JP4911254B2 - Wiring conductor and terminal connection - Google Patents

Wiring conductor and terminal connection Download PDF

Info

Publication number
JP4911254B2
JP4911254B2 JP2011103359A JP2011103359A JP4911254B2 JP 4911254 B2 JP4911254 B2 JP 4911254B2 JP 2011103359 A JP2011103359 A JP 2011103359A JP 2011103359 A JP2011103359 A JP 2011103359A JP 4911254 B2 JP4911254 B2 JP 4911254B2
Authority
JP
Japan
Prior art keywords
wiring
wiring conductor
based material
whisker
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011103359A
Other languages
Japanese (ja)
Other versions
JP2011192652A (en
Inventor
隆之 辻
寛 山野辺
甫 西
寛 沖川
威 宇佐美
正義 青山
真人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011103359A priority Critical patent/JP4911254B2/en
Publication of JP2011192652A publication Critical patent/JP2011192652A/en
Application granted granted Critical
Publication of JP4911254B2 publication Critical patent/JP4911254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A Pb-free Sn-based material part of a wiring conductor is provided at least at a part of its surface, and the Sn-based material part includes a base metal doped with an oxidation control element. The oxidation control element is at least one element selected from a group consisted of P, Ge, K, Zn, Cr, Mn, Na, V, Si, Ti, Al, Li, Mg and Ca. The wiring conductor is reflow processed, such that at least one of the Sn and the oxidation control element is diffused to form an alloy.

Description

本発明は、配線用導体及び端末接続部に係り、特に電子機器に使用される配線用導体及び端末接続部に関するものである。 The present invention relates to a wiring conductor and the terminal connecting portion, in particular relates to a wiring conductor and the terminal connecting portion are used in electronic devices.

従来、配線材、特に銅や銅合金の表面には、配線材の酸化を防ぐために、スズ、銀、金やニッケルのめっきが施される。例えば、図7に示すように、コネクタ11とフレキシブルフラットケーブル(以下、FFCという)13の端末接続部においては、コネクタ(コネクタ部材)11のコネクタピン(金属端子)12や、FFC13の導体14の表面などにめっきが施されている。なかでも、Snはコストが安価であり、軟らかいため嵌合(接触)の圧力で容易に変形して接触面積が増え、接触抵抗が低く抑えられることから、配線材の表面にSnめっきを施したものが広く一般的に使用されている。   Conventionally, the surface of a wiring material, particularly copper or copper alloy, is plated with tin, silver, gold or nickel in order to prevent the wiring material from being oxidized. For example, as shown in FIG. 7, in the terminal connection part of the connector 11 and the flexible flat cable (hereinafter referred to as FFC) 13, the connector pins (metal terminals) 12 of the connector (connector member) 11 and the conductors 14 of the FFC 13 The surface is plated. In particular, Sn is inexpensive and soft, so it is easily deformed by the fitting (contact) pressure to increase the contact area and keep the contact resistance low, so the surface of the wiring material was Sn plated. Things are widely used in general.

このSnめっき用合金として、従来は耐ウィスカ性が良好なSn−Pb合金が用いられてきたが、近年は環境面での対応の観点から、Pbフリー材(非鉛材)、ノンハロゲン材の使用が求められており、配線材に使用される各種材料に対してもPbフリー化、ノンハロゲン化が求められている。   Conventionally, Sn-Pb alloys with good whisker resistance have been used as this Sn plating alloy, but in recent years, Pb-free materials (lead-free materials) and non-halogen materials have been used from the viewpoint of environmental compatibility. Pb-free and non-halogenated are also required for various materials used for wiring materials.

また、はんだ分野においても、従来はSn−Pb合金が用いられてきたが、現在はSn−Ag−Cu系などのPbフリーはんだが実用化されている。   In the field of soldering, Sn-Pb alloys have been used in the past, but Sn-Ag-Cu-based Pb-free solder has been put into practical use.

特開平11−189894号公報Japanese Patent Laid-Open No. 11-189894 特開平11−345737号公報JP 11-345737 A 特開2001−9587号公報Japanese Patent Laid-Open No. 2001-9587 特開2001−230151号公報JP 2001-230151 A 特開2002−53981号公報Japanese Patent Laid-Open No. 2002-53981

ところが、SnめっきのPbフリー化に伴って、特にSnまたはSn系合金めっきにおいては、Snの針状結晶であるウィスカがめっきから発生し、図8に示すように、ウィスカ21によって隣接配線材(導体14)間が短絡するおそれがある。   However, with the Pb-free Sn plating, particularly in Sn or Sn-based alloy plating, whisker that is a needle crystal of Sn is generated from the plating, and as shown in FIG. There is a risk of short circuit between the conductors 14).

ウィスカの発生原因の一つとして考えられているSnめっき中の応力を緩和させるため、電気めっきしたSnをリフロー処理することにより、ウィスカの発生を低減させることが可能であるとされている。   In order to relieve stress during Sn plating, which is considered as one of the causes of whisker generation, it is said that reflow treatment of electroplated Sn can reduce the generation of whiskers.

しかし、そのウィスカ抑制のメカニズムは正確にはわかっていない。また、コネクタとの嵌合など新たな外部応力がかかる場合は、リフロー処理を施してもウィスカの発生を抑えることができない。また、SnとBiやAgなどとの合金を電解めっきすることによりウィスカを抑制することができるが、リフロー処理することにより、逆に純Snめっきの時よりもウィスカが多く発生してしまうことが報告されている。電子部品の場合は部品実装のためにリフロー処理が必須となっていることから、これら合金めっきにも問題がある。現在のところ有効な対策として、1μm以下の薄いSnめっきを施す方法も開示されているが、特に高温放置時において、従来よりも接触抵抗が増大するという問題がある(例えば、JEITA鉛フリー化完遂緊急提言報告会資料(2005.2.17)、JEITA鉛フリーはんだ実用化検討2005年成果報告書(2005.6)、特開2005−206869号公報、特開2006−45665号公報を参照)。   However, the exact mechanism of whisker suppression is unknown. In addition, when a new external stress such as fitting with a connector is applied, the occurrence of whiskers cannot be suppressed even if reflow processing is performed. Further, whisker can be suppressed by electrolytic plating an alloy of Sn and Bi, Ag, or the like. However, reflow treatment may cause more whisker than in the case of pure Sn plating. It has been reported. In the case of electronic components, since reflow processing is essential for component mounting, these alloy platings also have problems. As a currently effective measure, a method of applying a thin Sn plating of 1 μm or less is also disclosed, but there is a problem that the contact resistance is increased as compared with the prior art especially when left at high temperatures (for example, JEITA lead-free completion) Urgent proposal report meeting material (2005.2.17), JEITA lead-free solder practical application review 2005 report (2005.6), Japanese Patent Laid-Open No. 2005-206869, Japanese Patent Laid-Open No. 2006-45665).

また、Sn系合金であるはんだにおいてもPbフリー化に伴って、ウィスカの発生が懸念されている。   In addition, there is a concern about the occurrence of whiskers with the Pb-free solder in the Sn-based alloy.

以上の事情を考慮して創案された本発明の目的は、コネクタとの嵌合部、接続部などの大きな外部応力がかかる環境下においても、導体周囲のSnめっき膜表面やはんだ表面からウィスカが発生するおそれの少ない、或いはほとんど発生せず、高温放置環境においても接触抵抗が増大することのないPbフリーの配線用導体及び端末接続部並びにPbフリーはんだ合金を提供することにある。   The object of the present invention, which was created in view of the above circumstances, is that whiskers are formed from the Sn plating film surface and the solder surface around the conductor even in an environment where a large external stress is applied such as a fitting part and a connection part with the connector. An object of the present invention is to provide a Pb-free wiring conductor and a terminal connection portion and a Pb-free solder alloy that are less likely to occur or hardly occur and that do not increase contact resistance even in a high temperature standing environment.

上記の目的を達成すべく、請求項1の発明は、コネクタ部材に嵌合して使用され、少なくとも表面の一部にPbフリーのSn系材料部を有する配線用導体において、上記Sn系材料部が、Sn系材料部母材にZnを添加してなり、その添加量が0.002以上0.5wt%以下であり、これをリフロー処理したことを特徴とする配線用導体である。 In order to achieve the above-mentioned object, the invention of claim 1 is used in a wiring conductor having a Pb-free Sn-based material portion at least partially on the surface , and used in a connector member. However, this is a wiring conductor characterized in that Zn is added to the Sn-based material part base material, and the addition amount is 0.002 or more and 0.5 wt% or less, and this is subjected to reflow treatment.

請求項2の発明は、コネクタ部材に嵌合して使用され、少なくとも表面の一部にPbフリーのSn系材料部を有する配線用導体において、上記Sn系材料部の外層側に、Znを含む層を設け、リフロー処理した配線用導体であって、リフロー処理後のZnの割合が0.002以上0.5wt%以下であることを特徴とする配線用導体である。 The invention of claim 2 is fitted to the connector member is used, the wiring conductor having a Sn-based material of Pb-free at least part of the surface, the outer layer of the Sn-based material part, containing Zn A wiring conductor provided with a layer and subjected to reflow treatment, wherein the proportion of Zn after the reflow treatment is 0.002 or more and 0.5 wt% or less.

請求項3の発明は、コネクタ部材に嵌合して使用され、少なくとも表面の一部にPbフリーのSn系材料部を有する配線用導体において、上記Sn系材料部の内層側に、Znを含む層を設け、リフロー処理した配線用導体であって、リフロー処理後のZnの割合が0.002以上0.5wt%以下であることを特徴とする配線用導体である。 The invention of claim 3 is fitted into the connector member is used, the wiring conductor having a Sn-based material of Pb-free at least part of the surface, the inner layer side of the Sn-based material part, containing Zn A wiring conductor provided with a layer and subjected to reflow treatment, wherein the proportion of Zn after the reflow treatment is 0.002 or more and 0.5 wt% or less.

請求項4の発明は、金属材料で構成される心材の周りに、上記Sn系材料部の被覆層を設けた配線材である請求項1から3いずれかに記載の配線用導体である。   The invention according to claim 4 is the wiring conductor according to any one of claims 1 to 3, which is a wiring member in which a coating layer of the Sn-based material portion is provided around a core material made of a metal material.

請求項5の発明は、全体が上記Sn系材料部で構成されたはんだ材又はろう材である請求項1から4いずれかに記載の配線用導体である。   A fifth aspect of the present invention is the wiring conductor according to any one of the first to fourth aspects, which is a solder material or a brazing material composed entirely of the Sn-based material portion.

請求項6の発明は、上記Sn系材料部母材が、Snと不可避不純物からなる純Sn系、あるいはSn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Bi−Ag系、Sn−Cu系等のPbフリーのはんだ材又はろう材である請求項1から5いずれかに記載の配線用導体である。
According to a sixth aspect of the present invention, the Sn-based material part base material is pure Sn based Sn or inevitable impurities, Sn-Ag based, Sn-Ag-Cu based, Sn-Bi based, Sn-Bi-Ag based. The conductor for wiring according to any one of claims 1 to 5, which is a Pb-free solder material such as Sn-Cu or solder material.

請求項の発明は、金属導体の端末同士を接続する際、少なくとも一方の端末を請求項1からいずれかに記載の配線用導体で構成したことを特徴とする端末接続部である。 The invention of claim 7, when connecting the terminal ends of the metal conductors, a terminal connection unit, characterized in that is constituted by the wiring conductor according to any one of the at least one terminal of claims 1-6.

本発明により、少なくとも表面の一部にPbフリーのSn系材料部を有する配線用導体の、Sn系材料部中に発生する応力を低減することができる。その結果、Sn系材料部の応力により発生するSnの針状結晶であるウィスカの発生を抑制することが可能になり、電子機器用配線材などにおける隣接配線間の短絡といった不具合を解決することができる。また、高温放置環境においても接触信頼性を損なうおそれがない。   According to the present invention, the stress generated in the Sn-based material portion of the wiring conductor having the Pb-free Sn-based material portion on at least a part of the surface can be reduced. As a result, it is possible to suppress the generation of whiskers, which are Sn needle-like crystals generated by the stress of the Sn-based material portion, and to solve problems such as a short circuit between adjacent wires in a wiring material for electronic devices. it can. In addition, there is no risk of impairing contact reliability even in a high temperature leaving environment.

以下本発明の実施の形態を添付図面により説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

ウィスカ発生は、Sn表面に酸化膜が形成されることによって配線導体が膨張し(配線導体径が大きくなり)、圧縮応力が発生することが一因となっていると言われている。本発明者らが鋭意研究した結果、Snに酸化抑制元素を添加することによってSnの酸化を防ぐことで、ウィスカ発生を抑制できるということを見出した。   The generation of whiskers is said to be due to the fact that the wiring conductor expands (wiring conductor diameter increases) due to the formation of an oxide film on the Sn surface and compressive stress is generated. As a result of intensive studies by the present inventors, it was found that whisker generation can be suppressed by preventing oxidation of Sn by adding an oxidation inhibiting element to Sn.

本実施の形態に係る配線用導体は、図1に示す導電材料(心材)1と、その周囲にめっきされるSn系材料部(被覆層)2とで構成され、そのSn系材料部2は、Sn系材料部母材に酸化を防ぐ酸化抑制元素を添加してなり、少なくともそのSn系材料部2にリフロー処理したことに特徴がある。ここで言う酸化抑制元素とは、Sn系材料部母材の酸化を防ぐ元素のことである。   The wiring conductor according to the present embodiment is composed of a conductive material (core material) 1 shown in FIG. 1 and an Sn-based material portion (covering layer) 2 plated around the conductive material (core material) 1. The Sn-based material part base material is characterized by adding an oxidation-inhibiting element for preventing oxidation, and at least the Sn-based material part 2 is subjected to reflow treatment. The term “oxidation inhibiting element” as used herein refers to an element that prevents oxidation of the Sn-based material part base material.

Sn系材料部母材としては、純SnやPbフリーはんだ(例えば、Sn−Ag−Cu合金)などが挙げられる。   Examples of the Sn-based material part base material include pure Sn and Pb-free solder (for example, Sn—Ag—Cu alloy).

Sn系材料部母材に添加される酸化抑制元素として、P、Ge、K、Zn、Cr、Mn、Na、V、Si、Ti、Al、Li、Mg、Ca、Zrから選択される少なくとも1種以上が挙げられる。Sn系材料部母材が純Snの場合、酸化抑制元素としては、耐ウィスカ性(ウィスカ発生の抑制効果)に優れたP、Cr、V、Ti、Ge、Al、Mg、Znが好ましい。一方、Sn系材料部母材がPbフリーはんだの場合、酸化抑制元素としては、P、Cr、Al、Znが好ましい。   At least one selected from P, Ge, K, Zn, Cr, Mn, Na, V, Si, Ti, Al, Li, Mg, Ca, and Zr as an oxidation inhibiting element added to the Sn-based material part base material More than species. When the Sn-based material part base material is pure Sn, P, Cr, V, Ti, Ge, Al, Mg, and Zn, which are excellent in whisker resistance (the effect of suppressing whisker generation), are preferable as the oxidation suppressing element. On the other hand, when the Sn-based material part base material is Pb-free solder, P, Cr, Al, and Zn are preferable as the oxidation inhibiting element.

Sn系材料部母材に添加される酸化抑制元素の合計添加量は10wt%以下とされる。ここで、Sn系材料部2での酸化抑制元素の添加割合が10wt%を超えると、クラックが発生したり、はんだ付け性が低下するなどの不具合が生じるため、添加割合は10wt%以下とされる。好ましい添加割合は1.0wt%以下であり、より好ましい添加割合は0.1wt%以下である。   The total addition amount of the oxidation inhibiting elements added to the Sn-based material part base material is 10 wt% or less. Here, if the addition ratio of the oxidation-inhibiting element in the Sn-based material part 2 exceeds 10 wt%, defects such as cracks and lowering of solderability occur, so the addition ratio is set to 10 wt% or less. The A preferable addition ratio is 1.0 wt% or less, and a more preferable addition ratio is 0.1 wt% or less.

本実施の形態では、Sn系材料部母材に酸化抑制元素を添加したものでSn系材料部2を構成した場合について説明を行ったが、特に限定するものではない。例えば、図2に一変形例を示すように、Sn系材料部母材のみで構成されるSn系材料部2の外層側に酸化抑制元素の層3を設けてもよい。また、図3に他の変形例を示すように、Sn系材料部母材のみで構成されるSn系材料部2の内層側に酸化抑制元素の層3を設けてもよい。図2及び図3の線材にリフロー処理することで、少なくとも表面の一部に酸化抑制元素を含むSn系材料部を有する本実施の形態に係る配線用導体が得られる。リフローによって、Sn系材料部2のSn及び酸化抑制元素の層3を構成する酸化抑制元素の少なくとも一方が拡散し、Sn系材料部2と酸化抑制元素の層3の合金で構成される被覆層が形成される。   In the present embodiment, the case where the Sn-based material part 2 is configured by adding an oxidation-suppressing element to the Sn-based material part base material has been described. However, the present invention is not particularly limited. For example, as shown in FIG. 2, an oxidation-suppressing element layer 3 may be provided on the outer layer side of the Sn-based material part 2 composed only of the Sn-based material part base material. In addition, as shown in FIG. 3, an oxidation-suppressing element layer 3 may be provided on the inner layer side of the Sn-based material portion 2 composed only of the Sn-based material portion base material. By performing the reflow process on the wire rods of FIGS. 2 and 3, the wiring conductor according to the present embodiment having the Sn-based material portion containing the oxidation inhibiting element at least on a part of the surface can be obtained. By reflowing, at least one of Sn in the Sn-based material part 2 and the oxidation-inhibiting element constituting the oxidation-inhibiting element layer 3 diffuses, and the coating layer is made of an alloy of the Sn-based material part 2 and the oxidation-inhibiting element layer 3 Is formed.

リフローの焼鈍温度・時間は、Sn系材料部2のSn及び酸化抑制元素の層3を構成する酸化抑制元素の少なくとも一方が拡散するのに十分な温度・時間とされる。この焼鈍温度・時間は用いる酸化抑制元素によって異なるため、用いる酸化抑制元素に応じて適宜調整される。   The annealing temperature / time for reflow is set to a temperature / time sufficient for diffusion of at least one of Sn in the Sn-based material portion 2 and the oxidation inhibiting element constituting the layer 3 of the oxidation inhibiting element. Since the annealing temperature and time vary depending on the oxidation inhibiting element used, the annealing temperature and time are appropriately adjusted according to the oxidation inhibiting element used.

また、本実施の形態に係る配線用導体の構成を、接続を行う金属導体の端末の内、少なくとも一方の金属導体端末に適用することで、本発明の好適一実施の形態に係る端末接続部が得られる。   Further, by applying the configuration of the wiring conductor according to the present embodiment to at least one of the metal conductor terminals to be connected, the terminal connection portion according to a preferred embodiment of the present invention. Is obtained.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態においてSn系材料部母材に添加する酸化抑制元素は、Snより酸化し易いと言う特徴がある。特に、Snが溶融している状態の時(リフロー処理時)は、これら酸化抑制元素がSnより先に酸化され、これらが表面から揮発するか、或いは表面にごく薄い酸化膜を形成するため、内部のSnが酸化されるのを防ぐことができる。この状態は、凝固した状態でも持続され、通常使用における環境でSnが酸化されるのを防ぎ、ウィスカ発生が抑制される。   In the present embodiment, the oxidation inhibiting element added to the Sn-based material part base material is characterized by being easier to oxidize than Sn. In particular, when Sn is in a molten state (at the time of reflow treatment), these oxidation-suppressing elements are oxidized prior to Sn and volatilize from the surface or form a very thin oxide film on the surface. It is possible to prevent the internal Sn from being oxidized. This state is maintained even in a solidified state, prevents Sn from being oxidized in an environment in normal use, and suppresses whisker generation.

これら酸化抑制元素が、Snめっきの表面に存在する時(図2の層3を参照)はもちろん、Snめっきの内部(図1のSn系材料部2を参照)や下地層(図3の層3を参照)に存在する場合においても、これら元素がSnより酸化し易い為、一度リフロー処理することで、これら元素がSnめっきの表面に移動してSnめっき表面にごく薄い酸化膜を形成し、上述した効果を発現させる事ができる。   When these oxidation-inhibiting elements are present on the surface of the Sn plating (see the layer 3 in FIG. 2), the inside of the Sn plating (see the Sn-based material part 2 in FIG. 1) and the underlying layer (the layer in FIG. 3) 3), these elements are easier to oxidize than Sn, so by reflowing once, these elements move to the surface of Sn plating and form a very thin oxide film on the surface of Sn plating. The effects described above can be exhibited.

接続を行う金属導体の端末の内、少なくとも一方の金属導体端末に本実施の形態に係る配線用導体の構成を適用した端末接続部は、ウィスカ発生を抑制することができる。例えば、本実施の形態に係る配線用導体を電子機器用配線材に用いることで、表面にSnめっきを施された電子機器用配線材の、Snめっき中に発生する応力を低減することができる。その結果、Snめっきの応力によって発生するSnの針状結晶であるウィスカの発生を抑制することが可能となり、隣接配線間の短絡といった不具合を解決することができる。   The terminal connection portion in which the configuration of the wiring conductor according to the present embodiment is applied to at least one of the metal conductor terminals to be connected can suppress whisker generation. For example, by using the wiring conductor according to the present embodiment for an electronic device wiring material, it is possible to reduce the stress generated during Sn plating of the electronic device wiring material whose surface is Sn plated. . As a result, it is possible to suppress the generation of whiskers which are Sn needle crystals generated by the stress of Sn plating, and it is possible to solve problems such as a short circuit between adjacent wirings.

次に、本発明の他の実施の形態を説明する。   Next, another embodiment of the present invention will be described.

前述した図1の配線用導体は、心材1の周りに設ける被覆層だけがSn系材料部2で構成されたものであった。   In the wiring conductor of FIG. 1 described above, only the coating layer provided around the core material 1 is composed of the Sn-based material portion 2.

これに対して、本発明の他の好適一実施の形態に係る配線用導体は、図4に示すように、配線用導体全体がSn系材料部2で構成されることに特徴がある。   On the other hand, the wiring conductor according to another preferred embodiment of the present invention is characterized in that the entire wiring conductor is composed of the Sn-based material portion 2 as shown in FIG.

この配線用導体は、Sn系材料部母材の選択により、Pbフリーのはんだ材又はろう材となる。例えば、Agを0.1〜3.5wt%、Cuを0.1〜3.5wt%の割合で含むSn−Ag−Cuはんだ合金において、このはんだ合金母材(Sn系材料部母材)に酸化抑制元素としてP、Ge、K、Zn、Cr、Mn、Na、V、Si、Ti、Al、Li、Mg、Ca、Zrのうちの少なくとも1種以上を10wt%以下の割合で添加することで、本実施の形態に係る配線用導体(Pbフリーのはんだ材)、すなわちPbフリーはんだ合金が得られる。   The wiring conductor becomes a Pb-free solder material or brazing material depending on the selection of the Sn-based material portion base material. For example, in a Sn—Ag—Cu solder alloy containing 0.1 to 3.5 wt% of Ag and 0.1 to 3.5 wt% of Cu, this solder alloy base material (Sn-based material part base material) Add at least one of P, Ge, K, Zn, Cr, Mn, Na, V, Si, Ti, Al, Li, Mg, Ca, and Zr as an oxidation inhibiting element at a ratio of 10 wt% or less. Thus, the wiring conductor (Pb-free solder material) according to the present embodiment, that is, a Pb-free solder alloy is obtained.

本実施の形態に係るPbフリーはんだ合金を、例えば、金属導体の端末のはんだ接続部に用い、リフロー処理することで、端末接続部がはんだ接続される。得られた端末接続部は、はんだ材中に発生する応力を低減することができる。その結果、はんだ材の応力によって発生するSnの針状結晶であるウィスカの発生を抑制することが可能となり、隣接はんだ接続部間の短絡といった不具合を解決することができる。   The terminal connection portion is solder-connected by using the Pb-free solder alloy according to the present embodiment, for example, for the solder connection portion of the terminal of the metal conductor and performing a reflow process. The obtained terminal connection part can reduce the stress generated in the solder material. As a result, it is possible to suppress the generation of whiskers which are Sn needle-like crystals generated by the stress of the solder material, and it is possible to solve problems such as a short circuit between adjacent solder connection portions.

本発明の別の好適一実施の形態に係る配線用導体を、図1を用いて説明する。   A wiring conductor according to another preferred embodiment of the present invention will be described with reference to FIG.

本発明者らが鋭意研究した結果、P、Zn、Al、Ti、Vを適正量Sn中に添加することで、Sn表面での酸化膜形成を抑え、ウィスカを抑制できることを見出した。   As a result of intensive studies by the present inventors, it has been found that by adding P, Zn, Al, Ti, and V into appropriate amounts of Sn, oxide film formation on the Sn surface can be suppressed and whiskers can be suppressed.

特にPは、Snが溶融している状態の時はSnより先に酸化し、表面から揮発し、酸化膜が残りにくいという特徴があり好ましい。Zn、Al、Ti、Vを添加しても、Snの酸化を抑えることができるが、その添加量が多すぎると、これら添加元素の酸化膜が厚く形成され逆にウィスカが発生し易く、適正量を添加することでSn及び添加元素の酸化膜を薄く抑え、ウィスカを抑制できることがわかった。また、これら元素を添加することにより、特に高温環境下で接触抵抗の増大の原因となるSnの酸化を抑えることができることも判明した。   In particular, P is preferable because it is oxidized before Sn and volatilizes from the surface when Sn is melted, and the oxide film hardly remains. Even if Zn, Al, Ti, V is added, the oxidation of Sn can be suppressed. However, if the added amount is too large, an oxide film of these added elements is formed thickly and conversely, whiskers are easily generated. It was found that by adding the amount, the oxide film of Sn and additive elements can be suppressed thinly and whiskers can be suppressed. It has also been found that the addition of these elements can suppress the oxidation of Sn, which causes an increase in contact resistance, particularly in a high temperature environment.

これら元素を添加する以外の方法として、有機化合物をSn表面に吸着させてバリア層とすることで、Sn表面の酸化を防ぎ、ウィスカを抑制できる方法が下記文献に開示されている(特開2004−137574号公報、特開2004−156094号公報を参照)。   As a method other than the addition of these elements, a method is disclosed in the following document, in which an organic compound is adsorbed on the Sn surface to form a barrier layer, thereby preventing oxidation of the Sn surface and suppressing whiskers (Japanese Patent Application Laid-Open Publication 2004). No. 137574 and JP 2004-156094).

しかし、これらの方法では、機械的接触により、表面に吸着した有機化合物が部分的に剥がれてしまい、特にコネクタとの嵌合、接触部には、酸化抑制の効果を十分に発揮できないおそれがある。本実施の形態では、Snめっきの酸化を防ぐ元素はSnめっき内部に添加、分布しているため、機械的接触によるキズが発生した場合やコネクタとの嵌合、接触部などでも、安定して酸化抑制効果を発揮することができる。   However, in these methods, the organic compound adsorbed on the surface is partially peeled off due to mechanical contact, and there is a possibility that the effect of suppressing oxidation may not be sufficiently exerted particularly on the fitting and contact portions with the connector. . In the present embodiment, since the elements that prevent the oxidation of Sn plating are added and distributed inside the Sn plating, even if scratches due to mechanical contact occur, fitting with connectors, contact portions, etc., it is stable. An effect of inhibiting oxidation can be exhibited.

本実施の形態に係る配線用導体は、導電材料(心材)1と、その周囲にめっきされるSn系材料部(被覆層)2とで構成され、そのSn系材料部2は、Sn系材料部母材に酸化を防ぐP、Zn、Al、Ti、Vのうち少なくとも1種を添加してなることに特徴がある。   The wiring conductor according to the present embodiment is composed of a conductive material (core material) 1 and an Sn-based material portion (covering layer) 2 plated around the conductive material (core material) 1, and the Sn-based material portion 2 is composed of an Sn-based material. It is characterized in that at least one of P, Zn, Al, Ti, and V that prevents oxidation is added to the base material.

Sn系材料部母材としては、Snと不可避不純物からなる純Sn系、あるいはSn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Bi−Ag系、Sn−Cu等のPbフリーのはんだ材又はろう材などが挙げられる。   As the Sn-based material part base material, pure Sn based Sn and inevitable impurities, or Pb such as Sn-Ag based, Sn-Ag-Cu based, Sn-Bi based, Sn-Bi-Ag based, Sn-Cu, etc. A free solder material or a brazing material may be used.

Sn系材料部母材に添加されるPの添加量は、0.002wt%未満だと酸化抑制効果が得られないため、0.002wt%以上が好ましい。また、Pの添加量が0.5wt%を超えると、クラックが発生したりするなどの不具合を生じるため、0.5wt%以下が好ましい。好ましくは0.005〜0.05wt%が良い。   The amount of P added to the Sn-based material part base material is preferably 0.002 wt% or more because an effect of suppressing oxidation cannot be obtained if it is less than 0.002 wt%. Further, if the amount of P exceeds 0.5 wt%, problems such as cracks occur, and therefore 0.5 wt% or less is preferable. Preferably 0.005-0.05 wt% is good.

また、Znの添加量は、0.002wt%未満だと酸化抑制効果が得られないため、0.002wt%以上が好ましい。また、Znの添加量が0.5wt%を超えると、クラックが発生したりするなどの不具合を生じるため、0.5wt%以下が好ましい。好ましくは0.01〜0.10wt%が良い。   Further, if the addition amount of Zn is less than 0.002 wt%, the effect of suppressing oxidation cannot be obtained, so 0.002 wt% or more is preferable. Further, if the added amount of Zn exceeds 0.5 wt%, defects such as cracks occur, so 0.5 wt% or less is preferable. Preferably 0.01 to 0.10 wt% is good.

また、Alの添加量は、0.002wt%未満だと酸化抑制効果が得られないため、0.002wt%以上が好ましい。また、Alの添加量が0.008wt%を超えると、クラックが発生したりするなどの不具合を生じるため、0.008wt%以下が好ましい。好ましくは0.003〜0.007wt%が良い。   Further, if the addition amount of Al is less than 0.002 wt%, the effect of suppressing oxidation cannot be obtained, so 0.002 wt% or more is preferable. Further, if the amount of Al added exceeds 0.008 wt%, defects such as cracks occur, so 0.008 wt% or less is preferable. Preferably 0.003-0.007 wt% is good.

また、Tiの添加量は、0.002wt%未満だと酸化抑制効果が得られないため、0.002wt%以上が好ましい。また、Tiの添加量が0.05wt%を超えると、クラックが発生したりするなどの不具合を生じるため、0.05wt%以下が好ましい。好ましくは0.005〜0.010wt%が良い。   Moreover, since the oxidation inhibitory effect is not acquired if the addition amount of Ti is less than 0.002 wt%, 0.002 wt% or more is preferable. Further, if the amount of Ti exceeds 0.05 wt%, defects such as cracks occur, and therefore 0.05 wt% or less is preferable. Preferably 0.005-0.010 wt% is good.

また、Vの添加量は、0.002wt%未満だと酸化抑制効果が得られないため、0.002wt%以上が好ましい。また、Vの添加量が0.1wt%を超えると、クラックが発生したりするなどの不具合を生じるため、0.1wt%以下が好ましい。好ましくは0.005〜0.010wt%が良い。   Further, if the amount of V added is less than 0.002 wt%, the effect of suppressing oxidation cannot be obtained, so 0.002 wt% or more is preferable. Further, if the amount of addition of V exceeds 0.1 wt%, problems such as the occurrence of cracks occur, so 0.1 wt% or less is preferable. Preferably 0.005-0.010 wt% is good.

心材1を構成する金属材料としては、導電率が10%IACS以上の導電材料、無酸素銅、タフピッチ銅、銀、ニッケル、銅系合金材料、Ni系合金母材、アルミ系合金材料、又は鉄系合金材料などが挙げられる。また、心材1の形状・形態としては、丸線材、角線材、板材、条材、箔材などが挙げられ、特に限定するものではない。   As the metal material constituting the core material 1, a conductive material having an electrical conductivity of 10% IACS or more, oxygen-free copper, tough pitch copper, silver, nickel, a copper-based alloy material, a Ni-based alloy base material, an aluminum-based alloy material, or iron Based alloy materials. Moreover, as a shape and form of the core material 1, a round wire, a square wire, a board | plate material, a strip material, a foil material etc. are mentioned, It does not specifically limit.

Sn溶融めっきでは、P、Zn、Al、Ti、V添加は容易である。Znは電気めっきの方法でも添加することができる。Pについても、電気めっきで添加することが可能で、Snめっき浴に亜燐酸(H2PO2)を1〜20g/lの割合で添加することで、析出するSnめっき中にPを添加することができる。 In Sn hot dipping, addition of P, Zn, Al, Ti, and V is easy. Zn can also be added by an electroplating method. P can also be added by electroplating, and by adding phosphorous acid (H 2 PO 2 ) to the Sn plating bath at a rate of 1 to 20 g / l, P is added to the Sn plating that is precipitated. be able to.

金属導体の端末同士を嵌合、接続する際、例えば配線材の導体とコネクタ部材のコネクタピンを又は配線材の導体同士を嵌合、接続する際、少なくとも一方の端末を、本実施の形態に係る配線用導体で構成することで、端末接続部が得られる。   When fitting and connecting the terminals of the metal conductor, for example, when fitting and connecting the conductor of the wiring member and the connector pin of the connector member or the conductors of the wiring material, at least one of the terminals is used in this embodiment. A terminal connection part is obtained by comprising with the wiring conductor which concerns.

16種類の配線材(配線用導体)を作製した。ここで、純SnにP、Cr、V、Si、Ti、Mn、Zr、Ca、Geを0.01wt%、K、Na、Al、Li、Mg、Znを0.1wt%の割合でそれぞれ添加したSn合金を用いて溶融Snめっきを行った配線材を実施例1及び参考例1〜14とした。一方、純Snで溶融めっきを行った配線材を比較例1とした。   Sixteen kinds of wiring materials (wiring conductors) were produced. Here, P, Cr, V, Si, Ti, Mn, Zr, Ca, and Ge are added to pure Sn at a ratio of 0.01 wt%, and K, Na, Al, Li, Mg, and Zn are added at a ratio of 0.1 wt%, respectively. The wiring material which carried out the hot Sn plating using the Sn alloy which was made was made into Example 1 and Reference Examples 1-14. On the other hand, a wiring material subjected to hot dipping with pure Sn was used as Comparative Example 1.

これらの配線材をそれぞれコネクタと嵌合させて、通常の室温放置試験(20℃×1000hr)、熱衝撃試験(−55℃〜125℃×1000サイクル)、および耐湿放置試験(55℃,85%RH×1000hr)を実施した。その後、各配線材をコネクタから外し、めっき膜表面のコネクタ嵌合部(接続部)におけるウィスカの発生状況を、それぞれ電子顕微鏡で観察した。各試験後の配線材の耐ウィスカ性評価結果を表1に示す。表1中の◎はウィスカ発生なし、○は長さ50μm未満のウィスカが発生、×は長さ50μm以上のウィスカが発生を示している。   Each of these wiring materials is fitted with a connector, and a normal room temperature test (20 ° C. × 1000 hr), a thermal shock test (−55 ° C. to 125 ° C. × 1000 cycles), and a moisture resistance test (55 ° C., 85%) RH × 1000 hr). Thereafter, each wiring member was removed from the connector, and the occurrence of whiskers at the connector fitting portion (connection portion) on the surface of the plating film was observed with an electron microscope. Table 1 shows the evaluation results of whisker resistance of the wiring materials after each test. In Table 1, ◎ indicates that whisker is not generated, ○ indicates that a whisker having a length of less than 50 μm is generated, and × indicates that a whisker having a length of 50 μm or more is generated.

Figure 0004911254
Figure 0004911254

表1に示すように、酸化抑制元素を何も添加せず、純Snを用いた比較例1の配線材と比較すると、純Snに酸化抑制元素を添加した実施例1及び参考例1〜14の各配線材は、全てにおいてウィスカ抑制効果が得られた。   As shown in Table 1, when compared with the wiring material of Comparative Example 1 using pure Sn without adding any oxidation inhibiting element, Example 1 and Reference Examples 1 to 14 in which an oxidation inhibiting element was added to pure Sn In each of the wiring materials, a whisker suppressing effect was obtained in all.

実施例1及び参考例1〜14の各配線材はFFC等に適用することができる。   Each wiring material of Example 1 and Reference Examples 1 to 14 can be applied to FFC or the like.

16種類の配線材(配線用導体)を作製した。PbフリーはんだであるSn−3Ag−0.5Cu合金にP、Cr、V、Si、Ti、Mn、Zr、Ca、Geを0.01wt%、K、Na、Al、Li、Mg、Znを0.1wt%の割合でそれぞれ添加した合金を用いて溶融はんだめっきを行った配線材を実施例21〜35とした。一方、Sn−3Ag−0.5Cu合金で溶融はんだめっきを行った配線材を比較例2とした。   Sixteen kinds of wiring materials (wiring conductors) were produced. Pb-free solder Sn-3Ag-0.5Cu alloy with 0.01 wt% of P, Cr, V, Si, Ti, Mn, Zr, Ca, Ge, K, Na, Al, Li, Mg, Zn 0 Examples 21 to 35 are wiring materials obtained by performing hot solder plating using alloys added at a ratio of 0.1 wt%. On the other hand, the wiring material which carried out the hot-dip solder plating with the Sn-3Ag-0.5Cu alloy was made into the comparative example 2.

これらの配線材をそれぞれコネクタと嵌合させて、通常の室温放置試験(20℃×1000hr)、熱衝撃試験(−55℃〜125℃×1000サイクル)、および耐湿放置試験(55℃,85%RH×1000hr)を実施した。その後、各配線材をコネクタから外し、めっき膜表面のコネクタ嵌合部(接続部)におけるウィスカの発生状況を、それぞれ電子顕微鏡で観察した。各試験後の配線材の耐ウィスカ性評価結果を表2に示す。表2中の◎はウィスカ発生なし、○は長さ50μm未満のウィスカが発生、×は長さ50μm以上のウィスカが発生を示している。   Each of these wiring materials is fitted with a connector, and a normal room temperature test (20 ° C. × 1000 hr), a thermal shock test (−55 ° C. to 125 ° C. × 1000 cycles), and a moisture resistance test (55 ° C., 85%) RH × 1000 hr). Thereafter, each wiring member was removed from the connector, and the occurrence of whiskers at the connector fitting portion (connection portion) on the surface of the plating film was observed with an electron microscope. The evaluation results of whisker resistance of the wiring material after each test are shown in Table 2. In Table 2, ◎ indicates that whisker is not generated, ○ indicates that a whisker having a length of less than 50 μm is generated, and × indicates that a whisker having a length of 50 μm or more is generated.

Figure 0004911254
Figure 0004911254

表2に示すように、酸化抑制元素を何も添加せず、Sn−3Ag−0.5Cu合金を用いた比較例2の配線材と比較すると、Pbフリーはんだに酸化抑制元素を添加した実施例2及び参考例21〜34の各配線材は、全てにおいてウィスカ抑制効果が得られた。   As shown in Table 2, an example in which an oxidation inhibiting element was added to Pb-free solder when compared with the wiring material of Comparative Example 2 using an Sn-3Ag-0.5Cu alloy without adding any oxidation inhibiting element. In each of the wiring materials 2 and Reference Examples 21 to 34, the whisker suppressing effect was obtained.

実施例2及び参考例21〜34の各配線材は、実施例1及び参考例1〜14の各配線材と比べて融点が下がることから、はんだ材等に適用することができる。   Since each wiring material of Example 2 and Reference Examples 21 to 34 has a lower melting point than the wiring materials of Example 1 and Reference Examples 1 to 14, it can be applied to a solder material or the like.

Snに何も添加しない純Snの溶融めっき浴、およびSnにP、Zn、Al、Ti、又はVを任意量添加したSn合金の溶融めっき浴をそれぞれ作製し、300℃に保持した。   A pure Sn hot dip plating bath in which nothing was added to Sn and a Sn alloy hot dip bath in which an arbitrary amount of P, Zn, Al, Ti, or V was added to Sn were prepared and maintained at 300 ° C.

次いで、これらの溶融めっき浴を使って、幅5mm、厚さ0.3mmのCu板に厚さ8〜10μmの溶融めっきをそれぞれ施し、2.5cm長さに切断してめっき条(試料)を形成する。このめっき条(試料)を0.5mmピッチ、50pinのコネクタ(リン青銅製)と嵌合、接触させ、さらにめっき条(試料)の下にスライダーを差し込み、圧縮応力を負荷する。   Next, using these hot dipping baths, a 5 mm wide and 0.3 mm thick Cu plate is subjected to hot plating of 8 to 10 μm thick and cut to 2.5 cm length to form a plating strip (sample). Form. This plating strip (sample) is fitted and brought into contact with a 0.5 mm pitch, 50 pin connector (made of phosphor bronze), and a slider is inserted under the plating strip (sample) to apply compressive stress.

この状態で、通常の室温放置試験(20℃,60%RH)1000hr、温度変化試験(−55℃〜+125℃)1000サイクル、および高温高湿試験(55℃,85%RH)2000hrを実施した。   In this state, a normal room temperature standing test (20 ° C., 60% RH) 1000 hr, a temperature change test (−55 ° C. to + 125 ° C.) 1000 cycles, and a high temperature and high humidity test (55 ° C., 85% RH) 2000 hr were performed. .

その後、各めっき条(試料)をコネクタから外し、めっき条(試料)のめっき膜表面のコネクタ嵌合部(接続部)におけるウィスカの発生状況を、それぞれ電子顕微鏡で観察した。接続部(50箇所)において、所定長さのウィスカの発生量、分布の実測データを得た。各試験後の耐ウィスカ性評価結果を表3に示す。表3中の◎は発生したウィスカの最大長さが10μm未満、○は発生したウィスカの最大長さが10μm以上、50μm未満、△は発生したウィスカの最大長さが50μm以上、100μm未満、×は発生したウィスカの最大長さが100μm以上を示している。   Thereafter, each plating strip (sample) was removed from the connector, and the occurrence of whiskers at the connector fitting portion (connecting portion) on the plating film surface of the plating strip (sample) was observed with an electron microscope. In the connection part (50 places), the amount of whisker having a predetermined length and the measured data of the distribution were obtained. Table 3 shows the evaluation results of whisker resistance after each test. In Table 3, ◎ indicates the maximum length of the generated whisker is less than 10 μm, ○ indicates the maximum length of the generated whisker is 10 μm or more and less than 50 μm, Δ indicates the maximum length of the generated whisker is 50 μm or more and less than 100 μm, × Indicates that the maximum length of the generated whisker is 100 μm or more.

Figure 0004911254
Figure 0004911254

表3に示すように、添加元素を何も添加しない場合は、ウィスカを抑制することはできなかった。   As shown in Table 3, whisker could not be suppressed when no additive element was added.

また、添加元素の添加濃度が0.002wt%未満の場合でも、十分なウィスカ抑制効果を発揮することができなかった。一方、添加元素の添加濃度上限は、添加する元素によって異なるが、参考例として、Pの場合は0.50wt%、Alの場合は0.008wt%、Tiの場合は0.050wt%、Vの場合は0.10wt%、実施例としてZnの場合は0.50wt%、であり、それを超える濃度で添加した場合、逆に耐ウィスカ性が悪くなった。   Further, even when the additive element concentration was less than 0.002 wt%, a sufficient whisker suppressing effect could not be exhibited. On the other hand, although the upper limit of the concentration of the additive element varies depending on the element to be added, as a reference example, 0.50 wt% for P, 0.008 wt% for Al, 0.050 wt% for Ti, In this case, it was 0.10 wt%, and in the case of Zn as an example, it was 0.50 wt%. When added at a concentration exceeding that, whisker resistance was worsened.

Sn−0.01wt%Zn,Sn−0.1wt%Zn,Sn−1wt%Zn及び純Snの300pin(50pinコネクタ×6)の各pin毎の最大ウィスカ長さを極値統計により解析した例を図5に示す。   Example of analyzing maximum whisker length for each pin of Sn-0.01wt% Zn, Sn-0.1wt% Zn, Sn-1wt% Zn and pure Sn 300pin (50pin connector x 6) by extreme value statistics As shown in FIG.

図5に示すように、各pin毎の最大ウィスカ長さの累積分布は、以下の数1に示す極値理論のグンベル分布に従うと予想され、事実、累積分布F(x)[%]について2回対数を取ると、直線に乗った。このように、添加元素の濃度が大きすぎると耐ウィスカ性が悪くなることがわかる。   As shown in FIG. 5, the cumulative distribution of the maximum whisker length for each pin is expected to follow the Gumbel distribution of the extreme value theory shown in the following equation 1, and in fact, 2 for the cumulative distribution F (x) [%]. Taking the logarithm times, I got on a straight line. Thus, it turns out that whisker resistance worsens when the concentration of the additive element is too large.

Figure 0004911254
Figure 0004911254

PbフリーはんだであるSn−3wt%Ag−0.5wt%Cu合金、Sn−5wt%Bi合金、Sn−0.7wt%Cu合金に、何も添加しない溶融めっき浴、およびP、Zn、Al、Ti、又はVを任意量添加した溶融めっき浴をそれぞれ作製し、300℃に保持した。   Pb-free solder, Sn-3 wt% Ag-0.5 wt% Cu alloy, Sn-5 wt% Bi alloy, Sn-0.7 wt% Cu alloy, hot-dipped plating bath, and P, Zn, Al, Hot dip plating baths to which an arbitrary amount of Ti or V was added were prepared and maintained at 300 ° C.

次いで、これらの溶融めっき浴を使って、幅5mm、厚さ0.3mmのCu板に厚さ8〜10μmの溶融めっきをそれぞれ施し、2.5cm長さに切断してめっき条(試料)を形成する。このめっき条(試料)を0.5mmピッチ、50pinのコネクタ(リン青銅製)と嵌合、接触させ、さらにめっき条(試料)の下にスライダーを差し込み、圧縮応力を負荷する。   Next, using these hot dipping baths, a 5 mm wide and 0.3 mm thick Cu plate is subjected to hot plating of 8 to 10 μm thick and cut to 2.5 cm length to form a plating strip (sample). Form. This plating strip (sample) is fitted and brought into contact with a 0.5 mm pitch, 50 pin connector (made of phosphor bronze), and a slider is inserted under the plating strip (sample) to apply compressive stress.

この状態で、通常の室温放置試験(20℃,60%RH)1000hr、温度変化試験(−55℃〜+125℃)1000サイクル、および高温高湿試験(55℃,85%RH)2000hrを実施した。その後、各めっき条(試料)をコネクタから外し、めっき条(試料)のめっき膜表面のコネクタ嵌合部(接続部)におけるウィスカの発生状況を、それぞれ電子顕微鏡で観察した。接続部(50箇所)において、所定長さのウィスカの発生量、分布の実測データを得た。各試験後の耐ウィスカ性評価結果を表4に示す。表4中の◎は発生したウィスカの最大長さが10μm未満、○は発生したウィスカの最大長さが10μm以上、50μm未満、×は発生したウィスカの最大長さが100μm以上を示している。   In this state, a normal room temperature standing test (20 ° C., 60% RH) 1000 hr, a temperature change test (−55 ° C. to + 125 ° C.) 1000 cycles, and a high temperature and high humidity test (55 ° C., 85% RH) 2000 hr were performed. . Thereafter, each plating strip (sample) was removed from the connector, and the occurrence of whiskers at the connector fitting portion (connecting portion) on the plating film surface of the plating strip (sample) was observed with an electron microscope. In the connection part (50 places), the amount of whisker having a predetermined length and the measured data of the distribution were obtained. Table 4 shows the evaluation results of whisker resistance after each test. In Table 4, “◎” indicates that the maximum length of the generated whisker is less than 10 μm, “◯” indicates that the maximum length of the generated whisker is 10 μm or more and less than 50 μm, and “x” indicates that the maximum length of the generated whisker is 100 μm or more.

Figure 0004911254
Figure 0004911254

表4に示すように、Sn−Ag−Cu、Sn−Bi、Sn−Cu系のPbフリーはんだ材においても、添加元素を何も添加しない場合は、コネクタとの嵌合、接触によりウィスカが100μm以上長く成長したが、参考例としてのP、Al、Ti、Vを、実施例としてのZnを適正濃度で添加することにより、ウィスカの発生を抑制できることが確認できた。   As shown in Table 4, even in Sn-Ag-Cu, Sn-Bi, Sn-Cu Pb-free solder materials, when no additive element is added, the whisker is 100 μm due to fitting and contact with the connector. Although it grew for a long time, it has been confirmed that whisker generation can be suppressed by adding P, Al, Ti, and V as reference examples and Zn as an example at an appropriate concentration.

Snに何も添加しない純Snの溶融めっき浴、およびSnにP、Zn、Al、Ti、又はVを任意量添加したSn合金の溶融めっき浴をそれぞれ作製し、300℃に保持した。   A pure Sn hot dip plating bath in which nothing was added to Sn and a Sn alloy hot dip bath in which an arbitrary amount of P, Zn, Al, Ti, or V was added to Sn were prepared and maintained at 300 ° C.

次いで、これらの溶融めっき浴を使って、幅5mm、厚さ0.3mmのCu板に厚さ8〜10μmの溶融めっきをそれぞれ施し、2.5cm長さに切断してめっき条(試料)を形成する。このめっき条(試料)を0.5mmピッチ、50pinのコネクタ(リン青銅製)と嵌合、接触させ、85℃環境下に放置した。その後、初期(0時間)、100時間、200時間、500時間、1000時間、1500時間、2000時間、3000時間の接触抵抗を測定し、初期との差を比較した。それぞれの放置時間で得られた接触抵抗変化の最大値を図6に示す。   Next, using these hot dipping baths, a 5 mm wide and 0.3 mm thick Cu plate is subjected to hot plating of 8 to 10 μm thick and cut to 2.5 cm length to form a plating strip (sample). Form. This plating strip (sample) was fitted and contacted with a 0.5 mm pitch, 50 pin connector (made of phosphor bronze) and left in an 85 ° C. environment. Thereafter, contact resistance was measured at initial (0 hours), 100 hours, 200 hours, 500 hours, 1000 hours, 1500 hours, 2000 hours, and 3000 hours, and the difference from the initial value was compared. FIG. 6 shows the maximum value of the contact resistance change obtained for each standing time.

図6に示すように、添加元素を何も添加しなかった場合(Snのみ、線61)と比較し、参考例としてのP、Al、Ti、又はVを、実施例としてのZnをほぼ最適量添加した場合(線62〜66)は、接触抵抗の増加を大幅に抑えることができた。接触抵抗の増大は、Sn表面において抵抗値の大きいSn酸化膜が成長するためであるが、参考例としてのP、Al、Ti、又はVを、実施例としてのZnをほぼ最適量添加することにより、Sn酸化膜の成長を抑えることができるため、その結果、接触抵抗の増大を抑制することができていると考えられる。   As shown in FIG. 6, P, Al, Ti, or V as a reference example and Zn as an example are almost optimal as compared with the case where no additive element is added (Sn only, line 61). When the amount was added (lines 62 to 66), the increase in contact resistance could be significantly suppressed. The increase in contact resistance is due to the growth of a Sn oxide film having a large resistance value on the Sn surface. However, P, Al, Ti, or V as a reference example is added to an optimum amount of Zn as an example. Thus, it is considered that the growth of the Sn oxide film can be suppressed, and as a result, the increase in contact resistance can be suppressed.

本発明の好適一実施の形態に係る配線用導体の横断面図である。It is a cross-sectional view of a wiring conductor according to a preferred embodiment of the present invention. 図1の一の変形例である。It is one modification of FIG. 図1の他の変形例である。It is another modification of FIG. 本発明の他の好適一実施の形態に係る配線用導体の横断面図である。It is a cross-sectional view of a conductor for wiring according to another preferred embodiment of the present invention. 実施例3の、各pin毎の最大ウィスカ長さと累積分布との関係を示す図である。It is a figure which shows the relationship between the maximum whisker length for every pin of Example 3, and cumulative distribution. 実施例5の、85℃環境下での放置試験における放置時間と接触抵抗変化の最大値との関係を示す図である。It is a figure which shows the relationship between the leaving time in the leaving test in 85 degreeC environment of Example 5, and the maximum value of a contact resistance change. コネクタとFFCの嵌合例を示す図である。It is a figure which shows the example of a fitting of a connector and FFC. 図7における嵌合部の拡大図であり、ウィスカが発生し、隣接配線材間が短絡している状態を示す図である。It is an enlarged view of the fitting part in FIG. 7, and is a figure which shows the state which the whisker generate | occur | produced and between adjacent wiring materials is short-circuited.

1 心材
2 Sn系材料部
1 Core material 2 Sn material part

Claims (7)

コネクタ部材に嵌合して使用され、少なくとも表面の一部にPbフリーのSn系材料部を有する配線用導体において、上記Sn系材料部が、Sn系材料部母材にZnを添加してなり、その添加量が0.002wt%以上0.5wt%以下であり、これをリフロー処理したことを特徴とする配線用導体。 In a wiring conductor that is used by being fitted to a connector member and has a Pb-free Sn-based material part on at least a part of the surface, the Sn-based material part is obtained by adding Zn to the Sn-based material part base material. The wiring conductor is characterized in that the amount added is 0.002 wt% or more and 0.5 wt% or less, and this is subjected to reflow treatment. コネクタ部材に嵌合して使用され、少なくとも表面の一部にPbフリーのSn系材料部を有する配線用導体において、上記Sn系材料部の外層側に、Znを含む層を設け、リフロー処理した配線用導体であって、リフロー処理後のZnの割合が0.002wt%以上0.5wt%以下であることを特徴とする配線用導体。 In a wiring conductor that is used by being fitted to a connector member and has a Pb-free Sn-based material portion on at least a part of the surface, a layer containing Zn is provided on the outer layer side of the Sn-based material portion, and reflow treatment is performed. A conductor for wiring, wherein the proportion of Zn after the reflow treatment is 0.002 wt% or more and 0.5 wt% or less. コネクタ部材に嵌合して使用され、少なくとも表面の一部にPbフリーのSn系材料部を有する配線用導体において、上記Sn系材料部の内層側に、Znを含む層を設け、リフロー処理した配線用導体であって、リフロー処理後のZnの割合が0.002wt%以上0.5wt%以下であることを特徴とする配線用導体。 In a wiring conductor that is used by being fitted to a connector member and has a Pb-free Sn-based material part on at least a part of the surface, a layer containing Zn is provided on the inner layer side of the Sn-based material part and subjected to a reflow treatment. A conductor for wiring, wherein the proportion of Zn after the reflow treatment is 0.002 wt% or more and 0.5 wt% or less. 金属材料で構成される心材の周りに、上記Sn系材料部の被覆層を設けた配線材である請求項1から3いずれかに記載の配線用導体。   The wiring conductor according to any one of claims 1 to 3, wherein the wiring material is a wiring material in which a coating layer of the Sn-based material portion is provided around a core material made of a metal material. 全体が上記Sn系材料部で構成されたはんだ材又はろう材である請求項1から4いずれかに記載の配線用導体。   The wiring conductor according to any one of claims 1 to 4, wherein the wiring conductor is a solder material or a brazing material that is entirely composed of the Sn-based material portion. 上記Sn系材料部母材が、Snと不可避不純物からなる純Sn系、あるいはSn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Bi−Ag系、Sn−Cu系等のPbフリーのはんだ材又はろう材である請求項1から5いずれかに記載の配線用導体。
The Sn-based material part base material is pure Sn based on Sn and inevitable impurities, or Sn-Ag based, Sn-Ag-Cu based, Sn-Bi based, Sn-Bi-Ag based, Sn-Cu based, etc. wiring conductor according to claims 1 to 5 or a solder material or braze Pb-free.
金属導体の端末同士を接続する際、少なくとも一方の端末を請求項1からいずれかに記載の配線用導体で構成したことを特徴とする端末接続部。 When connecting the terminal ends of the metal conductors, terminal connection unit, characterized in that it is constituted by the wiring conductor according to any one of the at least one terminal of claims 1-6.
JP2011103359A 2006-04-06 2011-05-06 Wiring conductor and terminal connection Active JP4911254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103359A JP4911254B2 (en) 2006-04-06 2011-05-06 Wiring conductor and terminal connection

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006105452 2006-04-06
JP2006105452 2006-04-06
JP2011103359A JP4911254B2 (en) 2006-04-06 2011-05-06 Wiring conductor and terminal connection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006191579A Division JP4904953B2 (en) 2006-04-06 2006-07-12 WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY

Publications (2)

Publication Number Publication Date
JP2011192652A JP2011192652A (en) 2011-09-29
JP4911254B2 true JP4911254B2 (en) 2012-04-04

Family

ID=38782864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103359A Active JP4911254B2 (en) 2006-04-06 2011-05-06 Wiring conductor and terminal connection

Country Status (2)

Country Link
JP (1) JP4911254B2 (en)
CN (1) CN101051535B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789453B (en) * 2010-03-03 2012-06-13 昆明三利特科技有限责任公司 Conductive lead-free tin alloy -coated copper belt for solar photovoltaic cell
CN101870044B (en) * 2010-06-25 2012-07-04 好利来(中国)电子科技股份有限公司 Tin-lithium system lead-free solder
CN102194552B (en) * 2010-12-29 2012-08-08 今皓光电(昆山)有限公司 Flexible flat cable manufacturing process
KR101986557B1 (en) * 2011-12-27 2019-06-07 센주긴조쿠고교 가부시키가이샤 Sn-Cu-BASED LEAD-FREE SOLDER ALLOY
CN103436732B (en) * 2013-08-15 2016-05-04 江西理工大学 A kind of efficient molten tin antioxidant additive
CN104008787A (en) * 2014-06-03 2014-08-27 江西理工大学 High-temperature-resistant tinned copper wire
CN104064249A (en) * 2014-06-13 2014-09-24 安徽省宁国天成电工有限公司 Annealed circular copper wire plated with tin
KR20180066268A (en) 2014-12-15 2018-06-18 센주긴조쿠고교 가부시키가이샤 Solder alloy for plating and electronic component
JP5880766B1 (en) 2015-05-26 2016-03-09 千住金属工業株式会社 Solder alloy, solder ball, chip solder, solder paste and solder joint
JP6365653B2 (en) * 2016-08-19 2018-08-01 千住金属工業株式会社 Solder alloy, solder joint and soldering method
CN106191523A (en) * 2016-08-31 2016-12-07 高兴贵 A kind of tin metal material and use its jewellery die mask-making technology
JP2019096492A (en) * 2017-11-23 2019-06-20 株式会社オートネットワーク技術研究所 Aluminum-based single wire, twisted wire conductor, braided wire and wire harness
JP6418349B1 (en) * 2018-03-08 2018-11-07 千住金属工業株式会社 Solder alloy, solder paste, solder ball, flux cored solder and solder joint

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192291A (en) * 1995-01-13 1996-07-30 Matsushita Electric Ind Co Ltd Cream solder
GB2346380B (en) * 1999-01-28 2001-07-11 Murata Manufacturing Co Lead-free solder and soldered article
JP2001200323A (en) * 2000-01-18 2001-07-24 Furukawa Electric Co Ltd:The Lead material for electronic parts and electronic parts using same lead material
JP4142312B2 (en) * 2002-02-28 2008-09-03 ハリマ化成株式会社 Precipitation solder composition and solder deposition method
JP4404195B2 (en) * 2003-11-26 2010-01-27 上村工業株式会社 Whisker suppression method and electronic component manufacturing method
JP4367149B2 (en) * 2004-01-30 2009-11-18 日立電線株式会社 Flat cable conductor, method of manufacturing the same, and flat cable
JP2006086513A (en) * 2004-08-16 2006-03-30 Furukawa Electric Co Ltd:The Material of electric and electronic component case or shield case and its manufacturing method
JP2007046150A (en) * 2005-04-06 2007-02-22 Misuzu:Kk Lead wire for electronic part and flat cable comprising the same

Also Published As

Publication number Publication date
CN101051535A (en) 2007-10-10
JP2011192652A (en) 2011-09-29
CN101051535B (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4911254B2 (en) Wiring conductor and terminal connection
JP4904953B2 (en) WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
JP5376553B2 (en) Wiring conductor and terminal connection
JP4956997B2 (en) Flat cable
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
JP2008021501A (en) Electrical part for wiring, manufacturing method thereof, and terminal connecting part
JPH11350188A (en) Material for electric and electronic parts, its production, and electric and electronic parts lising the same
WO2006006534A1 (en) Flexible printed wiring board terminal part or flexible flat cable terminal part
JP2801793B2 (en) Tin-plated copper alloy material and method for producing the same
JP5479789B2 (en) Metal materials for connectors
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
JP2006319269A (en) Flexible printed wiring board terminal or flexible flat cable terminal
JP3779864B2 (en) Electronic component lead wire, method for manufacturing the same, and electronic component using the lead wire
JP4796522B2 (en) Wiring conductor and method for manufacturing the same
JP2012124025A (en) Plated copper wire and manufacturing method thereof
WO2016035879A1 (en) Lead-free solder alloy for use in terminal preplating, and electronic component
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP4318449B2 (en) Lead-free solder alloy
JP5724638B2 (en) Pb-free solder, solder-coated conductor, and electrical parts using the same
JPWO2014142153A1 (en) Solder joint and solder joint method
JP2009071315A (en) Coil part
JP2010007111A (en) Copper or copper alloy rectangular conductive body and flexible flat cable
JP2002043178A (en) Lead wire for electrolytic capacitor, and electrolytic capacitor using the same
JP2002030468A (en) Lead wire for electronic parts
JP2006185634A (en) Contact member, contact, and electric apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4911254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350