JP5724638B2 - Pb-free solder, solder-coated conductor, and electrical parts using the same - Google Patents

Pb-free solder, solder-coated conductor, and electrical parts using the same Download PDF

Info

Publication number
JP5724638B2
JP5724638B2 JP2011120299A JP2011120299A JP5724638B2 JP 5724638 B2 JP5724638 B2 JP 5724638B2 JP 2011120299 A JP2011120299 A JP 2011120299A JP 2011120299 A JP2011120299 A JP 2011120299A JP 5724638 B2 JP5724638 B2 JP 5724638B2
Authority
JP
Japan
Prior art keywords
solder
conductor
free solder
layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011120299A
Other languages
Japanese (ja)
Other versions
JP2012245554A (en
Inventor
壮平 内田
壮平 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011120299A priority Critical patent/JP5724638B2/en
Priority to CN201210071751.3A priority patent/CN102806429B/en
Publication of JP2012245554A publication Critical patent/JP2012245554A/en
Application granted granted Critical
Publication of JP5724638B2 publication Critical patent/JP5724638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、一方の導体と他方の導体とをはんだ接合するためのSnを主成分とするPbフリーはんだ及びはんだ被覆導体並びにそれを用いた電気部品に関するものである。   The present invention relates to a Pb-free solder mainly composed of Sn for solder-bonding one conductor and the other conductor, a solder-coated conductor, and an electrical component using the same.

自動車や産業機器などには、はんだ付けのために銀めっきを施したコンデンサやリード線、銀ペーストをプリントした基板などの電気部品が用いられている。   Electrical parts such as capacitors plated with silver for soldering, lead wires, and substrates printed with silver paste are used in automobiles and industrial equipment.

このはんだ付けには従来、Sn−Pb系はんだがよく用いられていたが、Pb規制に伴い純Sn系、Sn−Ag系、Sn−Ag−Cu系、Sn−Cu系等のPbフリーはんだが現在多く用いられている。   Conventionally, Sn—Pb solder has been used for this soldering. However, Pb-free solders such as pure Sn, Sn—Ag, Sn—Ag—Cu, and Sn—Cu are used in accordance with Pb regulations. Currently in wide use.

Agを主成分とする導体と他の導体を、Snを主成分とするPbフリーはんだにより接続する場合、Agを主成分とする導体とはんだとの接合界面に沿って金属間化合物であるAg3Snが形成されることが知られている。 When connecting a conductor containing Ag as a main component and another conductor using Pb-free solder containing Sn as a main component, Ag 3 which is an intermetallic compound along the bonding interface between the conductor containing Ag as a main component and solder. It is known that Sn is formed.

AgとPbフリーはんだの接合部が、車載用あるいは、直射日光下などの高温環境に保持されると、保持温度がはんだの融点以下でも、はんだ中のSnとAgの相互拡散により、接合界面に金属間化合物であるAg3Snが層状に形成される。このとき保持温度が高ければ高いほど相互拡散が進み、金属間化合物層は厚く成長する。 When the joint between Ag and Pb-free solder is kept in a high temperature environment such as for in-vehicle use or under direct sunlight, even if the holding temperature is lower than the melting point of the solder, due to mutual diffusion of Sn and Ag in the solder, Ag 3 Sn, which is an intermetallic compound, is formed in layers. At this time, the higher the holding temperature, the more the interdiffusion proceeds, and the intermetallic compound layer grows thicker.

金属間化合物は一般的に脆いため、Pbフリーはんだと導体の間の金属間化合物層が厚く成長した場合、この金属間化合物層中、もしくは、金属間化合物とはんだおよび導体界面での破断が起こりやすく、はんだ接続部の強度が著しく低下してしまうことが問題となっている。   Since intermetallic compounds are generally brittle, when the intermetallic compound layer between the Pb-free solder and the conductor grows thick, fracture occurs in the intermetallic compound layer or at the interface between the intermetallic compound and the solder and the conductor. It is easy to cause a problem that the strength of the solder connection portion is remarkably lowered.

このため、このようなはんだ接合の用途では、60〜150℃の高温環境で長期間使用されても、銀めっきや銀ペーストとPbフリーはんだの接合界面において十分な接合強度を有し、耐疲労、耐衝撃性に優れた接続信頼性が高いPbフリーはんだが求められている。   For this reason, in such a solder joint application, even if it is used for a long time in a high temperature environment of 60 to 150 ° C., it has sufficient joint strength at the joint interface between silver plating and silver paste and Pb-free solder, and fatigue resistance Therefore, there is a demand for Pb-free solder having excellent impact resistance and high connection reliability.

特開平6−169160号公報JP-A-6-169160 特開平2−18989号公報JP-A-2-18989 特開平4−3490号公報JP-A-4-3490 特開2008−182126号公報JP 2008-182126 A

特許文献1は、Sn−3.5重量%Agはんだの使用により、Agとの接合界面のAg3Snは高温環境(150℃)においても、成長が抑止されると報告している。有鉛はんだに対してSn−3.5重量%Agはんだの場合、高温環境での接合界面でのSnの拡散が抑制されるので、Ag3Snの成長が抑止されるとしている。しかし実際には、Snの拡散抑制は十分ではなく、高温に長時間保持する場合、このAg3Snは成長し続けるので、接続信頼性が問題視される。 Patent Document 1 reports that the use of Sn-3.5 wt% Ag solder suppresses the growth of Ag 3 Sn at the bonding interface with Ag even in a high temperature environment (150 ° C.). In the case of Sn-3.5 wt% Ag solder with respect to leaded solder, the diffusion of Sn at the bonding interface in a high temperature environment is suppressed, and therefore growth of Ag 3 Sn is suppressed. However, in reality, the suppression of the diffusion of Sn is not sufficient, and when kept at a high temperature for a long time, this Ag 3 Sn continues to grow, so connection reliability is regarded as a problem.

特許文献2,3及び4では、はんだとAgとの接合界面に他の金属による中間層やNi層を形成して、Agとはんだとの間の相互拡散やAg3Sn化合物の成長抑制が可能であると報告されている。 In Patent Documents 2, 3 and 4, an intermediate layer or Ni layer made of another metal is formed at the joint interface between the solder and Ag so that interdiffusion between Ag and the solder and growth of the Ag 3 Sn compound can be suppressed. It is reported that.

特に特許文献4では、SnとNiとの間ではSnとAgとの間より相互拡散が起こりにくいので、それにより、SnとAgとの間にNi層を形成して拡散のバリアとすることにより、金属間化合物の生成を抑える効果があるとしている。   In particular, in Patent Document 4, interdiffusion between Sn and Ni is less likely to occur than between Sn and Ag. Therefore, by forming a Ni layer between Sn and Ag, a diffusion barrier is obtained. It is said that it has the effect of suppressing the formation of intermetallic compounds.

導体表面へのNi層形成に関しては、接合界面の拡散抑制効果が一般的に知られているが、Niは大気中で酸化しやすくはんだ濡れ性が低下することが懸念されている。また硬質なために割れやすく、割れによりAgとはんだが直接接触してしまい、拡散抑制効果が失われる虞もある。   Regarding the formation of the Ni layer on the conductor surface, the effect of suppressing the diffusion at the bonding interface is generally known, but there is a concern that Ni is easily oxidized in the atmosphere and the solder wettability is lowered. Moreover, since it is hard, it is easy to break, there is a possibility that Ag and solder are in direct contact with each other due to the crack, and the diffusion suppressing effect is lost.

そこで、本発明の目的は、従来のPbフリーはんだに対して高温保持におけるAgとはんだとの界面の金属間化合物層の成長を更に抑制することができ、はんだ接合部における良好なはんだ濡れ性を備えたSnを主成分とするPbフリーはんだ及びはんだ被覆導体並びにそれを用いた電気部品を提供することにある。   Therefore, the object of the present invention is to further suppress the growth of the intermetallic compound layer at the interface between Ag and solder at a high temperature as compared with the conventional Pb-free solder, and to achieve good solder wettability at the solder joint. An object of the present invention is to provide a Pb-free solder and a solder-coated conductor having Sn as a main component and an electrical component using the same.

上記課題を解決すべく創案された本発明は、一方の導体と他方の導体とをはんだ接合するためのSnを主成分とするPbフリーはんだであって、前記一方の導体および前記他方の導体の少なくともいずれか一方はAgを主成分とする層をその表面に備えており、前記Snを主成分とするPbフリーはんだSn−3.0mass%Ag−0.5mass%Cu−0.2mass%ZnからなるPbフリーはんだである。
The present invention devised to solve the above problems is a Pb-free solder mainly composed of Sn for solder-joining one conductor and the other conductor, wherein the one conductor and the other conductor are At least one of them has a layer containing Ag as a main component on its surface, and the Pb-free solder containing Sn as a main component is Sn-3.0 mass% Ag-0.5 mass% Cu-0.2 mass%. Pb-free solder made of Zn .

また、本発明は、導体とはんだ接合するためのPbフリーはんだ層を備えたはんだ被覆導体において、前記導体は、Agを主成分とする層を少なくともその表面に備えており、前記Pbフリーはんだ層は、Sn−3.0mass%Ag−0.5mass%Cu−0.2mass%Znからなるはんだ被覆導体である。
Further, the present invention provides a solder-coated conductor provided with a Pb-free solder layer for soldering with a conductor, wherein the conductor includes at least a layer containing Ag as a main component, and the Pb-free solder layer. Is a solder-coated conductor made of Sn-3.0 mass% Ag-0.5 mass% Cu-0.2 mass% Zn .

さらに、本発明は、一方の導体と他方の導体とがSnを主成分とするPbフリーはんだにより接合されて形成される電気部品において、前記一方の導体と前記他方の導体との間には接合部が形成され、前記一方の導体および前記他方の導体の少なくともいずれか一方は、Agを主成分とする層をその表面に備えており、前記接合部はSn−3.0mass%Ag−0.5mass%Cu−0.2mass%ZnからなるPbフリーはんだにより接合されて形成されている電気部品である。
Furthermore, the present invention relates to an electrical component formed by joining one conductor and the other conductor with Pb-free solder containing Sn as a main component, and joining between the one conductor and the other conductor. And at least one of the one conductor and the other conductor has a layer containing Ag as a main component on its surface, and the joint is Sn-3.0 mass% Ag-0. It is an electrical component formed by bonding with Pb-free solder made of 5 mass% Cu-0.2 mass% Zn .

前記導体のうち、Agを主成分とする層を少なくともその表面に備えている導体と、前記接合部との界面に、Ag−Sn−Zn系金属間化合物からなる層が形成されているとよい。   Of the conductors, a layer made of an Ag—Sn—Zn-based intermetallic compound is preferably formed at the interface between the conductor having at least a layer mainly composed of Ag on the surface thereof and the joint. .

本発明によれば、従来のPbフリーはんだに対して高温保持におけるAgとはんだとの界面の金属間化合物層の成長を更に抑制することができ、はんだ接合部における良好なはんだ濡れ性を備えたSnを主成分とするPbフリーはんだ及びはんだ被覆導体並びにそれを用いた電気部品を提供することができる。   According to the present invention, it is possible to further suppress the growth of the intermetallic compound layer at the interface between Ag and solder at high temperature holding compared to the conventional Pb-free solder, and to have good solder wettability at the solder joint portion. It is possible to provide a Pb-free solder containing Sn as a main component, a solder-coated conductor, and an electrical component using the same.

Znの添加によるPbフリーはんだとAgの接合界面の金属間化合物の成長抑制効果を示した模式図であり、(a)は、Pbフリーはんだと銀板との接合界面の金属間化合物の成長状態を示し、(b)は、Znを含まない従来のPbフリーはんだと銀板との接合界面の金属間化合物の成長状態を示す。It is the schematic diagram which showed the growth inhibitory effect of the intermetallic compound of the joint interface of Pb free solder and Ag by addition of Zn, (a) is the growth state of the intermetallic compound of the joint interface of Pb free solder and a silver plate. (B) shows the growth state of the intermetallic compound at the joint interface between the conventional Pb-free solder and silver plate not containing Zn. 本発明の適用例を示す図である。It is a figure which shows the example of application of this invention. 本発明の適用例を示す図である。It is a figure which shows the example of application of this invention. 本発明の適用例を示す図である。It is a figure which shows the example of application of this invention. 金属間化合物層厚さの測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of intermetallic compound layer thickness. 実施例の150℃で2000hr保持後の断面観察写真である。It is a cross-sectional observation photograph after holding 2000 hours at 150 degreeC of an Example. 比較例の150℃で2000hr保持後の断面観察写真である。It is a cross-sectional observation photograph after holding 2000hr at 150 degreeC of a comparative example. 実施例及び比較例の150℃における金属間化合物層の成長挙動を示した図である。It is the figure which showed the growth behavior of the intermetallic compound layer in 150 degreeC of an Example and a comparative example.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1(a)に示すように、本実施の形態に係るPbフリーはんだ1は、一方の導体2と他方の導体(図示せず)とをはんだ接合するためのSnを主成分とするPbフリーはんだである。   As shown in FIG. 1A, a Pb-free solder 1 according to the present embodiment is Pb-free mainly composed of Sn for soldering one conductor 2 and the other conductor (not shown). It is solder.

ここで、導体の一方(例えば、導体2)はAgを主成分とする層を少なくともその表面に備えており、Snを主成分とするPbフリーはんだに、Znが含まれていることを特徴とする。本実施の形態では導体2に銀板を用いる。   Here, one of the conductors (for example, the conductor 2) is provided with at least a layer containing Ag as a main component on its surface, and the Pb-free solder containing Sn as a main component contains Zn. To do. In this embodiment, a silver plate is used for the conductor 2.

Pbフリーはんだ1におけるZn含有量は、0.05mass%以上1.0mass%以下であることが好ましい。この理由を以下に述べる。   The Zn content in the Pb-free solder 1 is preferably 0.05 mass% or more and 1.0 mass% or less. The reason for this will be described below.

本発明者がPbフリーはんだに添加するZn濃度について、鋭意研究した結果、Zn濃度が高いほど界面化合物層の成長を抑制する効果が高いことを見出した。また、この研究から、Zn含有量を0.05mass%以上にすることにより、高温保持における、界面化合物層の成長の成長抑制効果が得られやすいことが分かった。   As a result of intensive studies on the Zn concentration added to the Pb-free solder by the present inventors, it was found that the higher the Zn concentration, the higher the effect of suppressing the growth of the interface compound layer. In addition, it has been found from this research that when the Zn content is set to 0.05 mass% or more, an effect of suppressing growth of the growth of the interface compound layer at high temperature can be easily obtained.

しかし、Znは酸化しやすいため、Zn含有量が多すぎるとAgに対する濡れ性が悪くなり、接合界面に多数の欠陥が形成されやすくなる。そのため、Zn含有量は1.0mass%以下が好ましい。   However, since Zn is easily oxidized, if the Zn content is too large, the wettability to Ag is deteriorated, and a large number of defects are likely to be formed at the bonding interface. Therefore, the Zn content is preferably 1.0 mass% or less.

このPbフリーはんだ1の作用を説明する。   The operation of this Pb-free solder 1 will be described.

Snを主成分とするPbフリーはんだにZnを微量添加することにより、Agを主成分とする層との接合界面でZnが濃化するために界面付近にAg−Sn−Zn系金属間化合物が形成される。そのため、Znを微量添加した場合は、界面の金属間化合物層3は、Ag−Sn−Zn系金属間化合物となり、例えば、Ag−Sn−Zn化合物もしくはAg−Sn−Zn化合物およびAg3Snで構成されている状態となる。このAg−Sn−Zn化合物もしくはAg−Sn−Zn化合物およびAg3Snの形成により、高温でのそれらの化合物層の成長が妨げられる。 By adding a small amount of Zn to a Pb-free solder containing Sn as a main component, Zn concentrates at the bonding interface with the layer containing Ag as a main component, and therefore an Ag—Sn—Zn-based intermetallic compound is formed near the interface. It is formed. Therefore, when a small amount of Zn is added, the intermetallic compound layer 3 at the interface becomes an Ag—Sn—Zn-based intermetallic compound, for example, an Ag—Sn—Zn compound or an Ag—Sn—Zn compound and Ag 3 Sn. It is in a configured state. The formation of the Ag—Sn—Zn compound or Ag—Sn—Zn compound and Ag 3 Sn prevents the growth of those compound layers at high temperatures.

Znを含まない通常のPbフリーはんだでは、図1(b)に示すように、Pbフリーはんだ11中のSnと導体2の表面のAgとの相互拡散により、接合界面に金属間化合物であるAg3Snが形成され、保持温度が高いと、このAg3Snで構成された金属間化合物層13が厚く成長する。 In a normal Pb-free solder not containing Zn, as shown in FIG. 1 (b), the interfacial diffusion of Sn in the Pb-free solder 11 and Ag on the surface of the conductor 2 causes an intermetallic compound, Ag. When 3 Sn is formed and the holding temperature is high, the intermetallic compound layer 13 made of Ag 3 Sn grows thick.

これに対し、本実施の形態に係るPbフリーはんだ1では、Ag−Sn−Zn化合物がAg3Snより、はんだとの界面においてSnとAgの相互拡散速度が遅いため、金属間化合物層3の成長が抑制される。つまりAg−Sn−Zn化合物が相互拡散の障壁のような役割を果たす。Znの添加により、高温状態での金属間化合物層3の成長を抑制できれば、接合強度を向上し、高温環境でも高い信頼性を得ることができる。 On the other hand, in the Pb-free solder 1 according to this embodiment, the Ag—Sn—Zn compound has a lower interdiffusion rate of Sn and Ag at the interface with the solder than Ag 3 Sn. Growth is suppressed. That is, the Ag—Sn—Zn compound serves as a barrier for mutual diffusion. If the growth of the intermetallic compound layer 3 in a high temperature state can be suppressed by the addition of Zn, the bonding strength can be improved and high reliability can be obtained even in a high temperature environment.

なお、導体の具体的な組み合わせとしては、銀成分とPbフリーはんだ1とが接触する構成であれば特に限定されるものではなく、例えば、図2に示すように、銀板22とCuからなる配線材(例えばリード線)24の組み合わせを挙げることができる。   The specific combination of conductors is not particularly limited as long as the silver component and the Pb-free solder 1 are in contact with each other. For example, as shown in FIG. The combination of the wiring material (for example, lead wire) 24 can be mentioned.

Pbフリーはんだ1で接合する限りにおいては、配線材24側には錫、金、銀、はんだなどのめっきを施したものであってもよい。またAgを主成分とする層とPbフリーはんだ1との界面に使用するのでない限り、これらのめっきの下地にニッケルめっきを施すものであってもよい。   As long as the Pb-free solder 1 is used for bonding, the wiring material 24 may be plated with tin, gold, silver, solder, or the like. Further, as long as it is not used at the interface between the layer containing Ag as a main component and the Pb-free solder 1, nickel plating may be applied to the base of these platings.

またこれに限定されるわけではなく、導体の具体的な組み合わせの中には、必ずしも導体単体でなくてもよく、その部材の構成要素の中に導体を含んでいればよい。例えば電極を備えた電子部品や、導電パターンを有する絶縁基板のようなものであってもよい。例えば、図3に示すように、配線パターン34を有するセラミック基板35の上にPbフリーはんだ1を介して銀めっき32を被覆した銀電極を有する電子部品(コンデンサやICチップなど)36を実装するものでもよい。   However, the present invention is not limited to this, and the specific combination of conductors does not necessarily have to be a single conductor, and the constituent elements of the members may include the conductor. For example, it may be an electronic component having an electrode or an insulating substrate having a conductive pattern. For example, as shown in FIG. 3, an electronic component (capacitor, IC chip, etc.) 36 having a silver electrode coated with silver plating 32 is mounted on a ceramic substrate 35 having a wiring pattern 34 via a Pb-free solder 1. It may be a thing.

またこれに限定されるわけではなく、図4に示すように、溶融めっき法によりPbフリーはんだ1のめっき被覆を施した配線材44と、セラミック基板35の上に形成した銀ペースト42とを接合する構造であってもよい。また、セラミック基板35に限定されるものではなくその素材は有機フィルム(例えばガラスエポキシ基板又はポリイミド基板など)であってもよい。   Further, the present invention is not limited to this. As shown in FIG. 4, the wiring material 44 coated with the Pb-free solder 1 by the hot dipping method and the silver paste 42 formed on the ceramic substrate 35 are joined. It may be a structure. The material is not limited to the ceramic substrate 35, and the material thereof may be an organic film (for example, a glass epoxy substrate or a polyimide substrate).

なお、本実施の形態において主成分とは、含有成分の中でもっとも多い場合であればそれを含むものである。   In the present embodiment, the main component includes the main component if it is the largest among the contained components.

そして、Agを主成分とする層とは、例えば、含有成分の中でAgがもっとも多い場合であればそれを含むものである。よって必ずしも銀めっきである必要はなく、有機溶剤と混合した銀ペーストであってもかまわないし、また本発明の効果を損なわない限りにおいてAg以外の添加元素を含む銀合金層であってもよい。   And the layer which has Ag as a main component includes it, for example, when it is the case where there is most Ag in a content component. Therefore, the silver plating is not necessarily required, and a silver paste mixed with an organic solvent may be used, or a silver alloy layer containing an additive element other than Ag may be used as long as the effects of the present invention are not impaired.

また、本実施の形態においては、Agを主成分とする層を少なくともその表面に備えていればよく、Agを主成分とする層が表面を被覆するコアの部分は鋼材であっても、アルミニウムであっても銅材であってもよい。つまり、導体の全体がAgから構成されている必要はない。   In the present embodiment, it is sufficient that a layer mainly composed of Ag is provided on the surface thereof. Even if the core part covering the surface of the layer mainly composed of Ag is a steel material, aluminum is used. Or a copper material. That is, the entire conductor does not have to be made of Ag.

以上説明したように、本発明によれば、従来のPbフリーはんだに対して高温保持におけるAgとはんだとの界面の金属間化合物層の成長を更に抑制することができ、はんだ接合部における良好なはんだ濡れ性を備えたSnを主成分とするPbフリーはんだ及びはんだ被覆導体並びにそれを用いた電気部品を提供することができる。   As described above, according to the present invention, it is possible to further suppress the growth of the intermetallic compound layer at the interface between Ag and solder at a high temperature holding compared to the conventional Pb-free solder, and good solder joints. It is possible to provide a Pb-free solder mainly composed of Sn having solder wettability, a solder-coated conductor, and an electrical component using the same.

また、高温保持におけるAgを主成分とする層とSnを主成分とするはんだの接合界面の金属間化合物層の成長を確実に抑制することができるため、高温環境で使用される電子機器のはんだ接合部においても長期信頼性を得ることができる。   In addition, since the growth of the intermetallic compound layer at the bonding interface between the Ag-based layer and the Sn-based solder in the high temperature holding can be reliably suppressed, the solder for electronic devices used in a high temperature environment Long-term reliability can also be obtained at the joint.

以下に、本発明の実施例及び比較例について説明する。   Examples of the present invention and comparative examples will be described below.

(実施例)
溶融めっき法により厚さ0.2mmの銀板にSn−3.0mass%Ag−0.5mass%Cu−0.2mass%ZnからなるPbフリーはんだめっきを厚さ約50μm形成した。このときのめっき浴温は260℃で、5秒間浸漬してめっきを施した。めっき直後の金属間化合物層の厚さは1.7μmであった。これを高温保持試験に供し、Znを添加したはんだの金属間化合物層の成長厚さを調査した。150℃に設定した恒温槽にて2000hrまで種々の時間保持し、PbフリーはんだめっきとAgの界面に形成されるAg−Sn−Zn系金属間化合物層を光学顕微鏡により断面観察を行った。このとき図5に示すように、画像処理ソフトを用いて金属間化合物層の面積を測定し、それを銀板とPbフリーはんだの界面に対して平行な面積測定部の幅で除し、金属間化合物層の厚さを計測した。
(Example)
Pb-free solder plating made of Sn-3.0 mass% Ag-0.5 mass% Cu-0.2 mass% Zn was formed on a silver plate having a thickness of 0.2 mm by a hot dipping method to a thickness of about 50 μm. The plating bath temperature at this time was 260 ° C., and immersion was performed for 5 seconds to perform plating. The thickness of the intermetallic compound layer immediately after plating was 1.7 μm. This was subjected to a high temperature holding test, and the growth thickness of the intermetallic compound layer of the solder added with Zn was investigated. The Ag—Sn—Zn-based intermetallic compound layer formed at the interface between Pb-free solder plating and Ag was subjected to cross-sectional observation with an optical microscope while being held in a thermostat set at 150 ° C. for 2000 hours. At this time, as shown in FIG. 5, the area of the intermetallic compound layer is measured using image processing software, and the area is divided by the width of the area measuring portion parallel to the interface between the silver plate and the Pb-free solder. The thickness of the intermetallic compound layer was measured.

(比較例)
比較例として、同様に厚さ0.2mmの銀板にZnを含まないSn−3.0mass%Ag−0.5mass%Cuからなる従来のPbフリーはんだめっきを実施例と同様の方法で厚さ約50μm行った。めっき直後の金属間化合物層の厚さは1.3μmであった。比較例についても実施例と同様の高温保持試験を実施し、同様の方法を用いて金属間化合物層の厚さを計測した。
(Comparative example)
As a comparative example, a conventional Pb-free solder plating made of Sn-3.0 mass% Ag-0.5 mass% Cu not containing Zn on a silver plate having a thickness of 0.2 mm is similarly formed in the same manner as in the examples. About 50 μm was performed. The thickness of the intermetallic compound layer immediately after plating was 1.3 μm. For the comparative example, the same high temperature holding test as that of the example was performed, and the thickness of the intermetallic compound layer was measured using the same method.

図6,7に、本実験で得られた、150℃で2000hr保持後の実施例および比較例の断面観察写真を示す。実施例の金属間化合物層の成分を分析したところAg−Sn−Zn系金属間化合物層であり、比較例の金属間化合物層の成分を同様に分析したところAg3Snの金属間化合物層が形成されていた。 FIGS. 6 and 7 show cross-sectional observation photographs of Examples and Comparative Examples obtained in this experiment after being held at 150 ° C. for 2000 hours. When the components of the intermetallic compound layer of the example were analyzed, it was an Ag-Sn-Zn-based intermetallic compound layer, and when the components of the intermetallic compound layer of the comparative example were similarly analyzed, the intermetallic compound layer of Ag 3 Sn was Was formed.

そして、上記と同様の方法により金属間化合物層の厚さを測定したところ、実施例の金属間化合物層の厚さは7.0μmであったのに対し、比較例の金属間化合物層の厚さは8.3μmの厚さであった。   And when the thickness of the intermetallic compound layer was measured by the same method as described above, the thickness of the intermetallic compound layer of the example was 7.0 μm, whereas the thickness of the intermetallic compound layer of the comparative example was The thickness was 8.3 μm.

また、図8に150℃環境における金属間化合物層の成長挙動の比較を示す。このように、比較例では150℃で2000hr保持後は金属間化合物層厚さが7.0μm成長するのに対し、実施例では5.3μmと大幅に成長が抑制されていることが確認された。尚、図8のグラフ中、実施例、比較例の金属組成の数値単位はmass%である。   FIG. 8 shows a comparison of the growth behavior of the intermetallic compound layer in a 150 ° C. environment. As described above, in the comparative example, the intermetallic compound layer thickness grew 7.0 μm after holding at 150 ° C. for 2000 hours, whereas in the example, it was confirmed that the growth was significantly suppressed to 5.3 μm. . In addition, in the graph of FIG. 8, the numerical unit of the metal composition of an Example and a comparative example is mass%.

したがって、ここでは、Pbフリーはんだの接合界面における接続信頼性の指標として、界面における金属間化合物層の厚さを評価したが、上記実験の結果から、比較例に比して実施例は大幅に金属間化合物の成長を抑制することができており、実施例は比較例に比して大幅にPbフリーはんだの接合界面における接続信頼性を有するものであるといえる。   Therefore, here, the thickness of the intermetallic compound layer at the interface was evaluated as an index of the connection reliability at the joint interface of Pb-free solder. The growth of the intermetallic compound can be suppressed, and it can be said that the example has the connection reliability at the joint interface of the Pb-free solder significantly as compared with the comparative example.

また、本発明のPbフリーはんだは、銀板との界面において中間層を介在させるようなことをしないため、従来のSnを主成分とするPbフリーはんだに比してはんだ濡れ性を低下させることもなく良好なはんだ濡れ性を備えていた。   In addition, since the Pb-free solder of the present invention does not interpose an intermediate layer at the interface with the silver plate, the solder wettability is reduced as compared with the conventional Pb-free solder mainly composed of Sn. It had good solder wettability.

さらに、本発明のPbフリーはんだは、上記各成分の他、本発明の目的を損しない範囲で必要に応じて、例えば、Bi、In、P、Sb、Mg、Auなどの他の元素を含有させることもできる。これにより、はんだ付け時およびはんだ付け後におけるはんだ合金の融点をさらに低下させることができる。   Furthermore, the Pb-free solder of the present invention contains other elements such as Bi, In, P, Sb, Mg, and Au as necessary within the range not impairing the object of the present invention in addition to the above components. It can also be made. Thereby, the melting point of the solder alloy at the time of soldering and after soldering can be further lowered.

なお、本発明のPbフリーはんだとしては、Snを主成分とすると共にZnを含有し、Pbを添加していないものであれば特に限定されるものではなく、純Sn系、Sn−Ag系、Sn−Ag−Cu系、Sn−Cu系のいずれであってもよい。   The Pb-free solder of the present invention is not particularly limited as long as it contains Sn as a main component, contains Zn, and does not contain Pb. Pure Sn-based, Sn-Ag-based, Any of Sn-Ag-Cu type and Sn-Cu type may be sufficient.

1 Pbフリーはんだ
2 導体
3 金属間化合物層
11 従来のPbフリーはんだ
13 Ag3Snで構成された金属間化合物層
1 Pb-free solder 2 Conductor 3 Intermetallic compound layer 11 Conventional Pb-free solder 13 Intermetallic compound layer composed of Ag 3 Sn

Claims (4)

一方の導体と他方の導体とをはんだ接合するためのSnを主成分とするPbフリーはんだであって、前記一方の導体および前記他方の導体の少なくともいずれか一方はAgを主成分とする層をその表面に備えており、前記Snを主成分とするPbフリーはんだSn−3.0mass%Ag−0.5mass%Cu−0.2mass%Znからなることを特徴とするPbフリーはんだ。 Pb-free solder mainly composed of Sn for solder-bonding one conductor and the other conductor, wherein at least one of the one conductor and the other conductor is a layer mainly composed of Ag. The Pb-free solder provided on the surface thereof, wherein the Pb-free solder containing Sn as a main component is made of Sn-3.0 mass% Ag-0.5 mass% Cu-0.2 mass% Zn . 導体とはんだ接合するためのPbフリーはんだ層を備えたはんだ被覆導体において、
前記導体は、Agを主成分とする層を少なくともその表面に備えており、
前記Pbフリーはんだ層は、Sn−3.0mass%Ag−0.5mass%Cu−0.2mass%Znからなることを特徴とするはんだ被覆導体。
In a solder-coated conductor having a Pb-free solder layer for soldering with a conductor,
The conductor includes at least a layer having Ag as a main component on its surface,
The Pb-free solder layer is made of Sn-3.0 mass% Ag-0.5 mass% Cu-0.2 mass% Zn .
一方の導体と他方の導体とがSnを主成分とするPbフリーはんだにより接合されて形成される電気部品において、前記一方の導体と前記他方の導体との間には接合部が形成され、前記一方の導体および前記他方の導体の少なくともいずれか一方は、Agを主成分とする層をその表面に備えており、前記接合部はSn−3.0mass%Ag−0.5mass%Cu−0.2mass%ZnからなるPbフリーはんだにより接合されて形成されていることを特徴とする電気部品。 In an electrical component formed by joining one conductor and the other conductor with Pb-free solder containing Sn as a main component, a joint is formed between the one conductor and the other conductor, At least one of the one conductor and the other conductor is provided with a layer containing Ag as a main component on its surface, and the joint portion is Sn-3.0 mass% Ag-0.5 mass% Cu-0. An electrical component formed by bonding with Pb-free solder made of 2 mass% Zn . 前記導体のうち、Agを主成分とする層を少なくともその表面に備えている導体と、前記接合部との界面に、Ag−Sn−Zn系金属間化合物からなる層が形成されている請求項に記載の電気部品。 The layer which consists of an Ag-Sn-Zn type intermetallic compound is formed in the interface with the conductor which has the layer which has Ag as a main component among the said conductors at least on the surface, and the said junction part. 3. The electrical component according to 3 .
JP2011120299A 2011-05-30 2011-05-30 Pb-free solder, solder-coated conductor, and electrical parts using the same Expired - Fee Related JP5724638B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011120299A JP5724638B2 (en) 2011-05-30 2011-05-30 Pb-free solder, solder-coated conductor, and electrical parts using the same
CN201210071751.3A CN102806429B (en) 2011-05-30 2012-03-16 Pb-free solder, solder coated conductor and use the electric component of this Pb-free solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120299A JP5724638B2 (en) 2011-05-30 2011-05-30 Pb-free solder, solder-coated conductor, and electrical parts using the same

Publications (2)

Publication Number Publication Date
JP2012245554A JP2012245554A (en) 2012-12-13
JP5724638B2 true JP5724638B2 (en) 2015-05-27

Family

ID=47230392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120299A Expired - Fee Related JP5724638B2 (en) 2011-05-30 2011-05-30 Pb-free solder, solder-coated conductor, and electrical parts using the same

Country Status (2)

Country Link
JP (1) JP5724638B2 (en)
CN (1) CN102806429B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142153A1 (en) * 2013-03-13 2014-09-18 株式会社日本スペリア社 Solder alloy and joint thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193170A (en) * 1996-12-27 1998-07-28 Murata Mfg Co Ltd Soldered article
CN100423217C (en) * 2003-08-26 2008-10-01 德山株式会社 Substrate for device bonding, device bonded substrate, and method for producing same
WO2006011204A1 (en) * 2004-07-29 2006-02-02 Senju Metal Industry Co., Ltd Lead-free solder alloy
JP4344707B2 (en) * 2005-02-24 2009-10-14 株式会社ルネサステクノロジ Semiconductor device and manufacturing method thereof
US7628871B2 (en) * 2005-08-12 2009-12-08 Intel Corporation Bulk metallic glass solder material
JP2008098315A (en) * 2006-10-11 2008-04-24 Hitachi Cable Ltd Solder plating wire for solar cell and its production process
TW200927357A (en) * 2007-10-17 2009-07-01 Ishikawa Metal Co Ltd Lead-free solder
EP2214213A2 (en) * 2009-01-29 2010-08-04 SCHOTT Solar AG Photovoltaic module
JP2011156558A (en) * 2010-01-30 2011-08-18 Nihon Superior Co Ltd Lead-free solder alloy

Also Published As

Publication number Publication date
CN102806429B (en) 2016-01-20
CN102806429A (en) 2012-12-05
JP2012245554A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
EP3062956B1 (en) Lead-free, silver-free solder alloys
JP4904953B2 (en) WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
US8092621B2 (en) Method for inhibiting growth of nickel-copper-tin intermetallic layer in solder joints
JP4911254B2 (en) Wiring conductor and terminal connection
US20130153646A1 (en) Method for suppressing kirkendall voids formation at the interface between solder and copper pad
KR102002675B1 (en) Lead-free solder alloy
KR20140098815A (en) Bonding method, bond structure, and manufacturing method for same
EP3021357A1 (en) Method of joining a semiconductor element to a joined member by reacting a tin-containing solder material with a copper layer on the joined member and corresponding semiconductor device
US10137536B2 (en) Sn-Cu-based lead-free solder alloy
JPWO2013132942A1 (en) Bonding method, bonded structure and manufacturing method thereof
KR20130137122A (en) Bi-sn-based high-temperature solder alloy
JP3878978B2 (en) Lead-free solder and lead-free fittings
US6630251B1 (en) Leach-resistant solder alloys for silver-based thick-film conductors
JP5724638B2 (en) Pb-free solder, solder-coated conductor, and electrical parts using the same
JP2000054189A (en) MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JP2005052869A (en) Brazing material for high temperature soldering and semiconductor device using it
JPH1093004A (en) Electronic component and manufacture thereof
JP2002185130A (en) Electronic circuit device and electronic part
JP2003326386A (en) Leadless solder alloy
JP4745878B2 (en) Solder film and soldering method using the same
JP6267427B2 (en) Soldering method and mounting board
KR100431090B1 (en) Lead free solder plated with low-melting-pointed alloy
JP2004260147A (en) Soldering method and method for manufacturing component-packaged substrate
JP2002299381A (en) Solder plating ball and method for manufacturing semiconductor connecting structure using the same
JPH1117321A (en) Printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5724638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees