JP4847898B2 - Wiring conductor and method for manufacturing the same - Google Patents

Wiring conductor and method for manufacturing the same Download PDF

Info

Publication number
JP4847898B2
JP4847898B2 JP2007057148A JP2007057148A JP4847898B2 JP 4847898 B2 JP4847898 B2 JP 4847898B2 JP 2007057148 A JP2007057148 A JP 2007057148A JP 2007057148 A JP2007057148 A JP 2007057148A JP 4847898 B2 JP4847898 B2 JP 4847898B2
Authority
JP
Japan
Prior art keywords
thickness
based material
intermediate layer
layer
wiring conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007057148A
Other languages
Japanese (ja)
Other versions
JP2008218318A (en
Inventor
隆之 辻
真人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Cable Fine Tech Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Cable Fine Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Cable Fine Tech Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007057148A priority Critical patent/JP4847898B2/en
Publication of JP2008218318A publication Critical patent/JP2008218318A/en
Application granted granted Critical
Publication of JP4847898B2 publication Critical patent/JP4847898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、配線用導体及び端末接続部に係り、特に電子機器に使用され、屈曲性が必要とされるフレキシブルフラットケーブル(FFC)、フレキシブルプリント配線板(FPC)等の配線用導体およびその製造方法に関するものである。   The present invention relates to a wiring conductor and a terminal connection portion, and more particularly to a wiring conductor such as a flexible flat cable (FFC) and a flexible printed wiring board (FPC) that are used in electronic equipment and requires flexibility. It is about the method.

従来、配線材、特に銅や銅合金の表面には、配線材の酸化を防ぐために、Sn,Ag,AuやNiめっきが施される。例えば、図2に示すように、コネクタ11とフレキシブルフラットケーブル(以下、FFCという)13の端末接続部においては、コネクタ(コネクタ部材)11のコネクタピン(金属端子)12や、FFC13の導体14の表面などにめっきが施されている。なかでも、Snはコストが安価であり、軟らかいため嵌合(接触)の圧力で容易に変形して接触面積が増え、接触抵抗が低く抑えられることから、配線材の表面にSnめっきを施したものが広く一般的に使用されている。   Conventionally, the surface of a wiring material, particularly copper or copper alloy, is plated with Sn, Ag, Au, or Ni to prevent the wiring material from being oxidized. For example, as shown in FIG. 2, in the terminal connection part of the connector 11 and flexible flat cable (hereinafter referred to as FFC) 13, the connector pins (metal terminals) 12 of the connector (connector member) 11 and the conductors 14 of the FFC 13 The surface is plated. In particular, Sn is inexpensive and soft, so it is easily deformed by the fitting (contact) pressure to increase the contact area and keep the contact resistance low, so the surface of the wiring material was Sn plated. Things are widely used in general.

このSnめっき用合金として、従来は耐ウィスカ性が良好なSn−Pb合金が用いられてきたが、近年は環境面での対応の観点から、Pbフリー材(非鉛材)、ノンハロゲン材の使用が求められており、配線材に使用される各種材料に対してもPbフリー化、ノンハロゲン化が求められている。   Conventionally, Sn-Pb alloys with good whisker resistance have been used as this Sn plating alloy, but in recent years, Pb-free materials (lead-free materials) and non-halogen materials have been used from the viewpoint of environmental compatibility. Pb-free and non-halogenated are also required for various materials used for wiring materials.

特開2002−294486号公報JP 2002-294486 A 特開2003−293187号公報JP 2003-293187 A

SnめっきのPbフリー化に伴って、特にSnまたはSn系合金めっきにおいては、端末接続部において、図3に示すように、Snの針状結晶であるウィスカ21がめっきから発生し、ウィスカ21により隣接配線(導体14)間の短絡が生じるおそれがあることが問題となっている。   As Sn plating becomes Pb-free, particularly in Sn or Sn-based alloy plating, whisker 21, which is a needle crystal of Sn, is generated from the plating at the terminal connection portion as shown in FIG. There is a problem that a short circuit may occur between adjacent wires (conductor 14).

ウィスカの発生原因の一つとして考えられているSnめっき中の応力を緩和させるため、電気めっきしたSnをリフロー処理することにより、ウィスカの発生を低減させることが可能であるとされている。   In order to relieve stress during Sn plating, which is considered as one of the causes of whisker generation, it is said that reflow treatment of electroplated Sn can reduce the generation of whiskers.

しかし、コネクタとの嵌合部(接続部)など新たな外部応力がかかる場合は、リフロー処理を施してもウィスカの発生を抑えることができない。また、BiやAgなどの合金の電解めっきあるいは無電解めっきにより、ウィスカを抑制することができるが、リフロー処理することにより、逆に純Snのときよりもウィスカが発生してしまうことが報告され、これら合金めっきにも問題がある。現在のところ、ウィスカ抑制の有効な対策として、1μm以下の薄いSnめっきを施す方法が提案されているが、特に高温・高湿放置時においては従来よりも接触抵抗が増大するという問題がある(例えば、JEITA鉛フリー化完遂緊急提言報告会資料(2005.2.17)、JEITA鉛フリーはんだ実用化検討2005年成果報告書(2005.6)、特開2005−206869号公報、特開2006−45665号公報を参照)。   However, when a new external stress is applied such as a fitting portion (connecting portion) with the connector, the occurrence of whiskers cannot be suppressed even if the reflow process is performed. In addition, whisker can be suppressed by electrolytic plating or electroless plating of an alloy such as Bi or Ag, but it is reported that whisker is generated by reflow treatment, compared to pure Sn. These alloy platings also have problems. At present, as an effective measure for suppressing whisker, a method of applying a thin Sn plating of 1 μm or less has been proposed, but there is a problem that the contact resistance is increased more than that in the prior art particularly when left at high temperature and high humidity ( For example, JEITA lead-free completed urgent proposal report meeting material (2005.2.17), JEITA lead-free solder practical application 2005 result report (2005.6), JP 2005-206869 A, JP 2006-45665 A reference).

以上の事情を考慮して創案された本発明の目的は、特にコネクタとの嵌合など大きな外部応力がかかる環境下においても、導体周囲のSnめっき膜表面やはんだからウィスカが発生するおそれが少なく、あるいはほとんどウィスカが発生せず、高温・高湿環境下においても接触抵抗が増大することのないPbフリーの配線用導体およびその製造方法を提供することにある。   The object of the present invention, which was created in view of the above circumstances, is less likely to generate whiskers from the Sn plating film surface and the solder around the conductor, even in an environment where a large external stress such as fitting with a connector is applied. Another object of the present invention is to provide a Pb-free wiring conductor that hardly generates whiskers and does not increase contact resistance even in a high temperature and high humidity environment, and a method for manufacturing the same.

上記の目的を達成するために、請求項1の発明は、金属材料からなる心材の少なくとも表面の一部にPbフリーのSn系材料部が形成された複合材からなり、上記心材と上記Sn系材料部との間に所定厚さのNi−P中間層を設け、その後、リフローを行うことで上記Ni−P中間層をSn系材料部中に拡散させてNi−P中間層を消失させると共に、上記Sn系材料部の表面に、Sn酸化物とP酸化物からなる複合膜又はSn酸化物とリン酸塩化合物からなる複合膜を形成したものであって、上記Sn系材料部の厚さが1μm以下で、上記Ni−P中間層の厚さが上記Sn系材料部の厚さの1/200以上、1/20未満であることを特徴とする配線用導体である。 To achieve the above object, a first aspect of the invention, at least part of the surface of the core made of a metal material made of a composite material Sn-based material part is formed of Pb-free, said core and said Sn-based the Ni-P intermediate layer of a predetermined thickness between the material portion is provided, then the reflow line Ukoto, loss of Ni-P intermediate layer by diffusing the Ni-P intermediate layer in the Sn-based material part together is, on the surface of the Sn-based material part, it is one obtained by forming a composite film comprising a composite film or a Sn oxide consisting Sn oxide and P oxide and the phosphate compound, the Sn-based material part The wiring conductor is characterized in that the thickness is 1 μm or less, and the thickness of the Ni—P intermediate layer is 1/200 or more and less than 1/20 of the thickness of the Sn-based material portion .

請求項の発明は、上記Ni−P中間層が、1wt%以上、15wt%以下のPと、残部がNi及び不可避不純物のNi−P合金からなる請求項に記載の配線用導体である。 The invention according to claim 2 is the wiring conductor according to claim 1 , wherein the Ni—P intermediate layer is made of 1 wt% or more and 15 wt% or less of P, and the balance is Ni and an inevitable impurity Ni—P alloy. .

請求項の発明は、上記Sn系材料部が、Snと不可避不純物からなる純Sn系、Sn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Bi−Ag系、又はSn−Cu系のPbフリーのはんだ材である請求項1又は2に記載の配線用導体である。 According to a third aspect of the present invention, the Sn-based material portion is pure Sn-based, Sn-Ag-based, Sn-Ag-Cu-based, Sn-Bi-based, Sn-Bi-Ag-based, or Sn composed of Sn and inevitable impurities. The wiring conductor according to claim 1 , wherein the wiring conductor is a Cu-based Pb-free solder material.

請求項の発明は、上記リフローにより、上記Sn系材料部の一部が、上記心材及び上記Ni−P中間層の構成元素の一部と金属間化合物層を形成し、Sn系材料部の純Sn又はSn合金の残存厚さが0.05μm以上、0.5μm未満である請求項1からいずれかに記載の配線用導体である。 According to a fourth aspect of the present invention, due to the reflow, a part of the Sn-based material part forms an intermetallic compound layer with a part of the constituent elements of the core material and the Ni-P intermediate layer, and the Sn-based material part remaining thickness of the pure Sn or Sn alloy 0.05μm or more, the wiring conductor according to claims 1 to 3 or less than 0.5 [mu] m.

請求項の発明は、上記Sn系材料部の純Sn又はSn合金の残存厚さが0.05μm以上、0.2μm未満である請求項に記載の配線用導体である。 The invention according to claim 5 is the wiring conductor according to claim 4 , wherein the remaining thickness of the pure Sn or Sn alloy in the Sn-based material portion is 0.05 μm or more and less than 0.2 μm.

請求項の発明は、上記心材となる金属材料が、導電率10%IACS以上の導電材料、無酸素銅、タフピッチ銅、銀、ニッケル、銅系合金材料、ニッケル系合金材料、アルミ系合金材料、又は鉄系合金材料で構成され、形状が丸線、角線、板、条、又は箔である請求項1からいずれかに記載の配線用導体である。 In the invention of claim 6, the metal material as the core material is a conductive material having an electric conductivity of 10% IACS or more, oxygen-free copper, tough pitch copper, silver, nickel, a copper alloy material, a nickel alloy material, an aluminum alloy material Or a conductor for wiring according to any one of claims 1 to 5 , wherein the conductor is a round wire, square wire, plate, strip, or foil.

請求項の発明は、金属材料からなる心材の少なくとも表面の一部にPbフリーのSn系材料部が形成された複合材の製造方法であって、上記心材にNi−P電解めっきを行い、心材の少なくとも表面の一部に所定厚さのNi−P中間層を設け、そのNi−P中間層上にSnめっきによりPbフリーのSn系材料部を設け、伸線・圧延を行なって上記複合材のサイズ・形状を調整した後、リフローを行い、上記Ni−P中間層をSn系材料部中に拡散させてNi−P中間層を消失させると共に、上記Sn系材料部の表面に、Sn酸化物とP酸化物からなる複合膜又はSn酸化物とリン酸塩化合物からなる複合膜を形成したものであって、上記Sn系材料部の厚さが1μm以下で、上記Ni−P中間層の厚さが上記Sn系材料部の厚さの1/200以上、1/20未満であることを特徴とする配線用導体の製造方法である。 The invention of claim 7 is a method for producing a composite material in which a Pb-free Sn-based material portion is formed on at least a part of the surface of a core material made of a metal material , and performing Ni-P electrolytic plating on the core material, An Ni—P intermediate layer having a predetermined thickness is provided on at least a part of the surface of the core material, and a Pb-free Sn-based material portion is provided on the Ni—P intermediate layer by Sn plating, and wire drawing / rolling is performed to form the composite after adjusting the size and shape of the timber, carried out reflow, the Ni-P intermediate layer with abolishes Ni-P intermediate layer is diffused into the Sn-based material part, on the surface of the Sn-based material part, Sn A composite film composed of an oxide and a P oxide or a composite film composed of a Sn oxide and a phosphate compound , wherein the Sn-based material portion has a thickness of 1 μm or less, and the Ni-P intermediate layer Is 1/2 of the thickness of the Sn-based material part. 0 or more, it is a manufacturing method of the wiring conductor, characterized in that less than 1/20.

本発明により、電子機器の配線用導体において、表面にSnめっきを施された導体(配線材)表面の酸化を防ぐことができる。その結果、嵌合部のような外部応力がかかる場合においても、Snの針状結晶であるウィスカを抑制することが可能になり、隣接導体間の短絡といった不具合を解決することができる。また、高温・高湿環境下においても接触信頼性を損なうことがない。   According to the present invention, in the wiring conductor of an electronic device, oxidation of the surface of the conductor (wiring material) whose surface is plated with Sn can be prevented. As a result, even when external stress such as a fitting portion is applied, it is possible to suppress the whisker which is a needle crystal of Sn, and it is possible to solve a problem such as a short circuit between adjacent conductors. In addition, contact reliability is not impaired even in a high temperature and high humidity environment.

以下、本発明の実施の形態を添付図面に基いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係る配線用導体は、図1(a)に示すように、導電材料(金属材料)からなる心材33の少なくとも表面(外周面)の一部に、Pを1〜15wt%含有し、残部がSn及び不可避不純物からなる所定厚さのNi−P層(Ni−P中間層)32を設け、そのNi−P層32上にSn系材料部31をめっきして設け、その後、熱処理(リフロー処理)して、図1(b)に示すように、Ni−P層32をSn系材料部31中に拡散させてNi−P層32を消失させたものである。このNi−P層32の厚さはSn系材料部31の厚さの1/200以上、1/20未満にし、リフロー処理時に、Ni−P層32を、溶融しているSn系材料部31に拡散させることに特徴がある。熱処理後の配線用導体は、Sn系材料部31の表面に、Sn酸化物とP酸化物からなる複合膜(又はSn酸化物とリン酸塩化合物からなる複合膜)35を、また、心材33とSn系材料部31との界面に、心材33の金属材料とSnの金属間化合物層34を有する。   As shown in FIG. 1 (a), the wiring conductor according to a preferred embodiment of the present invention has 1 P on at least a part of the surface (outer peripheral surface) of the core material 33 made of a conductive material (metal material). A Ni—P layer (Ni—P intermediate layer) 32 having a predetermined thickness, which is made of Sn and inevitable impurities, is provided, and the Sn-based material portion 31 is plated on the Ni—P layer 32. 1 and then heat-treated (reflow treatment), as shown in FIG. 1B, the Ni-P layer 32 is diffused into the Sn-based material portion 31 and the Ni-P layer 32 disappears. . The thickness of the Ni-P layer 32 is set to 1/200 or more and less than 1/20 of the thickness of the Sn-based material portion 31, and the Ni-P layer 32 is melted during the reflow process. It is characterized by diffusing. The conductor for wiring after the heat treatment has a composite film made of Sn oxide and P oxide (or a composite film made of Sn oxide and phosphate compound) 35 on the surface of the Sn-based material portion 31, and a core material 33. And the Sn-based material part 31 have a metal material of the core material 33 and an Sn intermetallic compound layer.

Sn系材料部31を構成する材料としては、Snと不可避不純物からなる純Sn系、Sn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Bi−Ag系、又はSn−Cu系のPbフリーのはんだ材が挙げられる。   The material constituting the Sn-based material portion 31 is pure Sn-based, Sn-Ag-based, Sn-Ag-Cu-based, Sn-Bi-based, Sn-Bi-Ag-based, or Sn-Cu based on Sn and inevitable impurities. Pb-free solder material of the system is mentioned.

心材33を構成する金属材料としては、導電率10%IACS以上の導電材料、無酸素銅、タフピッチ銅、銀、ニッケル、銅系合金材料、ニッケル系合金材料、アルミ系合金材料、又は鉄系合金材料が挙げられる。また、心材33の形状としては、丸線、角線、板、条、又は箔が挙げられ、特に限定するものではない。   As the metal material constituting the core material 33, a conductive material having an electrical conductivity of 10% IACS or more, oxygen-free copper, tough pitch copper, silver, nickel, a copper-based alloy material, a nickel-based alloy material, an aluminum-based alloy material, or an iron-based alloy Materials. Moreover, as a shape of the core material 33, a round wire, a square wire, a board, a strip, or a foil is mentioned, It does not specifically limit.

Sn系材料部31は、心材33の外周面全面に設けてもよく、また、図2に示したコネクタピン12などと嵌合、接続される面のみに設けてもよい。   The Sn-based material portion 31 may be provided on the entire outer peripheral surface of the core material 33, or may be provided only on the surface that is fitted and connected to the connector pin 12 shown in FIG.

また、金属間化合物層34は、配線用導体の屈曲特性を阻害しない程度の極薄いものであれば、その厚さは特に限定するものではない。   Further, the thickness of the intermetallic compound layer 34 is not particularly limited as long as the intermetallic compound layer 34 is extremely thin so as not to hinder the bending characteristics of the wiring conductor.

次に、本実施の形態の配線用導体の製造方法を説明する。   Next, the manufacturing method of the wiring conductor of this Embodiment is demonstrated.

本実施の形態では、先ず、心材33の少なくとも表面(外周面)の一部にNi−P層32を設ける。このNi−P層32は後述するNi−P電解めっきにより形成する。そして、電解めっきにより形成した所定厚さのNi−P層32上に、電解めっき又は無電解めっきによりSn系材料部31を設ける。   In the present embodiment, first, the Ni—P layer 32 is provided on at least a part of the surface (outer peripheral surface) of the core material 33. This Ni-P layer 32 is formed by Ni-P electrolytic plating described later. Then, the Sn-based material portion 31 is provided by electrolytic plating or electroless plating on the Ni-P layer 32 having a predetermined thickness formed by electrolytic plating.

その後、Ni−P層32及びSn系材料部31を設けた心材33に、伸線・圧延加工を施して所定のサイズ・形状に調整した後、熱処理(リフロー処理)を施す。このリフロー処理により、Ni−P層32のP成分が、溶融しているSn系材料部31中に拡散し、また、Ni−P層32のNi成分が、心材33の金属材料とSnとの金属間化合物の成長抑制のバリア層として作用し、Ni−P層32が消失する。この拡散したP成分はSn系材料部31の表面において優先的に酸化され、Sn系材料部31の表面にSn酸化物とP酸化物からなる複合膜(又はSn酸化物とリン酸塩化合物からなる複合膜)35が生成する。また、熱処理後の心材33とSn系材料部31との界面には、心材33の金属材料とSnの金属間化合物層34が極薄く生成する。これによって、本実施の形態に係る配線用導体が得られる。   Thereafter, the core material 33 provided with the Ni-P layer 32 and the Sn-based material portion 31 is subjected to wire drawing / rolling processing to be adjusted to a predetermined size / shape, and then subjected to heat treatment (reflow treatment). By this reflow process, the P component of the Ni-P layer 32 diffuses into the melted Sn-based material portion 31, and the Ni component of the Ni-P layer 32 is formed between the metal material of the core material 33 and Sn. It acts as a barrier layer for suppressing the growth of intermetallic compounds, and the Ni-P layer 32 disappears. The diffused P component is preferentially oxidized on the surface of the Sn-based material portion 31, and a composite film composed of Sn oxide and P oxide (or Sn oxide and phosphate compound is formed on the surface of the Sn-based material portion 31. Composite film) 35 formed. In addition, at the interface between the core material 33 and the Sn-based material portion 31 after the heat treatment, the metal material of the core material 33 and the intermetallic compound layer 34 of Sn are formed extremely thin. Thereby, the wiring conductor according to the present embodiment is obtained.

リフローの焼鈍温度・時間は、Pが拡散するのに十分な温度・時間とされ、特に限定するものではない。   The annealing temperature / time for reflow is not particularly limited, and is a temperature / time sufficient for P to diffuse.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本発明者らは、P等の酸化抑制元素を適正量Sn中に添加することで、表面の酸化膜形成を抑え、ウィスカを抑制し、高温環境下での接触抵抗増大を抑制できることを見出し、既に出願を行った(特願2006−191579)。   The present inventors have found that by adding an appropriate amount of an oxidation-inhibiting element such as P into Sn, surface oxide film formation can be suppressed, whiskers can be suppressed, and increase in contact resistance under a high temperature environment can be suppressed. An application has already been filed (Japanese Patent Application No. 2006-191579).

PをSnに添加する方法として溶融めっき法が開示されている(特許第3005742号公報を参照)。電気めっき(電解めっき)法では、極低濃度にPを制御することは難しく、通常数%の制御しかできない。このため、P制御法として溶融めっき法は有効であるが、ラインスピードが遅く、コストが高いという問題がある。また、大気中で溶融めっきした場合、PがSnより優先酸化して表面に高濃度化するが、この高濃度P酸化層が後の伸線・圧延工程で削られてしまい、添加したPがなくなってしまう懸念もある。   As a method for adding P to Sn, a hot dipping method is disclosed (see Japanese Patent No. 3005742). In the electroplating (electrolytic plating) method, it is difficult to control P to an extremely low concentration, and usually only a few percent can be controlled. For this reason, the hot dipping method is effective as the P control method, but there are problems that the line speed is slow and the cost is high. In addition, when hot-dip plating is performed in the air, P is preferentially oxidized over Sn to increase the concentration on the surface, but this high-concentration P oxide layer is scraped in a subsequent wire drawing / rolling step, and the added P is There is also a concern that it will disappear.

そこで、本実施の形態においては、心材33とSn系材料部31との間に、電解めっきによるNi−P層32を中間層として設けている。このNi−P層32の厚さは、Sn系材料部31の厚さの1/200以上、1/20未満であり、非常に薄いものである。また、Ni−P層32のP濃度は、1wt%以上、15wt%以下であり、濃度調整が可能な範囲である。   Therefore, in the present embodiment, the Ni—P layer 32 by electrolytic plating is provided as an intermediate layer between the core material 33 and the Sn-based material portion 31. The thickness of the Ni-P layer 32 is 1/200 or more and less than 1/20 of the thickness of the Sn-based material portion 31, and is very thin. The P concentration of the Ni—P layer 32 is 1 wt% or more and 15 wt% or less, and the concentration can be adjusted.

Ni−P電解めっきは、Niめっき浴としてよく知られたワット浴(硫酸ニッケルと塩化ニッケルの混合物が主体)に亜リン酸を適量入れることにより製造する方法が公知である。Ni−P電解めっきのめっき条件の一例を表1に示す。Ni−P層32の厚さの調整は、例えば、電流密度、Snめっき浴への浸漬時間の調整により行い、また、Ni−P層32のP濃度の調整は、例えば、亜リン酸の濃度の調整により行う。   A method for producing Ni-P electrolytic plating by adding an appropriate amount of phosphorous acid to a Watt bath (mainly a mixture of nickel sulfate and nickel chloride) well known as a Ni plating bath is known. An example of plating conditions for Ni-P electrolytic plating is shown in Table 1. The thickness of the Ni-P layer 32 is adjusted by, for example, adjusting the current density and the immersion time in the Sn plating bath. The adjustment of the P concentration of the Ni-P layer 32 is, for example, the concentration of phosphorous acid. Adjust by adjusting.

Figure 0004847898
Figure 0004847898

Ni−Pめっきの上にSnめっきを施した場合、後のリフロー処理などの熱処理で、両めっきの界面にP濃縮層が形成される。そして、信頼性試験において、NiめっきとP濃縮層との界面で剥離が発生するおそれがあり、信頼性の低下を招くという問題がある。   When Sn plating is performed on the Ni—P plating, a P-concentrated layer is formed at the interface between the two platings by a heat treatment such as a reflow process later. And in a reliability test, there exists a possibility that peeling may generate | occur | produce in the interface of Ni plating and P concentration layer, and there exists a problem of causing the fall of reliability.

そこで、本実施の形態では、Ni−P層の厚さを、0.3μm以下、かつ、Sn系材料部31の厚さの1/20未満に薄くしている。これによって、リフロー処理時に、Ni−P層が、溶融しているSn系材料部へ拡散すると共に、Ni−P層の一部は金属間化合物層を形成し、Ni−P層が消失する。このため、リフロー処理後にP濃縮層は存在せず、良好な信頼性が得られる。また、Ni−P層は、非晶質で非常に硬く脆い性質であり、Ni−P層が残存していると配線用導体の屈曲特性を低下させてしまうおそれがあるが、非晶質Ni−P層は消失して無くなるため、そのようなおそれはなくなる。   Therefore, in the present embodiment, the thickness of the Ni—P layer is set to be 0.3 μm or less and less than 1/20 of the thickness of the Sn-based material portion 31. Thus, during the reflow process, the Ni—P layer diffuses into the molten Sn-based material part, and part of the Ni—P layer forms an intermetallic compound layer, and the Ni—P layer disappears. For this reason, P concentration layer does not exist after reflow processing, and good reliability is obtained. Further, the Ni-P layer is amorphous and has a very hard and brittle property. If the Ni-P layer remains, the bending characteristics of the wiring conductor may be lowered. Since the -P layer disappears and disappears, such a fear disappears.

Ni−P層の厚さがSn系材料部の厚さの1/20以上の場合には、伸線・圧延後のリフロー処理時においてNi−P層を消失させることができず、Ni−P層もしくはP濃縮層が残ってしまう。また、Ni−P層の厚さが伸線・圧延後0.3μmを超えるような場合には、Ni−P層が伸線・圧延加工に耐えきれずに、クラックが入ってしまう。したがって、Ni−P層の厚さは、0.3μm以下、かつ、Sn系材料部31の厚さの1/20未満が望ましい。   When the thickness of the Ni-P layer is 1/20 or more of the thickness of the Sn-based material portion, the Ni-P layer cannot be lost during reflow treatment after wire drawing / rolling. Layer or P-enriched layer remains. Moreover, when the thickness of the Ni—P layer exceeds 0.3 μm after wire drawing / rolling, the Ni—P layer cannot withstand wire drawing / rolling and cracks are generated. Therefore, the thickness of the Ni—P layer is preferably 0.3 μm or less and less than 1/20 of the thickness of the Sn-based material portion 31.

このように、非常に薄いNi−P層32を中間層として設け、リフロー処理を施して拡散、消失させることで、極低濃度にPをSnめっき(Sn系材料部31)に添加することができ、コストが安価で、信頼性が高く、屈曲特性にすぐれた配線用導体を製造することができる。この本実施の形態に係る配線用導体を、例えば、図2に示した端末接続部におけるFFC13の導体14に適用することで、導体14の表面にウィスカが発生するのを抑制することができ、隣接配線材間の短絡といった不具合を解決することができる。   Thus, by providing a very thin Ni-P layer 32 as an intermediate layer and performing reflow treatment to diffuse and disappear, P can be added to the Sn plating (Sn-based material part 31) at an extremely low concentration. In addition, it is possible to manufacture a wiring conductor that is inexpensive, has high reliability, and has excellent bending characteristics. By applying the wiring conductor according to the present embodiment to, for example, the conductor 14 of the FFC 13 in the terminal connection portion shown in FIG. 2, it is possible to suppress the occurrence of whiskers on the surface of the conductor 14, Problems such as a short circuit between adjacent wiring members can be solved.

また、Ni−P層32のもう1つの効果は、心材33となる金属材料が、例えば純銅又は銅合金である場合に、Ni−P層32のNiが、銅と錫の金属間化合物が経時的に成長するのを抑制することである。   Another effect of the Ni-P layer 32 is that when the metal material used as the core material 33 is, for example, pure copper or a copper alloy, the Ni of the Ni-P layer 32 is the intermetallic compound of copper and tin over time. It is to suppress the growth.

ウィスカ対策として、フレキシブルフラットケーブル(FFC)又はフレキシブルプリント配線板(FPC)においては、リフロー処理後の残存Sn厚さを薄くすることが開示されている(特開2006−45665号公報を参照)。しかし、高温保持環境下においては、銅と錫の金属間化合物が経時的に成長し、残存Sn厚さが極端に薄くなる或いは金属間化合物が表面に露出することによって、接触抵抗が増大してしまうという問題がある。   As a countermeasure against whiskers, it has been disclosed that the thickness of the remaining Sn after the reflow process is reduced in a flexible flat cable (FFC) or a flexible printed wiring board (FPC) (see JP 2006-45665 A). However, in a high temperature holding environment, the intermetallic compound of copper and tin grows with time, and the residual Sn thickness becomes extremely thin or the intermetallic compound is exposed to the surface, thereby increasing the contact resistance. There is a problem of end.

そこで、本実施の形態では、Ni−P層32を中間層として設け、そのNiにより銅と錫の金属間化合物が経時的に成長するのを抑制しているため、残存Sn厚さが極端に薄くなったり、金属間化合物が表面に露出するおそれがない。また、このNiによる金属間化合物の成長抑制効果により、残存Sn厚さを従来より薄くすることができるようになり、耐ウィスカ性を更に高めることができる。残存Sn厚さ、すなわちSn系材料部31の純Sn又はSn合金の残存厚さは、具体的には0.05μm以上、0.5μm未満、好ましくは0.05μm以上、0.2μm未満に調整される。これにより、初期接触抵抗が多少高くなるが、経時変化が少ない配線用導体を得ることができる。
Therefore, in the present embodiment, the Ni-P layer 32 is provided as an intermediate layer, and the growth of the intermetallic compound of copper and tin over time is suppressed by the Ni. There is no risk of thinning or exposure of intermetallic compounds to the surface. Further, due to the effect of suppressing the growth of the intermetallic compound by Ni, the remaining Sn thickness can be made thinner than before, and the whisker resistance can be further enhanced. The remaining Sn thickness, that is, the remaining thickness of pure Sn or Sn alloy of the Sn-based material part 31 is specifically adjusted to 0.05 μm or more and less than 0.5 μm, preferably 0.05 μm or more and less than 0.2 μm. Is done. Thereby, although the initial contact resistance is somewhat high, a wiring conductor with little change with time can be obtained.

このようなNiの効果を出すためには、Ni−P層32の厚さはSn系材料部31の厚さの1/200以上が望ましい。それ未満であると、Niの添加量が少なすぎるため、上述の効果を得ることができない。   In order to produce such an effect of Ni, the thickness of the Ni-P layer 32 is preferably 1/200 or more of the thickness of the Sn-based material portion 31. If it is less than that, the amount of Ni added is too small, and thus the above-mentioned effect cannot be obtained.

また、Ni−P層32のP濃度については、1wt%以上、15wt%以下が望ましい。P濃度が15wt%超のNi−P層32は安定生産するのが難しく、P濃度が増えるに従ってNi−P層32は硬く脆くなるので、伸線・圧延加工がしにくくなってしまう。また、このNi−P層32は極薄い層であるため、P濃度が1wt%未満であると、Sn系材料部31に供給されるP濃度が少なすぎるため、上述の効果を得ることができない。   The P concentration of the Ni—P layer 32 is preferably 1 wt% or more and 15 wt% or less. It is difficult to stably produce the Ni-P layer 32 having a P concentration of more than 15 wt%, and the Ni-P layer 32 becomes hard and brittle as the P concentration increases, which makes it difficult to perform wire drawing and rolling. In addition, since the Ni-P layer 32 is an extremely thin layer, if the P concentration is less than 1 wt%, the P concentration supplied to the Sn-based material portion 31 is too small, and thus the above-described effects cannot be obtained. .

一方、心材33に、Ni−P層32、Sn系材料部31を設けた構造の導体に伸線・圧延加工を施す際、Ni−P層32は、Sn系材料部31の内層側に位置しているので、伸線・圧延加工によって、Ni−P層32が削り取られるおそれはない。   On the other hand, when the conductor having a structure in which the Ni-P layer 32 and the Sn-based material portion 31 are provided on the core material 33, the Ni-P layer 32 is positioned on the inner layer side of the Sn-based material portion 31. Therefore, there is no possibility that the Ni-P layer 32 is scraped off by wire drawing / rolling.

また、伸線・圧延加工後にリフロー処理を施すが、Ni−P層32はSn系材料部31の内層側に位置しているものの、PはSnより酸化し易いという特徴があるため、Sn系材料部31の溶融時(リフロー処理時)に、P成分がSn系材料部31中に拡散すると共にPがSnより先に酸化され、表面から揮発するか、或いは表面にごく薄いP酸化膜を形成する。つまり、リフロー処理することで、PがSn系材料部31の表面に移動し、Sn系材料部31の表面にごく薄い複合膜35が生成する。このPの拡散に伴って、Ni−P層32は消失してSn系材料部31と一体化する。Sn系材料部31の厚さは、Ni−P層32の厚さの20〜200倍であるため、この一体化されたSn系材料部31全体におけるP濃度は極めて低濃度となる。   In addition, the reflow treatment is performed after the wire drawing / rolling process. Although the Ni-P layer 32 is located on the inner layer side of the Sn-based material portion 31, P is more easily oxidized than Sn. When the material part 31 melts (during the reflow process), the P component diffuses into the Sn-based material part 31 and P is oxidized prior to Sn and volatilizes from the surface, or a very thin P oxide film is formed on the surface. Form. That is, by performing the reflow process, P moves to the surface of the Sn-based material portion 31 and a very thin composite film 35 is generated on the surface of the Sn-based material portion 31. As the P diffuses, the Ni—P layer 32 disappears and is integrated with the Sn-based material portion 31. Since the thickness of the Sn-based material portion 31 is 20 to 200 times the thickness of the Ni-P layer 32, the P concentration in the entire integrated Sn-based material portion 31 is extremely low.

さらに、リフロー処理後のSn系材料部31においては、その表面に複合膜35が形成されているため、複合膜35の内層側のSnが酸化されるのを防ぐことができ、ウィスカ発生が抑制される。この複合膜35により、高温・高湿環境下でもSnの酸化膜成長が抑制されるため、接触抵抗の増大を抑制することができる。   Furthermore, since the composite film 35 is formed on the surface of the Sn-based material portion 31 after the reflow process, it is possible to prevent the Sn on the inner layer side of the composite film 35 from being oxidized and suppress the generation of whiskers. Is done. Since the composite film 35 suppresses the growth of Sn oxide film even in a high temperature and high humidity environment, an increase in contact resistance can be suppressed.

表2に、上述した実施形態による実施例と、その比較例を示す。   Table 2 shows an example according to the above-described embodiment and a comparative example.

Figure 0004847898
Figure 0004847898

先ず、表2に示したNi−P層厚さ・組成及び初期Sn厚さのフレキシブルフラットケーブル用導体を作製した後、それらに通電加熱によるリフロー処理を施した。リフロー処理前のNi−P層及び初期Sn厚は伸線・圧延前の各層の厚さから、伸線・圧延後の各層厚さは比例計算で求めた。   First, after making the conductor for flexible flat cables of the Ni-P layer thickness and composition and initial Sn thickness shown in Table 2, they were subjected to reflow treatment by energization heating. The Ni—P layer before reflow treatment and the initial Sn thickness were determined from the thickness of each layer before drawing and rolling, and the thickness of each layer after drawing and rolling was determined by proportional calculation.

また、リフロー処理後の導体の残存Sn厚は、コクール法と呼ばれる電気化学的手法で測定した。屈曲特性(屈曲破断回数)は、曲げ径R=4mm、左右90°屈曲で導体が破断するまでの回数を計測した。   Further, the remaining Sn thickness of the conductor after the reflow treatment was measured by an electrochemical method called a Kokuru method. The bending characteristic (number of bending breaks) was measured by measuring the number of times until the conductor breaks when the bending diameter is R = 4 mm and the left and right are bent at 90 °.

次いで、各導体を接着剤を塗布したPETフィルムでラミネートしてFFCを作製した。その後、室温で、各FFCとめっき無しコネクタとを500時間嵌合することにより、ウィスカ特性(ウィスカ発生率、最大長さ)を評価した。また、各FFCとコネクタとを嵌合して初期接触抵抗を測定し、その後、高温高湿環境(85℃85%Rh)に500時間放置した後の接触抵抗を測定して増大分を求め、接触抵抗特性を評価した。   Next, each conductor was laminated with a PET film coated with an adhesive to produce an FFC. Thereafter, whisker characteristics (whisker generation rate, maximum length) were evaluated by fitting each FFC and a non-plated connector at room temperature for 500 hours. Moreover, each FFC and the connector are fitted to measure the initial contact resistance, and then the contact resistance after being left in a high-temperature and high-humidity environment (85 ° C. and 85% Rh) for 500 hours is obtained to obtain an increase. Contact resistance characteristics were evaluated.

実施例1〜4は、Ni−P層の厚さ、P濃度、リフロー処理後の残存Sn厚さが本発明の範囲内であり、良好な屈曲特性、ウィスカ特性、接触抵抗特性を有していた。残存Sn厚さが薄い程、ウィスカ特性がよく、残存Sn厚さが0.1μmの時はウィスカの発生を完全に抑制できた。各導体の表面分析の結果、表面にSn酸化物およびP酸化物からなる複合膜あるいはSn酸化物およびリン酸塩化合物からなる複合膜が形成されていることを確認した。特に、残存Sn厚さが0.1μmの時は、初期接触抵抗値はやや高くなるものの、高温高湿放置後でも接触抵抗増大が少なく、良好な接触抵抗性を得ることができた。   In Examples 1 to 4, the thickness of the Ni—P layer, the P concentration, and the remaining Sn thickness after the reflow treatment are within the scope of the present invention, and have good bending characteristics, whisker characteristics, and contact resistance characteristics. It was. The thinner the remaining Sn thickness, the better the whisker characteristics. When the remaining Sn thickness was 0.1 μm, the generation of whiskers could be completely suppressed. As a result of surface analysis of each conductor, it was confirmed that a composite film composed of Sn oxide and P oxide or a composite film composed of Sn oxide and phosphate compound was formed on the surface. In particular, when the residual Sn thickness was 0.1 μm, the initial contact resistance value was slightly higher, but the contact resistance did not increase even after being left at high temperature and high humidity, and good contact resistance could be obtained.

これに対して、比較例1は、中間層としてNi−P層を設けておらず、Niの金属間化合物の成長抑制効果及びPの酸化抑制効果が得られないため、ウィスカ特性、高温高湿放置における接触抵抗特性が劣る結果となった。   On the other hand, Comparative Example 1 does not have a Ni-P layer as an intermediate layer, and the growth inhibiting effect of Ni intermetallic compound and the oxidation inhibiting effect of P cannot be obtained. The contact resistance characteristics when left untreated were inferior.

また、比較例2は、初期Sn厚と比べてNi−P層の厚さが厚すぎるため(Ni−P層/初期Sn層=1/2)、リフロー処理後にNi−P層もしくはP濃縮層が残っており、屈曲特性が極端に劣る結果となった。   In Comparative Example 2, since the Ni-P layer is too thick compared to the initial Sn thickness (Ni-P layer / initial Sn layer = 1/2), the Ni-P layer or the P enriched layer after the reflow treatment As a result, the bending properties were extremely inferior.

また、比較例3は、Ni−P層のP濃度が低すぎてPの酸化抑制効果が十分に得られないため、高温高湿放置で表面の酸化が進み、接触抵抗が増大する結果となった。   In Comparative Example 3, since the P concentration of the Ni-P layer is too low to sufficiently obtain the effect of suppressing oxidation of P, surface oxidation proceeds when left at high temperature and high humidity, resulting in increased contact resistance. It was.

本発明の好適一実施の形態に係る配線用導体のめっき部の拡大模式図である。図1(a)は熱処理前、図1(b)は熱処理後の状態を示している。It is an expansion schematic diagram of the plating part of the conductor for wiring based on suitable one Embodiment of this invention. FIG. 1A shows a state before heat treatment, and FIG. 1B shows a state after heat treatment. コネクタとFFCの嵌合例を示す図である。It is a figure which shows the example of a fitting of a connector and FFC. 嵌合部の拡大とウィスカの発生・隣接配線間の短絡の様子を示す図である。It is a figure which shows the mode of the expansion of a fitting part, generation | occurrence | production of a whisker, and the short circuit between adjacent wiring.

符号の説明Explanation of symbols

31 Sn系材料部
32 Ni−P中間層
33 心材
35 複合膜
31 Sn-based material part 32 Ni-P intermediate layer 33 Core material 35 Composite film

Claims (7)

金属材料からなる心材の少なくとも表面の一部にPbフリーのSn系材料部が形成された複合材からなり、上記心材と上記Sn系材料部との間に所定厚さのNi−P中間層を設け、その後、リフローを行うことで上記Ni−P中間層をSn系材料部中に拡散させてNi−P中間層を消失させると共に、上記Sn系材料部の表面に、Sn酸化物とP酸化物からなる複合膜又はSn酸化物とリン酸塩化合物からなる複合膜を形成したものであって、上記Sn系材料部の厚さが1μm以下で、上記Ni−P中間層の厚さが上記Sn系材料部の厚さの1/200以上、1/20未満であることを特徴とする配線用導体。 At least part of the surface of the core made of a metal material made of a composite material Sn-based material part is formed of Pb-free, the Ni-P intermediate layer of a predetermined thickness between the core material and the Sn-based material part provided, then a reflow line Ukoto, the Ni-P intermediate layer is diffused into the Sn-based material part with abolishes Ni-P intermediate layer, on the surface of the Sn-based material part, a Sn oxide A composite film made of P oxide or a composite film made of Sn oxide and a phosphate compound is formed, and the thickness of the Sn-based material portion is 1 μm or less, and the thickness of the Ni-P intermediate layer Is a conductor for wiring, wherein the thickness is 1/200 or more and less than 1/20 of the thickness of the Sn-based material portion . 上記Ni−P中間層が、1wt%以上、15wt%以下のPと、残部がNi及び不可避不純物のNi−P合金からなる請求項に記載の配線用導体。 The wiring conductor according to claim 1 , wherein the Ni—P intermediate layer is made of 1 wt% or more and 15 wt% or less of P, and the balance is Ni and an inevitable impurity Ni—P alloy. 上記Sn系材料部が、Snと不可避不純物からなる純Sn系、Sn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Bi−Ag系、又はSn−Cu系のPbフリーのはんだ材である請求項1又は2に記載の配線用導体。 The Sn-based material portion is pure Sn-based, Sn-Ag-based, Sn-Ag-Cu-based, Sn-Bi-based, Sn-Bi-Ag-based, or Sn-Cu-based Pb-free made of Sn and inevitable impurities. The wiring conductor according to claim 1 , wherein the wiring conductor is a solder material. 上記リフローにより、上記Sn系材料部の一部が、上記心材及び上記Ni−P中間層の構成元素の一部と金属間化合物層を形成し、Sn系材料部の純Sn又はSn合金の残存厚さが0.05μm以上、0.5μm未満である請求項1から3いずれかに記載の配線用導体。 By the reflow, a part of the Sn-based material part forms an intermetallic compound layer with a part of the constituent elements of the core material and the Ni-P intermediate layer, and the remaining Sn or Sn alloy of the Sn-based material part remains. The wiring conductor according to claim 1, wherein the thickness is 0.05 μm or more and less than 0.5 μm. 上記Sn系材料部の純Sn又はSn合金の残存厚さが0.05μm以上、0.2μm未満である請求項に記載の配線用導体。 The conductor for wiring according to claim 4 , wherein the remaining thickness of pure Sn or Sn alloy in the Sn-based material part is 0.05 μm or more and less than 0.2 μm. 上記心材となる金属材料が、導電率10%IACS以上の導電材料、無酸素銅、タフピッチ銅、銀、ニッケル、銅系合金材料、ニッケル系合金材料、アルミ系合金材料、又は鉄系合金材料で構成され、形状が丸線、角線、板、条、又は箔である請求項1から5いずれかに記載の配線用導体。 The core metal material is a conductive material having an electrical conductivity of 10% IACS or more, oxygen-free copper, tough pitch copper, silver, nickel, a copper alloy material, a nickel alloy material, an aluminum alloy material, or an iron alloy material. The wiring conductor according to any one of claims 1 to 5 , wherein the wiring conductor is configured and has a round wire, a square wire, a plate, a strip, or a foil. 金属材料からなる心材の少なくとも表面の一部にPbフリーのSn系材料部が形成された複合材の製造方法であって、上記心材にNi−P電解めっきを行い、心材の少なくとも表面の一部に所定厚さのNi−P中間層を設け、そのNi−P中間層上にSnめっきによりPbフリーのSn系材料部を設け、伸線・圧延を行なって上記複合材のサイズ・形状を調整した後、リフローを行い、上記Ni−P中間層をSn系材料部中に拡散させてNi−P中間層を消失させると共に、上記Sn系材料部の表面に、Sn酸化物とP酸化物からなる複合膜又はSn酸化物とリン酸塩化合物からなる複合膜を形成したものであって、上記Sn系材料部の厚さが1μm以下で、上記Ni−P中間層の厚さが上記Sn系材料部の厚さの1/200以上、1/20未満であることを特徴とする配線用導体の製造方法。 A method of manufacturing a composite material in which a Pb-free Sn-based material portion is formed on at least a part of a surface of a core material made of a metal material , wherein Ni-P electrolytic plating is performed on the core material, and at least a part of the surface of the core material Is provided with a Ni-P intermediate layer of a predetermined thickness, a Pb-free Sn-based material part is provided on the Ni-P intermediate layer by Sn plating, and wire drawing and rolling are performed to adjust the size and shape of the composite material. after performs reflow, the Ni-P intermediate layer is diffused into the Sn-based material part with abolishes Ni-P intermediate layer, on the surface of the Sn-based material part, the Sn oxide and P oxides A composite film made of Sn oxide and a phosphate compound , wherein the Sn-based material part has a thickness of 1 μm or less, and the Ni-P intermediate layer has a thickness of the Sn-based film. 1/200 or more of material part thickness, 1/20 A method for manufacturing a wiring conductor, which is a fully.
JP2007057148A 2007-03-07 2007-03-07 Wiring conductor and method for manufacturing the same Expired - Fee Related JP4847898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057148A JP4847898B2 (en) 2007-03-07 2007-03-07 Wiring conductor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057148A JP4847898B2 (en) 2007-03-07 2007-03-07 Wiring conductor and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2008218318A JP2008218318A (en) 2008-09-18
JP4847898B2 true JP4847898B2 (en) 2011-12-28

Family

ID=39838103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057148A Expired - Fee Related JP4847898B2 (en) 2007-03-07 2007-03-07 Wiring conductor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4847898B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175368B2 (en) 2005-12-13 2015-11-03 Indium Corporation MN doped SN-base solder alloy and solder joints thereof with superior drop shock reliability
US9260768B2 (en) 2005-12-13 2016-02-16 Indium Corporation Lead-free solder alloys and solder joints thereof with improved drop impact resistance
EP2747933B1 (en) * 2011-10-04 2018-05-02 Indium Corporation A mn doped sn-base solder alloy and solder joints thereof with superior drop shock reliability
MX2018006611A (en) * 2015-12-04 2019-06-13 Leonhard Kurz Stiftung & Co Kg Film and method for producing a film.
JP6738675B2 (en) * 2016-07-12 2020-08-12 古河電気工業株式会社 Surface treatment material
WO2018077874A1 (en) * 2016-10-24 2018-05-03 Atotech Deutschland Gmbh A method of depositing a tin layer on a metal substrate and a use of a structure comprising a nickel/phosphorous alloy underlayer and said tin layer with said method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489232B2 (en) * 1999-06-14 2010-06-23 日鉱金属株式会社 Plating material for connectors
US20020192492A1 (en) * 2001-05-11 2002-12-19 Abys Joseph Anthony Metal article coated with near-surface doped tin or tin alloy
JP4147388B2 (en) * 2002-10-23 2008-09-10 日立電線株式会社 Electroless tin plating bath for preventing copper erosion and method for preventing copper erosion
JP5059292B2 (en) * 2005-03-08 2012-10-24 株式会社神戸製鋼所 Sn alloy plating excellent in suppressing whisker generation

Also Published As

Publication number Publication date
JP2008218318A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4904953B2 (en) WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
JP4911254B2 (en) Wiring conductor and terminal connection
TWI362046B (en) Flat cable
JP5376553B2 (en) Wiring conductor and terminal connection
WO2006006534A1 (en) Flexible printed wiring board terminal part or flexible flat cable terminal part
JP2008021501A (en) Electrical part for wiring, manufacturing method thereof, and terminal connecting part
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
JP2008285729A (en) REFLOW Sn-PLATED MATERIAL AND ELECTRONIC PARTS USING THE SAME
JP2009231065A (en) Tin-system plated rectangular conductor and flexible flat cable
JP2009084616A (en) REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP2005353542A (en) Conductive covering material, manufacturing method thereof, and connector terminal or contact using the covering material
JP2006127939A (en) Electric conductor and its manufacturing method
JP2006319269A (en) Flexible printed wiring board terminal or flexible flat cable terminal
WO2018124115A1 (en) Surface treatment material and article fabricated using same
JP4260826B2 (en) Connector parts
JP4796522B2 (en) Wiring conductor and method for manufacturing the same
JP2004225070A (en) Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP2012124025A (en) Plated copper wire and manufacturing method thereof
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP2010116603A (en) Sn OR Sn ALLOY PLATING FILM AND METHOD FOR PRODUCING THE SAME
WO2015125676A1 (en) Wire rod for connector pin, method for producing same, and connector
JP2010007111A (en) Copper or copper alloy rectangular conductive body and flexible flat cable
JP4856745B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees