JP2012124025A - Plated copper wire and manufacturing method thereof - Google Patents

Plated copper wire and manufacturing method thereof Download PDF

Info

Publication number
JP2012124025A
JP2012124025A JP2010273811A JP2010273811A JP2012124025A JP 2012124025 A JP2012124025 A JP 2012124025A JP 2010273811 A JP2010273811 A JP 2010273811A JP 2010273811 A JP2010273811 A JP 2010273811A JP 2012124025 A JP2012124025 A JP 2012124025A
Authority
JP
Japan
Prior art keywords
layer
copper
plating
thickness
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010273811A
Other languages
Japanese (ja)
Inventor
Hideyuki Sagawa
英之 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010273811A priority Critical patent/JP2012124025A/en
Priority to CN2011104051899A priority patent/CN102543249A/en
Publication of JP2012124025A publication Critical patent/JP2012124025A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plated copper wire which further suppresses growth of an intermetallic compound layer high in brittleness between Sn-based plating and a conductor than before while suppressing reduction in conductivity of the conductor as much as possible, and prevents deterioration of bending resistance characteristics and bonding strength when soldered even held in an environment at a high temperature.SOLUTION: The plated copper wire has a copper-zinc alloy layer containing zinc dispersed in copper in the outer periphery of a core material containing copper as a main component, and is provided with a plating layer containing tin as the main component in the outer periphery of the copper-zinc alloy layer. The average concentration of zinc in the copper-zinc alloy layer is 35 mass% or more, and thickness of the copper-zinc alloy layer is 0.1 μm or more.

Description

本発明は、高温環境でも耐屈曲特性が劣化せず、はんだ接続においても接続強度が低下しないめっき被覆銅線およびその製造方法に関するものである。   The present invention relates to a plating-coated copper wire that does not deteriorate its bending resistance even in a high-temperature environment and does not decrease connection strength even in solder connection, and a method for manufacturing the same.

Cu或いはそれにSnめっきを施した導体に絶縁被覆層を設け、更に立体的な構造へ加工したパワーサプライボード(PSB)、バスバーなどの配線合理化製品がある。また、可動部で用いられ、高い耐屈曲特性が要求される配線部品として、車載用のフレキシブルフラットケーブル(FFC)や高周波同軸ケーブルなどの各種はんだめっき導体がある。これらの用途に用いる導体は、信号や動力を伝播させるため高導電性であることが要求されている。   There are wiring rationalization products such as a power supply board (PSB) and a bus bar in which an insulating coating layer is provided on a conductor plated with Cu or Sn and further processed into a three-dimensional structure. In addition, as wiring components that are used in movable parts and require high bending resistance, there are various solder plated conductors such as in-vehicle flexible flat cables (FFC) and high-frequency coaxial cables. The conductor used for these applications is required to be highly conductive in order to propagate signals and power.

上述の配線部品に用いられる導体は、一般にCu系材料で構成され、これら導体には純Snめっき、若しくは、はんだめっきが施されることが多い。これらSn系表面処理は、導体の防食効果を発揮すると共に、コネクタ接続においては、接触抵抗を低くする効果がある。また、基板などとのはんだ接続の場合には、導体のめっきが溶けることにより、濡れ性を良好とする効果がある。   The conductors used for the above-described wiring components are generally made of a Cu-based material, and these conductors are often subjected to pure Sn plating or solder plating. These Sn-based surface treatments have the effect of reducing the contact resistance in connector connection while exhibiting the anticorrosive effect of the conductor. Further, in the case of solder connection with a substrate or the like, there is an effect of improving the wettability by melting the conductor plating.

従来は、Sn系表面処理として、Sn−Pb系はんだが良く用いられていたが、Pb規制に伴い、純Sn系、Sn−Ag系、Sn−Ag−Cu系、Sn−Cu系などのPbフリーはんだめっきが用いられている。従来から、例えば、フラットケーブルに使用されているSn系めっき導体では、導体とSn系めっき層との界面においてCuとSnが反応してCu3Sn(ε相)やCu6Sn5(η相)のCu−Sn系金属間化合物層を形成し、この金属間化合物層が硬く脆い層であるため、Sn系めっき導体の機械的特性(例えば、耐屈曲特性)が低下してしまうことが知られており(例えば、特許文献1)、Sn系めっき導体の製造工程において最終焼鈍条件を調整することにより、金属間化合物層の厚さを制御して、耐屈曲特性を備えたSn系めっき導体が提案されている。 Conventionally, Sn—Pb solder is often used as the Sn-based surface treatment. However, in accordance with Pb regulation, pure Sn-based, Sn-Ag-based, Sn-Ag-Cu-based, Sn-Cu-based Pb, etc. Free solder plating is used. Conventionally, for example, in Sn-based plated conductors used in flat cables, Cu and Sn react at the interface between the conductor and the Sn-based plated layer to cause Cu 3 Sn (ε phase) or Cu 6 Sn 5 (η phase). ) Cu-Sn based intermetallic compound layer, and this intermetallic compound layer is a hard and brittle layer, it is known that the mechanical properties (for example, bending resistance) of the Sn based plated conductor are deteriorated. The thickness of the intermetallic compound layer is controlled by adjusting the final annealing conditions in the manufacturing process of the Sn-based plated conductor (for example, Patent Document 1), and the Sn-based plated conductor has bending resistance characteristics. Has been proposed.

一方で、近年広くSn系めっき導体の技術分野では、Sn系めっき導体の製造工程において金属間化合物層の厚さを制御しても、その後のSn系めっき導体の使用環境下において以下のような問題が生ずることが報告されている。   On the other hand, in the technical field of Sn-based plated conductors in recent years, even if the thickness of the intermetallic compound layer is controlled in the manufacturing process of the Sn-based plated conductors, Problems have been reported to occur.

特開2003−86024号公報JP 2003-86024 A 特開平1−262092号公報Japanese Patent Laid-Open No. 1-262092 特開2008−221333号公報JP 2008-221333 A

Sn系めっき導体が、車載用、或いは、HEV(Hybrid Electric Vehicle)やEV(Electric Vehicle)などの高電流配線部材、直接日光下などの高温環境下で使用されると、環境温度がSn系めっきの融点以下でも、Sn系めっき中のSnと導体を構成するCu系材料との間での固相拡散により、導体とSn系めっき層との界面にCu3SnやCu6Sn5のCu−Sn系金属間化合物層が形成される。このとき、保温温度、つまり製品の使用環境温度が高ければ高いほど固相拡散が進み、金属間化合物層は厚く成長する。 When the Sn-based plating conductor is used in a vehicle, or in a high-current wiring member such as HEV (Hybrid Electric Vehicle) or EV (Electric Vehicle), or in a high-temperature environment such as direct sunlight, the environmental temperature is Sn-based plating. Cu 3 Sn or Cu 6 Sn 5 at the interface between the conductor and the Sn-based plating layer due to solid phase diffusion between Sn in the Sn-based plating and the Cu-based material constituting the conductor even below the melting point of An Sn-based intermetallic compound layer is formed. At this time, the higher the heat retention temperature, that is, the use environment temperature of the product, the solid phase diffusion proceeds, and the intermetallic compound layer grows thicker.

金属間化合物層は一般的に脆く、Cu3Snの破壊靱性値は1.7(MPa・m1/2)、Cu6Sn5では1.4(MPa・m1/2)と、はんだ材料の破壊靱性値102〜103(MPa・m1/2)と比較すると極端に小さい。従って、はんだと導体の間に金属間化合物層が厚く成長した場合、この金属間化合物層中、若しくは、金属間化合物層とはんだや導体界面での破断が起こりやすく、導体の耐屈曲特性が劣化、或いは、はんだ接続部の信頼性が著しく低下してしまうことが問題であった。そこで、Sn系めっき導体の使用環境下における金属間化合物層の成長を抑える新たな材料或いは構造が求められていた。 The intermetallic compound layer is generally brittle, the fracture toughness value of Cu 3 Sn is 1.7 (MPa · m 1/2 ), and the Cu 6 Sn 5 is 1.4 (MPa · m 1/2 ). The fracture toughness value of 10 2 to 10 3 (MPa · m 1/2 ) is extremely small. Therefore, when the intermetallic compound layer grows thick between the solder and the conductor, the intermetallic compound layer or the interface between the intermetallic compound layer and the solder or conductor is likely to break, and the bending resistance of the conductor deteriorates. Alternatively, there is a problem that the reliability of the solder connection portion is remarkably lowered. Therefore, a new material or structure that suppresses the growth of the intermetallic compound layer under the usage environment of the Sn-based plated conductor has been demanded.

Cu3Snの成長を抑制させる方法として、特許文献2には、はんだに0.3〜3mass%のZnを添加する、或いは、Cu系合金からなる被接合部材の表面に、Znからなる被覆層を形成し、Sn系合金はんだで接合することが提案されている。Znをはんだに添加することによって、はんだとCu系合金の間にCu−Zn−Sn系金属間化合物層を形成することにより、Cu−Sn系金属間化合物層の成長を抑制できるとしている。 As a method for suppressing the growth of Cu 3 Sn, Patent Document 2 discloses that a coating layer made of Zn is added to the surface of a member to be joined made of 0.3 to 3 mass% of solder or made of a Cu-based alloy. It has been proposed to form and bond with Sn alloy solder. By adding Zn to the solder, a Cu—Zn—Sn intermetallic compound layer is formed between the solder and the Cu alloy, thereby suppressing the growth of the Cu—Sn intermetallic compound layer.

また、特許文献3には、はんだボールと基板との間にZnを0.1〜30%含むZn合金からなる結合層を有する構造が提案されている。Znを界面反応に介入させることにより、Cu−Sn系金属間化合物層の成長を抑制できるとしている。   Patent Document 3 proposes a structure having a bonding layer made of a Zn alloy containing 0.1 to 30% of Zn between a solder ball and a substrate. It is said that the growth of the Cu—Sn intermetallic compound layer can be suppressed by intervening Zn in the interface reaction.

特許文献2では、はんだ全体にZnを添加するため、はんだとCu系合金からなる被接合部材の界面反応に介入するZnは添加したZnの一部であり、Cu−Sn系金属間化合物層の成長抑制度合いが小さい。加えて、界面反応に介入しなかったZnの一部は、はんだめっき表面で厚いZn酸化膜をつくるため、その後のはんだ接続される用途においては濡れ性が損なわれる。また、被接合部材の表面に、Znからなる被覆層を形成した場合でも、はんだ付け時においては、溶融はんだ中にZnが瞬時に拡散するため、予めはんだにZnを添加した場合と同様となり、Znを有効に界面反応に介入させることができない。   In Patent Document 2, since Zn is added to the entire solder, Zn intervening in the interface reaction between the solder and the Cu-based alloy joined member is a part of the added Zn, and the Cu—Sn-based intermetallic compound layer The degree of growth suppression is small. In addition, a part of Zn that has not intervened in the interface reaction forms a thick Zn oxide film on the surface of the solder plating, so that the wettability is impaired in subsequent solder connection applications. Further, even when a coating layer made of Zn is formed on the surface of the member to be joined, during soldering, since Zn diffuses instantaneously in the molten solder, it is similar to the case where Zn is added to the solder in advance. Zn cannot be effectively intervened in the interfacial reaction.

また、特許文献3では、結合層をCu−Zn層などZn合金とすることで、Cu−Sn系金属間化合物層の成長を有効に抑制できるが、Zn合金中のZn濃度が0.1〜30%と低いため、Cu−Sn系金属間化合物層の成長抑制度合いが小さいことが問題である。また、特許文献3のように、導体全体をCu−Zn合金とする構成とする場合、導体の導電性が著しく低下してしまうため、前記配線合理化製品やフレキシブルフラットケーブル、高周波同軸ケーブルに使用される導体として使用することができない。   Moreover, in patent document 3, although growth of a Cu-Sn type | system | group intermetallic compound layer can be effectively suppressed by making a bonding layer into Zn alloys, such as a Cu-Zn layer, Zn density | concentration in Zn alloy is 0.1-0.1. Since it is as low as 30%, the problem is that the degree of growth inhibition of the Cu—Sn intermetallic compound layer is small. In addition, when the entire conductor is made of a Cu—Zn alloy as in Patent Document 3, the conductivity of the conductor is remarkably lowered, so that it is used for the wiring rationalization product, the flexible flat cable, and the high-frequency coaxial cable. It cannot be used as a conductor.

そこで、本発明の目的は、導体の導電性の低下を極力抑制しつつ、Sn系めっきと導体間の脆性の高い金属間化合物層の成長を従来よりも更に抑制し、高温保持環境においても耐屈曲特性やはんだ付けした場合の接合強度が劣化することのない、めっき被覆銅線およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to further suppress the growth of a highly brittle intermetallic compound layer between the Sn-based plating and the conductor as much as possible while suppressing a decrease in the conductivity of the conductor as much as possible, and to withstand the high temperature holding environment. An object of the present invention is to provide a plating-coated copper wire and a method for manufacturing the same, in which bending characteristics and soldering strength when soldering are not deteriorated.

この目的を達成するために創案された本発明は、銅を主成分とする芯材の外周に銅中に亜鉛が拡散した銅−亜鉛合金層を有し、該銅−亜鉛合金層の外周に錫を主成分とするめっき層を備えるめっき被覆銅線であって、前記銅−亜鉛合金層における平均亜鉛濃度が35mass%以上であり、前記銅−亜鉛合金層の厚さが0.1μm以上であるめっき被覆銅線である。   Invented to achieve this object, the present invention has a copper-zinc alloy layer in which zinc is diffused in copper on the outer periphery of a core mainly composed of copper, and on the outer periphery of the copper-zinc alloy layer. A plated coated copper wire comprising a tin-based plating layer, wherein the average zinc concentration in the copper-zinc alloy layer is 35 mass% or more, and the thickness of the copper-zinc alloy layer is 0.1 μm or more It is a certain plating coated copper wire.

前記芯材の断面積をA、前記銅−亜鉛合金層の断面積をBとしたときにB/Aの値が0.5以下であると良い。   When the cross-sectional area of the core material is A and the cross-sectional area of the copper-zinc alloy layer is B, the value of B / A is preferably 0.5 or less.

また、本発明は、銅を主成分とする導体の表面に亜鉛層を形成する亜鉛被覆銅線の形成工程と、該亜鉛被覆銅線を熱処理することにより亜鉛を銅中に拡散させて銅を主成分とする芯材の外周に銅−亜鉛合金層を形成する工程と、該銅−亜鉛合金層の上に錫めっきを施してめっき層を形成する工程とを備えるめっき被覆銅線の製造方法であって、前記銅−亜鉛合金層における平均亜鉛濃度が35mass%以上であり、前記銅−亜鉛合金層の厚さが0.1μm以上であるめっき被覆銅線の製造方法である。   The present invention also includes a step of forming a zinc-coated copper wire for forming a zinc layer on the surface of a conductor mainly composed of copper, and heat-treating the zinc-coated copper wire to diffuse zinc into the copper. A method for producing a plated coated copper wire, comprising: a step of forming a copper-zinc alloy layer on an outer periphery of a core material as a main component; and a step of forming a plating layer by performing tin plating on the copper-zinc alloy layer And the average zinc concentration in the said copper-zinc alloy layer is 35 mass% or more, It is a manufacturing method of the plating covering copper wire whose thickness of the said copper-zinc alloy layer is 0.1 micrometer or more.

前記芯材の断面積をA、前記銅−亜鉛合金層の断面積をBとしたときにB/Aの値が0.5以下であると良い。   When the cross-sectional area of the core material is A and the cross-sectional area of the copper-zinc alloy layer is B, the value of B / A is preferably 0.5 or less.

本発明によれば、導体の導電性の低下を極力抑制しつつ、Sn系めっきと導体間の脆性の高い金属間化合物層の成長を従来よりも更に抑制し、高温保持環境においても耐屈曲特性やはんだ付けした場合の接合強度が劣化することのない、めっき被覆銅線およびその製造方法を提供することができる。   According to the present invention, the growth of a highly brittle intermetallic compound layer between the Sn-based plating and the conductor is further suppressed as compared with the conventional one while suppressing the decrease in the conductivity of the conductor as much as possible, and the bending resistance is maintained even in a high temperature holding environment. Further, it is possible to provide a plating-coated copper wire and a method for producing the same without causing deterioration in bonding strength when soldering is performed.

本発明のめっき被覆銅線の表面近傍の断面写真とライン分析位置を示す図である。It is a figure which shows the cross-sectional photograph of the surface vicinity of the plating coating copper wire of this invention, and a line analysis position. 図1におけるライン分析結果を示す図である。It is a figure which shows the line analysis result in FIG. 本発明のめっき被覆銅線のはんだ/Cu−Zn層界面における150℃、1000hr保持後の金属間化合物層の光学顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the optical microscope of the intermetallic compound layer after 150 degreeC and 1000 hr holding | maintenance in the solder / Cu-Zn layer interface of the plating coating copper wire of this invention. 従来のめっき被覆銅線のはんだ/Cu界面における150℃、1000hr保持後の金属間化合物層の光学顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the optical microscope of the intermetallic compound layer after 150 degreeC and 1000 hr holding | maintenance in the solder / Cu interface of the conventional plating coating copper wire. 本発明および従来のめっき被覆銅線の150℃における金属間化合物層の成長挙動を示す図である。It is a figure which shows the growth behavior of the intermetallic compound layer in 150 degreeC of this invention and the conventional plating coating copper wire.

以下、本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明者らが導体とめっき界面に配置する銅−亜鉛合金層(Cu−Zn層)における平均亜鉛濃度(平均Zn濃度)について研究した結果、平均Zn濃度の下限値を35mass%以上、好ましくは、38mass%以上とし、Cu−Zn層の厚さを0.1μm以上に設定することにより、高温環境で使用した場合の界面の金属間化合物層の成長はほとんど見られず、その成長を抑制する効果が高いことを見出した。   As a result of studying the average zinc concentration (average Zn concentration) in the copper-zinc alloy layer (Cu-Zn layer) disposed at the conductor and plating interface by the present inventors, the lower limit value of the average Zn concentration is 35 mass% or more, preferably By setting the thickness of the Cu—Zn layer to 0.1 μm or more, the growth of the intermetallic compound layer at the interface when used in a high temperature environment is hardly seen, and the growth is suppressed. It was found that the effect is high.

Cu−Zn層における平均Zn濃度を35mass%以上と規定した理由は、平均Zn濃度を35mass%未満とすると、Znを含有しない場合に比して金属間化合物層の成長をある程度抑制することができるものの、金属間化合物層の厚さが2μm以上に成長するためであり、Cu−Zn層の厚さを0.1μm以上と規定した理由は、Cu−Zn層の厚さが0.1μm未満である場合にも、同様にZnを含有しない場合に比して金属間化合物層の成長をある程度抑制することができるものの、金属間化合物層の厚さが2μm以上に成長するためである。   The reason why the average Zn concentration in the Cu—Zn layer is defined as 35 mass% or more is that when the average Zn concentration is less than 35 mass%, the growth of the intermetallic compound layer can be suppressed to some extent as compared with the case where Zn is not contained. However, the thickness of the intermetallic compound layer grows to 2 μm or more, and the reason why the thickness of the Cu—Zn layer is defined as 0.1 μm or more is that the thickness of the Cu—Zn layer is less than 0.1 μm. In some cases, the growth of the intermetallic compound layer can be suppressed to some extent as compared with the case where Zn is not contained, but the thickness of the intermetallic compound layer grows to 2 μm or more.

また、本発明は、亜鉛被覆銅線を熱処理することにより、Cuを主成分とする芯材の外周にZnをCu中に拡散させて得られるCu−Zn層を形成した後に、Cu−Zn層の上にめっき層を形成することとしたため、めっき層の中にZn成分が溶融する量を極めて少なくすることができ、めっき層表面のZn酸化膜を原因とするめっき層のはんだ濡れ性の低下を抑制することができる。   The present invention also provides a Cu-Zn layer after heat treatment of a zinc-coated copper wire to form a Cu-Zn layer obtained by diffusing Zn into Cu on the outer periphery of a core material mainly composed of Cu. Since the plating layer is formed on the surface, the amount of Zn component melting in the plating layer can be extremely reduced, and the solder wettability of the plating layer is reduced due to the Zn oxide film on the surface of the plating layer. Can be suppressed.

また、芯材の断面積をA、Cu−Zn層の断面積をBとしたときにB/Aの値が0.5以下であることが望ましい。B/Aの値が0.5を超えると、めっき被覆銅線の導電性を低下させてしまうためである。   Further, when the cross-sectional area of the core material is A and the cross-sectional area of the Cu—Zn layer is B, the value of B / A is preferably 0.5 or less. This is because when the value of B / A exceeds 0.5, the conductivity of the plating-coated copper wire is lowered.

また、平均Zn濃度の上限値は、98mass%以下であることが望ましい。その理由は、平均Zn濃度が98mass%を超えるCu−Zn層を持つ導体にめっきを施した場合、めっき層中にZnが瞬時に拡散し、拡散したZnがめっき層の表面でZn酸化膜を形成するため、その後のはんだ接続される用途においては濡れ性が損なわれる虞があるためである。   Moreover, it is desirable that the upper limit value of the average Zn concentration is 98 mass% or less. The reason is that when a conductor having a Cu—Zn layer with an average Zn concentration exceeding 98 mass% is plated, Zn diffuses instantaneously in the plating layer, and the diffused Zn forms a Zn oxide film on the surface of the plating layer. The reason for this is that the wettability may be impaired in subsequent solder-connected applications.

また、Cu−Zn層の厚さの上限値は、20μm以下であることが望ましい。その理由は、Cu−Zn層は導電性が低いため、厚さが20μmを超えるとめっき被覆銅線の導電性が著しく低下してしまうためである。例えば、10MHzの電流を流す場合、表皮深さ(電流が流れる導体表面からの深さ)は21μm程度とされており、高周波領域における影響が大きいと考えられるためである。   Further, the upper limit value of the thickness of the Cu—Zn layer is desirably 20 μm or less. The reason is that since the Cu—Zn layer has low conductivity, if the thickness exceeds 20 μm, the conductivity of the plating-coated copper wire is remarkably lowered. For example, when a current of 10 MHz is passed, the skin depth (depth from the conductor surface through which the current flows) is about 21 μm, which is considered to have a large influence in the high-frequency region.

また、芯材の断面積をA、Cu−Zn層の断面積をBとしたときにB/Aの値が0.0005以上であることが望ましい。その理由は、上述の用途を考慮した場合に、B/Aの値が0.0005未満であると金属間化合物層の成長を抑制する効果が小さいためである。   Further, when the cross-sectional area of the core material is A and the cross-sectional area of the Cu—Zn layer is B, the value of B / A is preferably 0.0005 or more. The reason is that when the above-mentioned application is taken into consideration, if the value of B / A is less than 0.0005, the effect of suppressing the growth of the intermetallic compound layer is small.

このような構成のめっき被覆銅線を製造するに際し、導体とめっき界面に配置するCu−Zn層は、スパッタや電界めっきでCu−Zn層として形成することも可能であるが、Zn単層として形成した後、熱処理によって導体のCuと相互拡散させてCu−Zn層とする方法が、簡便で経済性があり、Zn濃度の調整もしやすいため好ましい。Zn単層の形成には、めっき法の他、スパッタ法、クラッド法などの適用も可能である。   When manufacturing a plated coated copper wire having such a configuration, the Cu—Zn layer disposed at the conductor and plating interface can be formed as a Cu—Zn layer by sputtering or electroplating, but as a Zn single layer, A method of forming a Cu—Zn layer by interdiffusion with Cu of the conductor by heat treatment after formation is preferable because it is simple and economical, and it is easy to adjust the Zn concentration. In addition to the plating method, a sputtering method, a cladding method, or the like can be applied to the formation of the Zn single layer.

以上説明した本発明によれば、導体の導電性の低下を極力抑制しつつ、Sn系めっきと導体間の脆性の高い金属間化合物層の成長を従来よりも更に抑制し、高温保持環境においても耐屈曲特性やはんだ付けした場合の接合強度が劣化することのない、めっき被覆銅線およびその製造方法を提供することができる。   According to the present invention described above, the growth of the highly brittle intermetallic compound layer between the Sn-based plating and the conductor is further suppressed as compared with the conventional one while suppressing the decrease in the conductivity of the conductor as much as possible. It is possible to provide a plating-coated copper wire and a method for producing the same without causing deterioration in bending resistance and bonding strength when soldered.

本発明の実施例1〜10、従来例1、2及び比較例1〜6を以下に示す。   Examples 1 to 10 of the present invention, Conventional Examples 1 and 2 and Comparative Examples 1 to 6 are shown below.

(実施例1)
φ0.1mmの純Cu(タフピッチ銅;TPC)丸線に電界めっきにより厚さ4μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。得られた亜鉛被覆銅線の断面の表面付近の電子顕微鏡像およびライン分析結果を図1、図2に示す。これら図より平均Zn濃度が45〜65mass%のCu−Zn層が純Cu丸線表面に形成されていることを確認した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
Example 1
A Zn layer having a thickness of 4 μm was formed on a pure Cu (tough pitch copper; TPC) round wire of φ0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. FIG. 1 and FIG. 2 show an electron microscope image and a line analysis result near the surface of the cross section of the obtained zinc-coated copper wire. From these figures, it was confirmed that a Cu—Zn layer having an average Zn concentration of 45 to 65 mass% was formed on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例2)
φ0.1mmの純Cu(無酸素銅;OFC)丸線に電界めっきにより厚さ4μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。このときも同様に、平均Zn濃度が45〜65mass%のCu−Zn層が純Cu丸線表面に形成されていることを確認した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Example 2)
A Zn layer having a thickness of 4 μm was formed on a pure Cu (oxygen-free copper: OFC) round wire having a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Similarly, at this time, it was confirmed that a Cu—Zn layer having an average Zn concentration of 45 to 65 mass% was formed on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例3)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ2μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Example 3)
A Zn layer having a thickness of 2 μm was formed on a pure Cu (TPC) round wire having a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例4)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ5.4μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
Example 4
A Zn layer having a thickness of 5.4 μm was formed on a pure Cu (TPC) round wire with a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例5)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ0.08μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Example 5)
A Zn layer having a thickness of 0.08 μm was formed on a pure Cu (TPC) round wire having a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例6)
φ0.17mmの純Cu(TPC)丸線に電界めっきにより厚さ0.08μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Example 6)
A 0.08 μm thick Zn layer was formed on a pure Cu (TPC) round wire of φ0.17 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例7)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ4μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Example 7)
A Zn layer having a thickness of 4 μm was formed on a pure Cu (TPC) round wire having a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例8)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ8μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Example 8)
A Zn layer having a thickness of 8 μm was formed on a pure Cu (TPC) round wire with a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例9)
φ0.15mmの純Cu(TPC)丸線に電界めっきにより厚さ10μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
Example 9
A Zn layer having a thickness of 10 μm was formed by electrolytic plating on a pure Cu (TPC) round wire having a diameter of 0.15 mm. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(実施例10)
φ0.178mmの純Cu(TPC)丸線に電界めっきにより厚さ17μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Example 10)
A 17 μm thick Zn layer was formed on a pure Cu (TPC) round wire with a diameter of 0.178 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(従来例1)
Cu−Zn層のないφ0.1mmの純Cu(TPC)丸線に、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Conventional example 1)
A lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm is formed by hot dipping on a φ0.1 mm pure Cu (TPC) round wire without a Cu—Zn layer. did.

(従来例2)
Cu−Zn層のないφ0.1mmの純Cu(TPC)丸線に、溶融めっきにより厚さ20μmの有鉛はんだめっき層(めっき組成:Sn−37mass%Pb)を形成した。
(Conventional example 2)
A leaded solder plating layer (plating composition: Sn-37 mass% Pb) having a thickness of 20 μm was formed on a pure Cu (TPC) round wire of φ0.1 mm without a Cu—Zn layer by hot dipping.

(比較例1)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ4μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの有鉛はんだめっき層(めっき組成:Sn−37mass%Pb)を形成した。
(Comparative Example 1)
A Zn layer having a thickness of 4 μm was formed on a pure Cu (TPC) round wire having a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a leaded solder plating layer (plating composition: Sn-37 mass% Pb) having a thickness of 20 μm was formed by hot dipping.

(比較例2)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ1μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Comparative Example 2)
A Zn layer having a thickness of 1 μm was formed on a pure Cu (TPC) round wire with a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(比較例3)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ5.7μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Comparative Example 3)
A Zn layer having a thickness of 5.7 μm was formed on a pure Cu (TPC) round wire with a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(比較例4)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ0.04μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Comparative Example 4)
A Zn layer having a thickness of 0.04 μm was formed on a pure Cu (TPC) round wire with a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(比較例5)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ10μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Comparative Example 5)
A Zn layer having a thickness of 10 μm was formed on a pure Cu (TPC) round wire having a diameter of 0.1 mm by electroplating. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

(比較例6)
φ0.1mmの純Cu(TPC)丸線に電界めっきにより厚さ17μmのZn層を形成した。その後、通電焼鈍熱処理により、Cu及びZnを相互拡散させて、純Cu丸線表面にCu−Zn層を形成した。次いで、溶融めっきにより厚さ20μmの無鉛はんだめっき層(めっき組成:Sn−3.0mass%Ag−0.5mass%Cu)を形成した。
(Comparative Example 6)
A Zn layer having a thickness of 17 μm was formed by electroplating on a pure Cu (TPC) round wire having a diameter of 0.1 mm. Thereafter, Cu and Zn were mutually diffused by an electric annealing heat treatment to form a Cu—Zn layer on the surface of the pure Cu round wire. Next, a lead-free solder plating layer (plating composition: Sn-3.0 mass% Ag-0.5 mass% Cu) having a thickness of 20 μm was formed by hot dipping.

これら実施例1〜10、従来例1、2及び比較例1〜6で形成しためっき被覆銅線を、150℃に設定した恒温槽にて1000hrまで種々の時間保持し、導体とめっき界面に形成される金属間化合物層の状態を光学顕微鏡により断面観察し、面積法により厚さを測定した。150℃×1000hr保持後の実施例1と従来例1のめっき/導体界面の拡大断面写真を図3、図4にそれぞれ示す。これら図より、実施例1の金属間化合物層の厚さは、従来例1と比較して大幅に抑制されていることが明らかである。   The plating-coated copper wires formed in Examples 1 to 10, Conventional Examples 1 and 2 and Comparative Examples 1 to 6 are held at a constant temperature bath set at 150 ° C. for 1000 hours for various times, and formed at the conductor and plating interface. The state of the intermetallic compound layer was observed by a cross section with an optical microscope, and the thickness was measured by the area method. FIGS. 3 and 4 show enlarged cross-sectional photographs of the plating / conductor interface of Example 1 and Conventional Example 1 after holding at 150 ° C. × 1000 hr, respectively. From these figures, it is clear that the thickness of the intermetallic compound layer of Example 1 is significantly suppressed as compared with Conventional Example 1.

また同様に、150℃環境における実施例1及び従来例1の金属間化合物層の成長挙動(厚さ変化)を数値化し、比較した結果を図5に示す。150℃×1000hr保持後の実施例1の金属間化合物層の厚さは2μm以下であり、従来例1の約7μmの1/3以下にまで抑制できていることが確認できた。   Similarly, the growth behavior (thickness change) of the intermetallic compound layer of Example 1 and Conventional Example 1 in a 150 ° C. environment is quantified and the result of comparison is shown in FIG. It was confirmed that the thickness of the intermetallic compound layer of Example 1 after holding at 150 ° C. × 1000 hr was 2 μm or less, and could be suppressed to 1/3 or less of about 7 μm of Conventional Example 1.

芯材、Cu−Zn層の平均Zn濃度、Cu−Zn層の厚さ、はんだの種類をそれぞれ変化させ、150℃×1000hr保持後の金属間化合物層の厚さを比較評価した結果を表1に示す。   Table 1 shows the results of comparative evaluation of the thickness of the intermetallic compound layer after holding the core material, the average Zn concentration of the Cu—Zn layer, the thickness of the Cu—Zn layer, and the kind of solder, and holding at 150 ° C. for 1000 hours. Shown in

ここに平均Zn濃度とは、Cu−Zn層の中のZn濃度を厚さで積分してCu−Zn層の厚さで除したものである。例えば、図2の場合、以下のように求めることができる。
図2における平均Zn濃度=(60%×3.5μm+50%×2μm+25%×0.5μm)/6μm=54%
Here, the average Zn concentration is obtained by integrating the Zn concentration in the Cu—Zn layer by the thickness and dividing by the thickness of the Cu—Zn layer. For example, in the case of FIG. 2, it can obtain | require as follows.
Average Zn concentration in FIG. 2 = (60% × 3.5 μm + 50% × 2 μm + 25% × 0.5 μm) / 6 μm = 54%

先ず、Cu−Zn層の平均Zn濃度に関して、35mass%以上の範囲にある実施例1〜4は、金属間化合物層の成長が遅く、いずれも2μm以下であった。一方、平均Zn濃度が10mass%の比較例2の場合、金属間化合物層成長抑制の効果は認められるものの、金属間化合物層の成長が速く、その厚さは4.5μmであり、2μmを大きく上回っていた。つまり、Cu−Zn層の平均Zn濃度は、35mass%以上が適正であると判断できる。この原因として、本発明者らは、Cu−Zn合金が35mass%ZnまでZnの固溶限を持つことに関連していると考えており、Znの固溶限を超える35mass%Zn以上で金属間化合物層成長抑制の効果が高いとされる。その理由から、平均Zn濃度として、確実に固溶限を超える38mass%以上がより好ましい。また、実施例における熱処理後の最表面におけるZn濃度を測定したところ、35〜100mass%であった。また、いずれの実施例もCu−Zn層は最表面から内部に向かってZn濃度が低くなる拡散層であった。   First, with respect to the average Zn concentration of the Cu—Zn layer, in Examples 1 to 4 in the range of 35 mass% or more, the growth of the intermetallic compound layer was slow, and all were 2 μm or less. On the other hand, in the case of Comparative Example 2 in which the average Zn concentration is 10 mass%, although the effect of suppressing the growth of the intermetallic compound layer is recognized, the growth of the intermetallic compound layer is fast and the thickness is 4.5 μm, which is larger than 2 μm. It was higher. That is, it can be determined that the average Zn concentration of the Cu—Zn layer is appropriate to be 35 mass% or more. As a cause of this, the present inventors believe that the Cu—Zn alloy is related to having a solid solubility limit of Zn up to 35 mass% Zn, and the metal is above 35 mass% Zn exceeding the solid solubility limit of Zn. It is said that the effect of suppressing intermetallic layer growth is high. For that reason, the average Zn concentration is more preferably 38 mass% or more which certainly exceeds the solid solubility limit. Moreover, when the Zn density | concentration in the outermost surface after the heat processing in an Example was measured, it was 35-100 mass%. In all the examples, the Cu—Zn layer was a diffusion layer in which the Zn concentration decreased from the outermost surface toward the inside.

次に、はんだの種類に関して、めっき層と導体間にCu−Zn層を設け、且つ無鉛はんだを使用した実施例1、2は、TPC、OFCなどの導体の種類によらず、150℃×1000hr保持後も金属間化合物層の厚さを2μm以下に抑制できることが分かった。一方、めっき層として有鉛はんだを用いた従来例2と比較例1では、150℃×1000hr保持後の金属間化合物層の厚さがそれぞれ約9.5μm、8μmであり、いずれも実施例と比較して金属間化合物層の成長が大きいことが分かった。つまり、有鉛はんだの場合、Cu−Zn層による金属間化合物層成長抑制の効果が、無鉛はんだの場合よりも小さいことが分かった。   Next, regarding the type of solder, Examples 1 and 2 in which a Cu—Zn layer is provided between the plating layer and the conductor and lead-free solder is used are 150 ° C. × 1000 hr regardless of the type of conductor such as TPC and OFC. It was found that the thickness of the intermetallic compound layer can be suppressed to 2 μm or less even after the holding. On the other hand, in Conventional Example 2 and Comparative Example 1 using leaded solder as the plating layer, the thickness of the intermetallic compound layer after holding at 150 ° C. × 1000 hr was about 9.5 μm and 8 μm, respectively. In comparison, it was found that the growth of the intermetallic compound layer was large. That is, in the case of leaded solder, it was found that the effect of suppressing the growth of the intermetallic compound layer by the Cu—Zn layer was smaller than that of the lead-free solder.

次に、150℃×1000hr保持後の実施例1及び従来例1の耐屈曲特性を比較するため、R=15mm、90°左右屈曲試験を行い、導体が破断するまでの屈曲回数を調査した。その結果を表2に示す。   Next, in order to compare the bending resistance of Example 1 and Conventional Example 1 after holding at 150 ° C. × 1000 hr, R = 15 mm, 90 ° left / right bending test was performed, and the number of bending until the conductor broke was investigated. The results are shown in Table 2.

本発明の実施例1は、従来例1と比較し、1.5倍以上の耐屈曲特性を有することを確認した。   It was confirmed that Example 1 of the present invention had a bending resistance of 1.5 times or more compared to Conventional Example 1.

Cu−Zn層の厚さおよびCu−Zn/Cu断面積比を変化させ、150℃×1000hr保持後の試料を評価した結果を表3に示す。なお、実施例、比較例において、Cu−Zn層の厚さ、平均Zn濃度、芯材の断面積をA、Cu−Zn層の断面積をBとしたときのB/Aの値は、Zn層の厚さ及び熱処理条件を変更するなどの公知の方法によって調整している。   Table 3 shows the results of evaluating the sample after being held at 150 ° C. × 1000 hr by changing the thickness of the Cu—Zn layer and the Cu—Zn / Cu cross-sectional area ratio. In Examples and Comparative Examples, the value of B / A when the thickness of the Cu—Zn layer, the average Zn concentration, the cross-sectional area of the core material is A, and the cross-sectional area of the Cu—Zn layer is B is Zn The thickness is adjusted by a known method such as changing the layer thickness and heat treatment conditions.

導電率については、Cu−Zn層がない試料の導電率を基準とし、1%以上値が低下したものを×とし、それ未満のものを○とした。その結果、導体のサイズに関係なく、Cu−Zn層の厚さが0.1μm以上の実施例5〜10に関しては、金属間化合物層の厚さはいずれも2μm以下であったのに対し、Cu−Zn層が1μm未満の比較例4は、金属間化合物層の成長を抑制する効果が得られなかった。また、Cu−Zn/Cu断面積比が0.5を超える比較例5、6では、金属間化合物層の成長は小さかったが、導電率が低下してしまう結果となった。つまり、金属間化合物層の成長抑制と高い導電率を兼ね備えるためには、Cu−Zn層の厚さが0.1μm以上必要であり、且つ、Cu−Zn/Cu断面積比が0.5以下であるのが好ましい。   Regarding the electrical conductivity, based on the electrical conductivity of a sample having no Cu—Zn layer, a sample whose value decreased by 1% or more was evaluated as “x”, and a sample having a lower value was evaluated as “◯”. As a result, regardless of the size of the conductor, for Examples 5 to 10 in which the thickness of the Cu—Zn layer was 0.1 μm or more, the thickness of the intermetallic compound layer was 2 μm or less. In Comparative Example 4 in which the Cu—Zn layer was less than 1 μm, the effect of suppressing the growth of the intermetallic compound layer was not obtained. Further, in Comparative Examples 5 and 6 in which the Cu—Zn / Cu cross-sectional area ratio exceeded 0.5, the growth of the intermetallic compound layer was small, but the conductivity was reduced. That is, in order to combine growth suppression of the intermetallic compound layer and high conductivity, the thickness of the Cu—Zn layer is required to be 0.1 μm or more, and the Cu—Zn / Cu cross-sectional area ratio is 0.5 or less. Is preferred.

本発明に関わる実施例1〜10について、Zn層は、はんだめっき処理前に加熱により予めCu−Zn層としているため、はんだめっき処理時にめっき中にZnがほとんど溶け出すことがない。よって、めっき表面に形成される酸化膜は30nm以下と薄く、その後のはんだ接続される用途においては濡れ性が損なわれない。   In Examples 1 to 10 according to the present invention, the Zn layer is preliminarily formed as a Cu—Zn layer by heating before the solder plating treatment, so that Zn hardly dissolves during the plating during the solder plating treatment. Therefore, the oxide film formed on the plating surface is as thin as 30 nm or less, and the wettability is not impaired in the subsequent solder connection application.

以上、本発明によれば、高温保持におけるめっき/導体界面の金属間化合物層の成長を抑制することができ、導体の耐屈曲特性が劣化せず、はんだ接続部においても長期信頼性を得られることが分かる。この効果により、本発明を適用した製品は、高温環境下での使用が可能となる。   As described above, according to the present invention, the growth of the intermetallic compound layer at the plating / conductor interface at high temperature holding can be suppressed, the bending resistance characteristic of the conductor is not deteriorated, and long-term reliability can be obtained even in the solder connection portion. I understand that. By this effect, the product to which the present invention is applied can be used in a high temperature environment.

実施例の芯材として、TPC、OFCを示したが、本発明はTPC、OFCに限るものでなく、Cu−Zn化合物を形成するあらゆるCu及びCu合金に適用が可能である。上述した導電性の低下に影響を与えない限りにおいて、Cu合金の種類として、例えば、Mg、Zr、Ti、Nb、Ca、V、Ni、Mnのうちから選ばれた1種又は2種以上の100massppm以下の添加元素を含むいわゆる希薄Cu合金であっても良い。   Although TPC and OFC are shown as the core material of the examples, the present invention is not limited to TPC and OFC, and can be applied to any Cu and Cu alloy that forms a Cu-Zn compound. As long as the above-described decrease in conductivity is not affected, the Cu alloy type is, for example, one or more selected from Mg, Zr, Ti, Nb, Ca, V, Ni, and Mn. A so-called dilute Cu alloy containing an additive element of 100 mass ppm or less may be used.

めっき層の材質としては、Sn−Ag−Cuめっきに限定されるものではなく、純Sn系、Sn−Ag系、Sn−Cu系などのPbを含まないPbフリーはんだめっきを用いることができる。   The material of the plating layer is not limited to Sn—Ag—Cu plating, and Pb-free solder plating not containing Pb such as pure Sn, Sn—Ag, or Sn—Cu can be used.

導体の形状としては、特に限定されるものではなく、平角状のものであっても、断面丸形状のものであっても良い。   The shape of the conductor is not particularly limited, and may be a rectangular shape or a round cross section.

本実施例においては、めっき層側へのZnの拡散はほとんど無いものと考えられるが、本発明の効果に悪影響を及ぼさない限りにおいてはZnがめっき層側に拡散する態様を排除するものではない。   In this example, it is considered that there is almost no diffusion of Zn to the plating layer side. However, as long as the effect of the present invention is not adversely affected, it does not exclude an aspect in which Zn diffuses to the plating layer side. .

Claims (4)

銅を主成分とする芯材の外周に銅中に亜鉛が拡散した銅−亜鉛合金層を有し、該銅−亜鉛合金層の外周に錫を主成分とするめっき層を備えるめっき被覆銅線であって、
前記銅−亜鉛合金層における平均亜鉛濃度が35mass%以上であり、
前記銅−亜鉛合金層の厚さが0.1μm以上であることを特徴とするめっき被覆銅線。
A plating-coated copper wire having a copper-zinc alloy layer in which zinc is diffused in copper on the outer periphery of a core material mainly composed of copper, and a plating layer mainly composed of tin on the outer periphery of the copper-zinc alloy layer Because
The average zinc concentration in the copper-zinc alloy layer is 35 mass% or more,
A plating-coated copper wire, wherein the copper-zinc alloy layer has a thickness of 0.1 μm or more.
前記芯材の断面積をA、前記銅−亜鉛合金層の断面積をBとしたときにB/Aの値が0.5以下であることを特徴とする請求項1に記載のめっき被覆銅線。   2. The plated coated copper according to claim 1, wherein a value of B / A is 0.5 or less, where A is a cross-sectional area of the core material and B is a cross-sectional area of the copper-zinc alloy layer. line. 銅を主成分とする導体の表面に亜鉛層を形成する亜鉛被覆銅線の形成工程と、
該亜鉛被覆銅線を熱処理することにより亜鉛を銅中に拡散させて銅を主成分とする芯材の外周に銅−亜鉛合金層を形成する工程と、
該銅−亜鉛合金層の上に錫めっきを施してめっき層を形成する工程とを備えるめっき被覆銅線の製造方法であって、
前記銅−亜鉛合金層における平均亜鉛濃度が35mass%以上であり、
前記銅−亜鉛合金層の厚さが0.1μm以上であることを特徴とするめっき被覆銅線の製造方法。
Forming a zinc-coated copper wire for forming a zinc layer on the surface of a conductor mainly composed of copper;
Heat-treating the zinc-coated copper wire to diffuse zinc into the copper to form a copper-zinc alloy layer on the outer periphery of the core composed mainly of copper;
A method for producing a plated coated copper wire comprising a step of performing tin plating on the copper-zinc alloy layer to form a plating layer,
The average zinc concentration in the copper-zinc alloy layer is 35 mass% or more,
A method for producing a plating-coated copper wire, wherein the copper-zinc alloy layer has a thickness of 0.1 μm or more.
前記芯材の断面積をA、前記銅−亜鉛合金層の断面積をBとしたときにB/Aの値が0.5以下であることを特徴とする請求項3に記載のめっき被覆銅線の製造方法。   The plating-coated copper according to claim 3, wherein a value of B / A is 0.5 or less, where A is a cross-sectional area of the core material and B is a cross-sectional area of the copper-zinc alloy layer. Wire manufacturing method.
JP2010273811A 2010-12-08 2010-12-08 Plated copper wire and manufacturing method thereof Pending JP2012124025A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010273811A JP2012124025A (en) 2010-12-08 2010-12-08 Plated copper wire and manufacturing method thereof
CN2011104051899A CN102543249A (en) 2010-12-08 2011-12-08 Plating coating copper wire and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273811A JP2012124025A (en) 2010-12-08 2010-12-08 Plated copper wire and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012124025A true JP2012124025A (en) 2012-06-28

Family

ID=46349928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273811A Pending JP2012124025A (en) 2010-12-08 2010-12-08 Plated copper wire and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2012124025A (en)
CN (1) CN102543249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992776A (en) * 2015-06-30 2015-10-21 芜湖航天特种电缆厂 Equal-resistance wire and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104060281A (en) * 2013-03-21 2014-09-24 吕传盛 Solid phase diffusion reaction copper palladium alloy wire and making method thereof
CN106282619B (en) * 2015-05-18 2018-04-27 吕传盛 The aluminium base wire rod of abrasion performance high intensity without coating and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380412A (en) * 1986-09-24 1988-04-11 古河電気工業株式会社 Cu based substrate for electric circuit board and manufacture thereof
JPH01259195A (en) * 1988-04-07 1989-10-16 Kobe Steel Ltd Tin coated copper or copper alloy material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086024A (en) * 2001-09-13 2003-03-20 Hitachi Cable Ltd Sn PLATING FLAT CONDUCTOR AND FLAT CABLE USING THE SAME
JP2007046150A (en) * 2005-04-06 2007-02-22 Misuzu:Kk Lead wire for electronic part and flat cable comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380412A (en) * 1986-09-24 1988-04-11 古河電気工業株式会社 Cu based substrate for electric circuit board and manufacture thereof
JPH01259195A (en) * 1988-04-07 1989-10-16 Kobe Steel Ltd Tin coated copper or copper alloy material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992776A (en) * 2015-06-30 2015-10-21 芜湖航天特种电缆厂 Equal-resistance wire and manufacturing method thereof

Also Published As

Publication number Publication date
CN102543249A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
TWI362046B (en) Flat cable
JP4904953B2 (en) WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
JP4911254B2 (en) Wiring conductor and terminal connection
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
JP2005216749A (en) Conductor for flat cable, its manufacturing method and flat cable
EP2743381A1 (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
WO2018124116A1 (en) Surface treatment material and method for manufacturing same, and article fabricated using surface treatment material
WO2018124114A1 (en) Surface treatment material and article fabricated using same
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
JP6535136B2 (en) SURFACE TREATMENT MATERIAL AND PARTS PRODUCED BY USING THE SAME
JP5419275B2 (en) Reflow Sn plating material
US20170076834A1 (en) Electrical contact material, method of producing an electrical contact material, and terminal
JP2012124025A (en) Plated copper wire and manufacturing method thereof
JP7272224B2 (en) Terminal materials for connectors
JP2012038710A (en) Flexible flat cable, flexible printed board, method of manufacturing flexible flat cable, and method of manufacturing flexible printed board
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
JP5761400B1 (en) Wire for connector pin, method for manufacturing the same, and connector
JP2009097050A (en) Tin-plated material for electronic parts
JP2000169996A (en) Metallic material
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP2010090433A (en) Method of manufacturing metal strip
JP4796522B2 (en) Wiring conductor and method for manufacturing the same
JP6490510B2 (en) Manufacturing method of plating material with excellent heat resistance
JP2018104821A (en) Surface treatment material and component produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701