppressed, so that it is possible to improve junction reliability with respect to power cycle in a semiconductor device operating at a high temperature.

上記無鉛はんだ合金に、さらに、P、Ge、Ga、Biのうちのいずれか1種以上を、合計で0.01質量%以上1質量%以下含有するように添加すれば、さらにパワーサイクルに対する寿命信頼性が向上する。   If the lead-free solder alloy is further added with at least one of P, Ge, Ga, and Bi so as to contain a total of 0.01% by mass to 1% by mass, the life against power cycle is further increased. Reliability is improved.

以上のように、本実施の形態にかかる半導体装置によれば、回路パターン4Eaが形成された回路基板4と、回路パターン4Ea上に実装された半導体素子2とを備え、半導体素子2と回路パターン4Eaへの接合に、上述した無鉛はんだ合金(で形成されたはんだ材3M)を用いるようにしたので、高温運転やパワーサイクルを繰り返しても、強固な接合を維持し、信頼性の高い半導体装置を得ることができる。   As described above, the semiconductor device according to the present embodiment includes the circuit board 4 on which the circuit pattern 4Ea is formed and the semiconductor element 2 mounted on the circuit pattern 4Ea. Since the lead-free solder alloy described above (solder material 3M formed of) is used for bonding to 4Ea, a highly reliable semiconductor device that maintains strong bonding even after repeated high-temperature operation and power cycle Can be obtained.

また、本実施の形態にかかる半導体装置の製造方法によれば、半導体装置1を構成する回路基板4の回路パターン4Ea上に上述した無鉛はんだ合金で形成されたはんだ材3Mを所定範囲に配置する工程と、配置したはんだ材3M上に半導体素子2を設置する工程と、はんだ材3Mが溶融するように加熱して、半導体素子2を回路パターン4Eaの所定位置に接合する工程と、を備えるようにしたので、高温運転やパワーサイクルを繰り返しても、強固な接合を維持し、信頼性の高い半導体装置を得ることができる。   Further, according to the method of manufacturing a semiconductor device according to the present embodiment, the solder material 3M formed of the above lead-free solder alloy is arranged in a predetermined range on the circuit pattern 4Ea of the circuit board 4 constituting the semiconductor device 1. A step, a step of installing the semiconductor element 2 on the arranged solder material 3M, and a step of heating the solder material 3M so as to melt and joining the semiconductor element 2 to a predetermined position of the circuit pattern 4Ea. Therefore, even when high-temperature operation or power cycle is repeated, a strong bonding can be maintained and a highly reliable semiconductor device can be obtained.

2 半導体素子、 2B 半導体基材、 2Lf1 配線部材側オーミック層、 2Lf2 配線部材側メタライズ層、 2Lr1 基板側オーミック層、 2Lr2 基板側メタライズ層、 2Lr3 合金層、 3 はんだ(接合後のはんだ層)、 3M はんだペレット(はんだ材)、 3p 析出物、 4 回路基板、 4E 回路パターン、 5 リボン(配線部材)、
10 半導体装置、 Ch 水平クラック、 Cv 縦クラック
2 semiconductor element, 2B semiconductor substrate, 2L f1 wiring member side ohmic layer, 2L f2 wiring member side metallization layer, 2L r1 substrate side ohmic layer, 2L r2 substrate side metallization layer, 2L r3 alloy layer, 3 solder (after bonding) Solder layer), 3M solder pellet (solder material), 3p precipitate, 4 circuit board, 4E circuit pattern, 5 ribbon (wiring member),
10 Semiconductor device, Ch horizontal crack, Cv vertical crack

Claims (6)

Sbを5質量%以上15質量%以下、
Cuを0.5質量%以上3質量%以下、
Niを0.01質量%以上0.15質量%以下、
Inを0.1質量%以上5質量%以下、を含有し、
残部Snおよび不可避的不純物からなることを特徴とする無鉛はんだ合金。
Sb is 5 mass% or more and 15 mass% or less,
Cu is 0.5 mass% or more and 3 mass% or less,
Ni is 0.01 mass% or more and 0.15 mass% or less,
Containing 0.1% by mass or more and 5% by mass or less of In,
A lead-free solder alloy comprising the remaining Sn and inevitable impurities.
P、Ge、Ga、Biのうちのいずれか1種以上を、合計で0.01質量%以上1質量%以下含有するように添加したことを特徴とする請求項1に記載の無鉛はんだ合金。   2. The lead-free solder alloy according to claim 1, wherein at least one of P, Ge, Ga, and Bi is added so as to contain 0.01% by mass or more and 1% by mass or less in total. 回路パターンが形成された回路基板と、
前記回路パターン上に実装された半導体素子と、を備え、
前記半導体素子の前記回路パターンへの接合に、請求項1または2に記載の無鉛はんだ合金を用いたことを特徴とする半導体装置。
A circuit board on which a circuit pattern is formed;
A semiconductor element mounted on the circuit pattern,
A semiconductor device using the lead-free solder alloy according to claim 1 or 2 for joining the semiconductor element to the circuit pattern.
前記半導体素子がワイドバンドギャップ半導体材料により形成されていることを特徴とする請求項3に記載の半導体装置。   The semiconductor device according to claim 3, wherein the semiconductor element is formed of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム、ダイヤモンド、またはガリウムヒ素のうちのいずれかであることを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein the wide band gap semiconductor material is any one of silicon carbide, gallium nitride, diamond, and gallium arsenide. 半導体装置を構成する回路基板の回路パターン上の所定範囲に、請求項1または2に記載の無鉛はんだ合金で形成されたはんだ材を配置する工程と、
前記配置したはんだ材上に半導体素子を設置する工程と、
前記はんだ材が溶融するように加熱して、前記半導体素子を前記回路パターンの所定位置に接合する工程と、
を備えたことを特徴とする半導体装置の製造方法。
Placing a solder material formed of a lead-free solder alloy according to claim 1 or 2 in a predetermined range on a circuit pattern of a circuit board constituting a semiconductor device;
Installing a semiconductor element on the arranged solder material;
Heating the solder material so as to melt, and bonding the semiconductor element to a predetermined position of the circuit pattern;
A method for manufacturing a semiconductor device, comprising:
JP2012547656A 2010-12-10 2010-12-10 Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device Expired - Fee Related JP5490258B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072234 WO2012077228A1 (en) 2010-12-10 2010-12-10 Lead-free solder alloy, semiconductor device, and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP5490258B2 JP5490258B2 (en) 2014-05-14
JPWO2012077228A1 true JPWO2012077228A1 (en) 2014-05-19

Family

ID=46206747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012547656A Expired - Fee Related JP5490258B2 (en) 2010-12-10 2010-12-10 Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device

Country Status (2)

Country Link
JP (1) JP5490258B2 (en)
WO (1) WO2012077228A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157858A (en) * 2013-02-14 2014-08-28 Fuji Electric Co Ltd Semiconductor device manufacturing method
RU2538065C1 (en) * 2013-08-16 2015-01-10 Общество с ограниченной ответственностью "Казанское литейно-инновационное объединение" (ООО "КЛИО") Tin alloy for art casting
JP6713106B2 (en) * 2014-02-24 2020-06-24 株式会社弘輝 Lead-free solder alloy, solder material and joint structure
JP6299442B2 (en) * 2014-06-03 2018-03-28 三菱マテリアル株式会社 Power module
JP6355091B1 (en) * 2017-03-07 2018-07-11 パナソニックIpマネジメント株式会社 Solder alloy and joint structure using the same
JP6516277B1 (en) * 2018-12-18 2019-05-22 株式会社半導体熱研究所 Semiconductor element bonding member
CN109702374B (en) * 2019-02-13 2021-02-09 南昌大学 Sn-Cu-Ni-In lead-free solder alloy and preparation method thereof
DE112020007196T5 (en) 2020-05-14 2023-04-20 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284792A (en) * 2000-03-30 2001-10-12 Tanaka Electronics Ind Co Ltd Solder material and method for manufacturing semiconductor device using the same
JP2004106027A (en) * 2002-09-19 2004-04-08 Sumitomo Metal Mining Co Ltd Brazing filler metal, semi-conductor device assembling method and semi-conductor device using the same
JP2004298931A (en) * 2003-03-31 2004-10-28 Senju Metal Ind Co Ltd High-temperature lead-free solder alloy and electronic part
JP2006159265A (en) * 2004-12-09 2006-06-22 Nippon Dempa Kogyo Co Ltd High temperature solder and cream solder
JP2008221330A (en) * 2007-03-16 2008-09-25 Fuji Electric Holdings Co Ltd Solder alloy
JP2009070863A (en) * 2007-09-11 2009-04-02 Hitachi Ltd Semiconductor power module
WO2010047139A1 (en) * 2008-10-24 2010-04-29 三菱電機株式会社 Solder alloy and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284792A (en) * 2000-03-30 2001-10-12 Tanaka Electronics Ind Co Ltd Solder material and method for manufacturing semiconductor device using the same
JP2004106027A (en) * 2002-09-19 2004-04-08 Sumitomo Metal Mining Co Ltd Brazing filler metal, semi-conductor device assembling method and semi-conductor device using the same
JP2004298931A (en) * 2003-03-31 2004-10-28 Senju Metal Ind Co Ltd High-temperature lead-free solder alloy and electronic part
JP2006159265A (en) * 2004-12-09 2006-06-22 Nippon Dempa Kogyo Co Ltd High temperature solder and cream solder
JP2008221330A (en) * 2007-03-16 2008-09-25 Fuji Electric Holdings Co Ltd Solder alloy
JP2009070863A (en) * 2007-09-11 2009-04-02 Hitachi Ltd Semiconductor power module
WO2010047139A1 (en) * 2008-10-24 2010-04-29 三菱電機株式会社 Solder alloy and semiconductor device

Also Published As

Publication number Publication date
WO2012077228A1 (en) 2012-06-14
JP5490258B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5490258B2 (en) Lead-free solder alloy, semiconductor device, and manufacturing method of semiconductor device
JP6895131B2 (en) Solder material for semiconductor devices
JP5285079B2 (en) Solder alloys and semiconductor devices
JP4964009B2 (en) Power semiconductor module
WO2017217145A1 (en) Solder bonded part
JP5186719B2 (en) Ceramic wiring board, manufacturing method thereof, and semiconductor module
JP2011124585A (en) Ceramic wiring board and manufacturing method and semiconductor module of the same
US20240075559A1 (en) Solder material
US20160082552A1 (en) Zn based lead-free solder and semiconductor power module
JP4115979B2 (en) Lead-free solder material
JP6751250B1 (en) Solder alloy, solder paste, solder preform and solder joint
JP5866075B2 (en) Bonding material manufacturing method, bonding method, and power semiconductor device
CN118591434A (en) Solder and semiconductor device
JP2016123983A (en) Lead-free solder alloy, and semiconductor device using the same
CN118559279A (en) High-reliability lead-free solder alloy resistant to thermal fatigue and application thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R151 Written notification of patent or utility model registration

Ref document number: 5490258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees