JP2000079494A - Solder - Google Patents
SolderInfo
- Publication number
- JP2000079494A JP2000079494A JP11180053A JP18005399A JP2000079494A JP 2000079494 A JP2000079494 A JP 2000079494A JP 11180053 A JP11180053 A JP 11180053A JP 18005399 A JP18005399 A JP 18005399A JP 2000079494 A JP2000079494 A JP 2000079494A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- less
- tin
- bismuth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は電子機器の金属接
合において使用される「はんだ合金」に係り、特に鉛を
含有しないで公害がなく環境に優しい「はんだ合金」に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a "solder alloy" used in metal joining of electronic equipment, and more particularly to a "solder alloy" which does not contain lead and has no pollution and is environmentally friendly.
【0002】[0002]
【従来の技術】電子機器等においてはんだ接合を行う際
には「はんだ合金」は所望の接合温度を有するとともに
接合時のぬれ性が良好であること、また延性,熱疲労強
度,耐食性に優れていることが要求される。また「はん
だ合金」は環境上の配慮から鉛を含有しないことが望ま
れる。従来の「はんだ合金」としては、スズ- 鉛Sn-Pb
合金、スズ- 銀Sn-Ag 合金,スズ- アンチモンSn-Sb 合
金、スズ- ビスマスSn-Bi 系合金等があげられる。2. Description of the Related Art When performing solder bonding in electronic equipment, etc., a "solder alloy" has a desired bonding temperature, good wettability at the time of bonding, and excellent ductility, thermal fatigue strength and corrosion resistance. Is required. In addition, it is desired that the “solder alloy” does not contain lead from environmental considerations. Conventional solder alloys include tin-lead Sn-Pb
Alloys, tin-silver Sn-Ag alloys, tin-antimony Sn-Sb alloys, and tin-bismuth Sn-Bi alloys.
【0003】[0003]
【発明が解決しようとする課題】代表的なスズ- 鉛Sn-P
b 合金である63Sn-37Pb (共晶温度183 ℃)は鉛を含有
するので鉛公害を引き起こし環境に優しいものではな
い。電子装置の「はんだ接合」を行なう場合には装置の
構成上、接合温度の異なる複数種類の「はんだ合金」を
複数回にわたり使用する必要があり、さらに半導体部品
の信頼性を保証するためには半導体部品はピーク温度12
5 ℃付近までのヒートサイクル耐久性が必要である。[Problems to be Solved by the Invention] Typical tin-lead Sn-P
The alloy 63Sn-37Pb (eutectic temperature 183 ° C) contains lead, which causes lead pollution and is not environmentally friendly. When performing "solder joining" of electronic devices, it is necessary to use multiple types of "solder alloys" having different joining temperatures several times due to the configuration of the device, and in order to guarantee the reliability of semiconductor components Semiconductor components have a peak temperature of 12
Heat cycle durability up to around 5 ° C is required.
【0004】63Sn-37Pb 合金(共晶温度183 ℃)に替わ
る代表的な鉛フリーはんだであるSn-Ag 合金は共晶温度
が 221℃(3.5 重量%銀)であり、またSn-Sb 合金につ
いては溶融温度が 232- 245 ℃である。これは鉛フリー
合金では溶融温度が高く、はんだづけ作業時に電子部品
を過度に加熱し、損傷を与える場合がある。従って鉛フ
リーはんだとして溶融点がSn-Ag 合金やSn-Sb 合金より
低く、且つ組み立て工程において接合温度の異なるはん
だ付けを必要とするときにこれらの合金が溶融しないで
はんだ付けできる低溶融温度のはんだ合金が必要とな
る。[0004] A typical lead-free solder, Sn-Ag alloy, which replaces 63Sn-37Pb alloy (eutectic temperature 183 ° C), has a eutectic temperature of 221 ° C (3.5% by weight silver). Has a melting temperature of 232-245 ° C. This is because a lead-free alloy has a high melting temperature and may overheat and damage electronic components during a soldering operation. Therefore, as a lead-free solder, the melting point is lower than that of Sn-Ag alloy or Sn-Sb alloy, and when the assembly process requires soldering with different joining temperatures, these alloys can be soldered without melting and have a low melting temperature. Requires solder alloy.
【0005】鉛フリーで且つ溶融温度の低い「はんだ合
金」としてスズをベースとしてインジウムを添加したSn
-In 合金が検討されている。Sn-In 合金は共晶点が 118
℃である。さらに他の鉛フリーの低温「はんだ合金」で
あるBi-In 合金は共晶点が75℃である。上述した鉛フリ
ーの低温「はんだ合金」は耐熱温度が低過ぎる。スズ-
ビスマスSn-Bi 系合金の一つであるSn7.5Bi2Ag0.5Cu 合
金は溶融温度が200-220 ℃で、接合温度として240-250
℃を要し、このために電子部品を過度に加熱し損傷を与
える場合か生じる。またSn7.5Bi2Ag0.5Cu 合金のように
ビスマスを数%含有するものは延性が低く、加工性や強
度上の問題があり、さらに液相線/固相線の固液共存領
域が広く部品によっては接合時にビスマスの濃度偏析を
生じ、剥離を生じる場合(リフトオフ現象)もある。[0005] As a "solder alloy" which is lead-free and has a low melting temperature, tin-based Sn added with indium
-In alloys are being considered. Eutectic point of Sn-In alloy is 118
° C. Another lead-free, low-temperature “solder alloy”, the Bi-In alloy, has a eutectic point of 75 ° C. The above-mentioned lead-free low-temperature “solder alloy” has a too low heat-resistant temperature. Tin
The Sn7.5Bi2Ag0.5Cu alloy, one of the bismuth Sn-Bi alloys, has a melting temperature of 200-220 ° C and a joining temperature of 240-250 ° C.
° C, which may or may not result in excessive heating and damage to electronic components. In addition, alloys containing several percent of bismuth, such as Sn7.5Bi2Ag0.5Cu alloy, have low ductility, have problems in workability and strength, and have a wide solid-liquid coexistence region of liquidus / solidus, and depending on parts, In some cases, bismuth concentration segregation occurs at the time of joining to cause peeling (lift-off phenomenon).
【0006】図1は従来のスズ- ビスマスSn-Bi 系合金
につき伸び(%)のBi添加量(重量%)依存性を示す線
図である。図中○はSn-Bi 合金の示す特性点、◇はSn-B
i-Ag合金の示す特性点、口はSn-Bi-Sb合金の示す特性点
である。伸び測定におけるひずみ速度は0.2 %/s であ
る。Sn-Bi 合金(○)の延性はBi添加量とともに増し、
ピークを過ぎると共晶組成(Bi58 重量%)に向けて漸減
する。共晶組成における融点は 139℃である。Bi30-50
重量%の範囲ではSn-Bi 合金の伸びは50-90 %である。
Sn-Ag 合金(3.5 重量%銀)は伸びが20-30 %であり、
また鉛フリーのスズ- ビスマスSn-Bi 系合金であるSn7.
5Bi2Ag0.5Cu (溶融温度は約 200℃)が伸び10%を示す
ことを考慮すると、Bi30-50 %の範囲でのSn-Bi 合金の
伸びは充分に大きい。これはSn-Pb 「はんだ合金」と同
等レベルの延性である。Sn-Bi-Ag合金(◇)の延性はBi
30-58重量%の範囲でSn-Bi 合金(○)よりも低下する
傾向があるがまだ充分に大きいことがわかる。FIG. 1 is a graph showing the dependency of elongation (%) on the amount of added Bi (% by weight) for a conventional tin-bismuth Sn—Bi alloy. In the figure, ○ indicates the characteristic point of the Sn-Bi alloy, and Δ indicates the Sn-B
The characteristic points and mouths of the i-Ag alloy are characteristic points of the Sn-Bi-Sb alloy. The strain rate in elongation measurement is 0.2% / s. The ductility of Sn-Bi alloy (○) increases with the amount of Bi added,
After the peak, the concentration gradually decreases toward the eutectic composition (Bi 58% by weight). The melting point in the eutectic composition is 139 ° C. Bi30-50
In the weight percent range, the elongation of the Sn-Bi alloy is 50-90%.
Sn-Ag alloy (3.5 wt% silver) has an elongation of 20-30%,
In addition, Sn7 is a lead-free tin-bismuth Sn-Bi alloy.
Considering that 5Bi2Ag0.5Cu (melting temperature is about 200 ℃) shows an elongation of 10%, the elongation of Sn-Bi alloy in the range of Bi30-50% is sufficiently large. This is the same level of ductility as Sn-Pb “solder alloy”. The ductility of Sn-Bi-Ag alloy (◇) is Bi
In the range of 30-58% by weight, the content tends to be lower than that of the Sn-Bi alloy ()), but is still sufficiently large.
【0007】SnにBiを30ないし58重量%添加したSn-Bi
合金は上述のように延性が良好であるがさらに溶融温度
が低いことも知られている。このようなBiを30ないし58
重量%含むSn−Bi合金にさらにSb,Ag またはGeを加える
と、得られたSn-Bi 系合金の耐熱性(なかでもクリープ
特性)が向上する。しかしながらSb,AgまたはGeのうち
SbとGeを添加する場合は濡れ性が悪く、AgとGeを添加す
る場合は耐熱性は改善されるが濡れ性は明確ではないと
いう問題があった。[0007] Sn-Bi obtained by adding 30 to 58% by weight of Bi to Sn
Alloys are known to have good ductility, as described above, but to have a lower melting temperature. 30 to 58 such Bi
When Sb, Ag or Ge is further added to the Sn-Bi alloy containing wt%, the heat resistance (among others, creep characteristics) of the obtained Sn-Bi alloy is improved. However, of Sb, Ag or Ge
When Sb and Ge are added, wettability is poor, and when Ag and Ge are added, heat resistance is improved, but wettability is not clear.
【0008】この発明は上述の点に鑑みてさなれその目
的は、低融点で延性の良好なスズ-ビスマスSn-Bi 合金
を改良して、融点が低く延性が良好である上に耐熱性と
濡れ性にも優れる鉛フリーの低融点「はんだ合金」を提
供することにある。The present invention has been made in view of the above points, and an object of the present invention is to improve a tin-bismuth Sn-Bi alloy having a low melting point and good ductility so that the melting point is low, the ductility is good, and the heat resistance is improved. An object of the present invention is to provide a lead-free low-melting-point “solder alloy” having excellent wettability.
【0009】[0009]
【課題を解決するための手段】上述の目的は第一め発明
によればスズを主成分とし、ビスマスを30ないし58
重量%、銀を5重量%以下、ゲルマニウムを0.3重量
%以下含有することにより達成される。第二の発明によ
ればスズを主成分とし、ビスマスを30ないし58重量
%、銀を5重量%以下、ニッケルを0.2重量%以下、
銅を1重量%以下含有することにより達成される。According to a first aspect of the present invention, there is provided a semiconductor device comprising tin as a main component and bismuth in an amount of 30 to 58%.
It is achieved by containing not more than 5% by weight of silver, not more than 5% by weight of silver, and not more than 0.3% by weight of germanium. According to the second invention, tin is a main component, 30 to 58% by weight of bismuth, 5% by weight or less of silver, 0.2% by weight or less of nickel,
This is achieved by containing 1% by weight or less of copper.
【0010】第三の発明によればスズを主成分とし、ビ
スマスを30ないし58重量%、銀を5重量%以下、ゲ
ルマニウムを0.3重量%以下、ニッケルを0.2重量
%以下、銅を1重量%以下含有することにより達成され
る。スズを主成分とし、ビスマスを30ないし58重量
%含有するスズ−ビスマスSn-Bi 合金は溶融温度が 140
ないし 180℃近辺にあり、他の金属元素を添加したSn-B
i 系合金は低融点の「はんだ合金」となる。According to a third aspect of the present invention, tin is a main component, 30 to 58% by weight of bismuth, 5% by weight or less of silver, 0.3% by weight or less of germanium, 0.2% by weight or less of nickel, By 1% by weight or less. A tin-bismuth Sn-Bi alloy containing tin as a main component and containing 30 to 58% by weight of bismuth has a melting temperature of 140%.
Or around 180 ° C, with other metal elements added
The i-based alloy becomes a low melting point “solder alloy”.
【0011】スズを主成分とし、ビスマスを30ないし
58重量%含有するスズ- ビスマスSn-Bi 系合金の延性
はSn-Pb 「はんだ合金」と同等レベルである。スズを主
成分としビスマスを30ないし58重量%含有するスズ- ピ
スマスSn-Bi合金にAgとGe、AgとNiとCu、またはAgとGe
とNiとCuを所定の割合で添加すると、溶融温度特性や延
性に加えてさらに耐熱性と濡れ性の良好な「はんだ合
金」が得られる。 .The ductility of a tin-bismuth Sn-Bi alloy containing tin as a main component and containing 30 to 58% by weight of bismuth is equivalent to that of a Sn-Pb "solder alloy". Ag-Ge, Ag-Ni-Cu, or Ag-Ge, for tin-pismuth Sn-Bi alloy containing tin as main component and bismuth in 30-58% by weight
When Ni and Cu are added at a predetermined ratio, a "solder alloy" having better heat resistance and wettability in addition to melting temperature characteristics and ductility can be obtained. .
【0012】[0012]
【発明の実施の形態】「はんだ合金」は、Sn,Bi,Ag,Ge,
Ni,Cu の各原料を電気炉中で溶解して調製することがで
きる。各原料は純度99.99 重量%以上のものを使用し
た。「はんだ合金」成分のうちSnは主成分である。BIは
30ないし58重量%以下、Agは5 重量%以下、Geは0.3 重
量%以下、Niは0.2 重量%以下、Cuは1 重量%以下が添
加される。合金組成はSnを主成分としてBi30ないし58重
量%以下とAg5 重量%以下とGe0.3 重量%以下を含むも
の、Snを主成分としてBi30ないし58重量%以下とAg5 重
量%以下とNi0.2 重量%以下とCu1 重量%以下を含むも
の、さらにSnを主成分としてBi30ないし58重量%以下と
Ag5 重量%以下とGe0.3 重量%以下とNi0.2 重量%以下
とCu1 重量%以下を含むものである。BEST MODE FOR CARRYING OUT THE INVENTION "Solder alloy" is Sn, Bi, Ag, Ge,
It can be prepared by melting Ni and Cu raw materials in an electric furnace. Each raw material used had a purity of 99.99% by weight or more. Sn is a main component in the “solder alloy” component. BI is
30 to 58% by weight, Ag is 5% by weight or less, Ge is 0.3% by weight or less, Ni is 0.2% by weight or less, and Cu is 1% by weight or less. The alloy composition contains Sn as a main component and contains 30 to 58% by weight of Bi, 5% by weight or less of Ag, and 0.3% by weight or less of Ge, and Sn contains 30% to 58% by weight or less of Bi, 5% by weight or less of Ag, and Ni0.2% Wt% or less and Cu1 wt% or less, and further contains Sn as a main component and Bi30 to 58 wt% or less.
It contains less than 5% by weight of Ag, less than 0.3% by weight of Ge, less than 0.2% by weight of Ni, and less than 1% by weight of Cu.
【0013】実施例 引っ張り強度試験は直径3mm の試験片を用い、引っ張り
速度0.2 %/s で室温において実施した。また耐熱性を
調べるために同形状の試験片を用い、負荷応力0.2kg/mm
2 でクリープの変形抵抗を測定した。濡れ性はメニスコ
グラフ法で評価した。一例としてSn22Bi合金系やSn43Bi
合金系につき引っ張り強度,伸び,クリープ変形抵抗,
濡れ力を測定した結果が表1 に示される。EXAMPLE A tensile strength test was performed at room temperature at a tensile rate of 0.2% / s using a test piece having a diameter of 3 mm. In order to examine heat resistance, a test piece of the same shape was used, and the applied stress was 0.2 kg / mm.
In 2 , the creep deformation resistance was measured. The wettability was evaluated by the meniscograph method. For example, Sn22Bi alloy or Sn43Bi
Tensile strength, elongation, creep deformation resistance,
Table 1 shows the measurement results of the wetting force.
【0014】[0014]
【表1】 Sn43Bi合金に2 重量%のAgを添加したSn43Bi2Ag 合金は
Sn43Bi合金に比し引っ張り強度,耐熱性(クリープ変形
抵抗),濡れ性が改善されることがわかる。耐熱性の改
善はクリープ変形抵抗が小さくなっていることからわか
る。Sn43Bi2Ag 合金にさらに0.05重量%Geを添加したSn
43Bi2Ag0.05Ge 合金は、Sn43Bi2Ag 合金に比し、濡れ性
が顕著に向上し、引っ張り強度,耐熱性(クリープ変形
抵抗)はともにさらに改善される。[Table 1] Sn43Bi2Ag alloy with 2% by weight of Ag added to Sn43Bi alloy
It can be seen that the tensile strength, heat resistance (creep deformation resistance), and wettability are improved compared to the Sn43Bi alloy. The improvement in heat resistance can be seen from the decrease in creep deformation resistance. Sn43Bi2Ag alloy with 0.05% by weight Ge added
The 43Bi2Ag0.05Ge alloy has significantly improved wettability and further improved tensile strength and heat resistance (creep deformation resistance) compared to the Sn43Bi2Ag alloy.
【0015】Sn43Bi2Ag 合金にさらに0.5 重量%Cuと0.
1 重量%Niを添加したSn43Bi2Ag0.5Cu0.1Ni 合金は、Sn
43Bi2Ag 合金に比し、濡れ性は若干低下するが引っ張り
強度,耐熱性(クリープ変形抵抗)はともにさらに改善
される。Niを添加すると、Niが高融点で耐酸化性を有す
るために合金の耐熱性は高まると期待されるが、NiがBi
と金属間化合物を形成すると考えられるために延性が激
減する。Sn43Bi2Ag0.5Cu0.1Ni 合金においてはNiと固溶
体を形成するCuをNiとともに添加して延性の低下を抑制
している。The Sn43Bi2Ag alloy was further added with 0.5% by weight of Cu and 0.1% by weight of Cu.
Sn43Bi2Ag0.5Cu0.1Ni alloy with 1 wt% Ni added
Compared to 43Bi2Ag alloy, the wettability is slightly reduced but the tensile strength and heat resistance (creep resistance) are further improved. The addition of Ni is expected to increase the heat resistance of the alloy because Ni has a high melting point and oxidation resistance.
And the formation of an intermetallic compound, the ductility is drastically reduced. In the Sn43Bi2Ag0.5Cu0.1Ni alloy, Cu, which forms a solid solution with Ni, is added together with Ni to suppress a decrease in ductility.
【0016】Sn43Bi2Ag 合金にさらに0.05重量%Geと0.
5 重量%Cuと0.1 重量%Niを添加したSn43Bi2Ag0.05Ge
0.5Cu0.1Ni 合金は、Sn43Bi2Ag 合金に比し、濡れ性が
頓著に改善され、引っ張り強度,耐熱性(クリープ変形
抵抗)はともにさらに改善される。Sn43Bi2Ag0.05Ge0.5
Cu0.1Ni 合金の濡れ性はSn43Bi2Ag0.05Ge 合金と殆ど同
等である。The Sn43Bi2Ag alloy was further added with 0.05% by weight of Ge and 0.1% by weight.
Sn43Bi2Ag0.05Ge doped with 5 wt% Cu and 0.1 wt% Ni
Compared to Sn43Bi2Ag alloy, 0.5Cu0.1Ni alloy has remarkably improved wettability, and both tensile strength and heat resistance (creep deformation resistance) are further improved. Sn43Bi2Ag0.05Ge0.5
The wettability of Cu0.1Ni alloy is almost the same as Sn43Bi2Ag0.05Ge alloy.
【0017】次に、Sn58Bi2Ag0.5Cu0.1Ni にGeを添加し
た場合の濡れ性について調べた結果を、図2に示す。メ
ニスコグラフ法により、210 ℃にて、1mm φの銅を用
い、評価した。濡れ力は、Ge添加量として、0.3 %まで
明瞭に改善効果が認められ、0.3 %を超えると、濡れ力
は初期値よりむしろ低下した。これは、Geによる酸化膜
が形成され過ぎ、銅との接合性が低下していることによ
ると考えられる。Next, FIG. 2 shows the result of investigation on the wettability when Ge was added to Sn58Bi2Ag0.5Cu0.1Ni. Evaluation was performed by a meniscograph method at 210 ° C. using 1 mm φ copper. The wetting force was clearly improved up to 0.3% as the amount of Ge added, and when it exceeded 0.3%, the wetting force decreased rather than the initial value. This is presumably because the oxide film of Ge was formed too much, and the bondability with copper was lowered.
【0018】[0018]
【発明の効果】第一の発明によれば新規なSn-Bi 系合金
がスズを主成分とし、ビスマスを30ないし58重量
%、銀を5重量%以下、ゲルマニウムを0.3重量%以
下含有するので、延性に加えてさらに引っ張り強度,耐
熱性,濡れ性に優れる鉛フリーの低融点「はんだ合金」
が得られる。According to the first invention, the novel Sn-Bi alloy contains tin as a main component, 30 to 58% by weight of bismuth, 5% by weight or less of silver, and 0.3% by weight or less of germanium. Lead-free, low melting point “solder alloy” with excellent tensile strength, heat resistance, and wettability in addition to ductility
Is obtained.
【0019】また第二の発明によれば新規なSn-Bi 系合
金がスズを主成分とし、ビスマスを30ないし58重量
%、銀を5重量%以下、ニッケルを0.2重量%以下、
銅を1重量%以下含有するので、延性に加えてさらに引
っ張り強度,耐熱性,濡れ性に優れる鉛フリーの低融点
「はんだ合金」が得られる。さらに第三の発明によれば
新規なSn一Bi系合金がスズを主成分とし、ビスマスを3
0ないし58重量%、銀を5重量%以下、ゲルマニウム
を0.3重量%以下、ニッケルを0.2重量%以下、銅
を1重量%以下含有するので、延性に加えてさらに引っ
張り強度,耐熱性,濡れ性に優れる鉛フリーの低融点
「はんだ合金」が得られる。According to the second invention, the novel Sn—Bi alloy contains tin as a main component, 30 to 58% by weight of bismuth, 5% by weight or less of silver, 0.2% by weight or less of nickel,
Since copper is contained in an amount of 1% by weight or less, a lead-free low melting point "solder alloy" having excellent tensile strength, heat resistance and wettability in addition to ductility can be obtained. Further, according to the third invention, the novel Sn-Bi alloy contains tin as a main component and bismuth at 3%.
0 to 58% by weight, 5% by weight or less of silver, 0.3% by weight or less of germanium, 0.2% by weight or less of nickel, 1% by weight or less of copper. Lead-free low melting point "solder alloy" with excellent wettability and wettability.
【図1】従来のスズービスマスSn-Bi 系合金につき伸び
(%)のBi添加量(重量%)依存性を示す線図FIG. 1 is a diagram showing the dependency of elongation (%) on the amount of added Bi (% by weight) for a conventional tin-bismuth Sn—Bi alloy.
【図2】Sn-Bi 系合金の濡れ性に対するGe添加量(重量
%)の効果を示す線図FIG. 2 is a graph showing the effect of the amount of Ge added (% by weight) on the wettability of a Sn—Bi alloy.
Claims (3)
58重量%、銀を5重量%以下、ゲルマニウムを0.3
重量%以下含有することを特徴とする「はんだ合金」。1. A tin-based material comprising 30 to 58% by weight of bismuth, 5% by weight or less of silver, and 0.3% by weight of germanium.
"Solder alloy" characterized by containing not more than weight%.
58重量%、銀を5重量%以下、ニッケルを0.2重量
%以下、銅を1重量%以下含有することを特徴とする
「はんだ合金」。2. A solder containing tin as a main component and containing 30 to 58% by weight of bismuth, 5% by weight or less of silver, 0.2% by weight or less of nickel and 1% by weight or less of copper. alloy".
58重量%、銀を5重量%以下、ゲルマニウムを0.3
重量%以下、ニッケルを0.2重量%以下、銅を1重量
%以下含有することを特徴とする「はんだ合金」。3. A composition comprising tin as a main component, 30 to 58% by weight of bismuth, 5% by weight or less of silver, and 0.3% of germanium.
"Solder alloy" characterized by containing not more than 0.2% by weight of nickel, not more than 0.2% by weight of nickel, and not more than 1% by weight of copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18005399A JP3386009B2 (en) | 1998-07-01 | 1999-06-25 | Solder alloy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18653498 | 1998-07-01 | ||
JP10-186534 | 1998-07-01 | ||
JP18005399A JP3386009B2 (en) | 1998-07-01 | 1999-06-25 | Solder alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000079494A true JP2000079494A (en) | 2000-03-21 |
JP3386009B2 JP3386009B2 (en) | 2003-03-10 |
Family
ID=26499713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18005399A Expired - Lifetime JP3386009B2 (en) | 1998-07-01 | 1999-06-25 | Solder alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3386009B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6929169B2 (en) | 2002-10-02 | 2005-08-16 | Alps Electric Co., Ltd. | Solder joint structure and method for soldering electronic components |
JP2006294600A (en) * | 2005-03-15 | 2006-10-26 | Matsushita Electric Ind Co Ltd | Conductive adhesive |
JP2008177560A (en) * | 2007-12-25 | 2008-07-31 | Sharp Corp | Solar cell and string |
JP2008183590A (en) * | 2007-01-30 | 2008-08-14 | Oki Electric Ind Co Ltd | Semiconductor device |
WO2013017883A1 (en) * | 2011-08-02 | 2013-02-07 | Fry's Metals, Inc. | High impact toughness solder alloy |
CN106255569A (en) * | 2013-12-31 | 2016-12-21 | 阿尔法金属公司 | Thermosetting flux preparaton without Colophonium |
JP2018122322A (en) * | 2017-01-31 | 2018-08-09 | 株式会社タムラ製作所 | Lead-free solder alloy, solder paste, electronic circuit board and electronic control device |
JP2019527145A (en) * | 2016-08-11 | 2019-09-26 | ベイジン コンポー アドバンスト テクノロジー カンパニー リミテッドBeijing Compo Advanced Technology Co.,Ltd. | SnBiSb low-temperature lead-free solder |
CN112756843A (en) * | 2021-01-11 | 2021-05-07 | 杭州华光焊接新材料股份有限公司 | Tin-bismuth brazing filler metal and preparation method thereof |
US11241760B2 (en) * | 2018-03-08 | 2022-02-08 | Senju Metal Industry Co., Ltd. | Solder alloy, solder paste, solder ball, resin flux-cored solder and solder joint |
-
1999
- 1999-06-25 JP JP18005399A patent/JP3386009B2/en not_active Expired - Lifetime
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6929169B2 (en) | 2002-10-02 | 2005-08-16 | Alps Electric Co., Ltd. | Solder joint structure and method for soldering electronic components |
JP2006294600A (en) * | 2005-03-15 | 2006-10-26 | Matsushita Electric Ind Co Ltd | Conductive adhesive |
JP2008183590A (en) * | 2007-01-30 | 2008-08-14 | Oki Electric Ind Co Ltd | Semiconductor device |
JP2008177560A (en) * | 2007-12-25 | 2008-07-31 | Sharp Corp | Solar cell and string |
JP2014524354A (en) * | 2011-08-02 | 2014-09-22 | アルファ・メタルズ・インコーポレイテッド | High impact toughness solder alloy |
CN103906598A (en) * | 2011-08-02 | 2014-07-02 | 阿尔法金属公司 | High impact toughness solder alloy |
WO2013017883A1 (en) * | 2011-08-02 | 2013-02-07 | Fry's Metals, Inc. | High impact toughness solder alloy |
CN106255569A (en) * | 2013-12-31 | 2016-12-21 | 阿尔法金属公司 | Thermosetting flux preparaton without Colophonium |
JP2017508622A (en) * | 2013-12-31 | 2017-03-30 | アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. | Rosin-free thermosetting flux formulation |
JP2019527145A (en) * | 2016-08-11 | 2019-09-26 | ベイジン コンポー アドバンスト テクノロジー カンパニー リミテッドBeijing Compo Advanced Technology Co.,Ltd. | SnBiSb low-temperature lead-free solder |
US11479835B2 (en) | 2016-08-11 | 2022-10-25 | Beijing Compo Advanced Technology Co., Ltd. | SnBiSb series low-temperature lead-free solder and its preparation method |
JP2018122322A (en) * | 2017-01-31 | 2018-08-09 | 株式会社タムラ製作所 | Lead-free solder alloy, solder paste, electronic circuit board and electronic control device |
US11241760B2 (en) * | 2018-03-08 | 2022-02-08 | Senju Metal Industry Co., Ltd. | Solder alloy, solder paste, solder ball, resin flux-cored solder and solder joint |
CN112756843A (en) * | 2021-01-11 | 2021-05-07 | 杭州华光焊接新材料股份有限公司 | Tin-bismuth brazing filler metal and preparation method thereof |
CN112756843B (en) * | 2021-01-11 | 2022-08-19 | 杭州华光焊接新材料股份有限公司 | Tin-bismuth brazing filler metal and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3386009B2 (en) | 2003-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102207301B1 (en) | Lead-free solder alloy with high reliability | |
JP3296289B2 (en) | Solder alloy | |
US6156132A (en) | Solder alloys | |
EP0985486B1 (en) | Leadless solder | |
US6488888B2 (en) | Lead-free solder alloys | |
KR970010891B1 (en) | High temperature lead-free tin based solder composition | |
JP2885773B2 (en) | Lead-free alloy for soldering | |
JP3353640B2 (en) | Solder alloy | |
JPH0970687A (en) | Leadless solder alloy | |
TWI819210B (en) | Lead-free solder alloy and solder joint | |
JP3353662B2 (en) | Solder alloy | |
JP4618089B2 (en) | Sn-In solder alloy | |
JP4135268B2 (en) | Lead-free solder alloy | |
JP3736819B2 (en) | Lead-free solder alloy | |
JP3386009B2 (en) | Solder alloy | |
JP3262113B2 (en) | Solder alloy | |
JP2020025982A (en) | Lead-free solder alloy | |
JPH0994688A (en) | Lead-free solder alloy | |
JP2000343273A (en) | Soldering alloy | |
JP3353686B2 (en) | Solder alloy | |
JP2001287082A (en) | Solder | |
CN113857713B (en) | Low-silver Sn-Ag-Cu lead-free solder and preparation method thereof | |
JP2019136776A (en) | Solder joint method | |
JP4890221B2 (en) | Die bond material | |
JP5051633B2 (en) | Solder alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3386009 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140110 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |