JP2009084616A - REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME - Google Patents

REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME Download PDF

Info

Publication number
JP2009084616A
JP2009084616A JP2007254171A JP2007254171A JP2009084616A JP 2009084616 A JP2009084616 A JP 2009084616A JP 2007254171 A JP2007254171 A JP 2007254171A JP 2007254171 A JP2007254171 A JP 2007254171A JP 2009084616 A JP2009084616 A JP 2009084616A
Authority
JP
Japan
Prior art keywords
plating
layer
alloy
thickness
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007254171A
Other languages
Japanese (ja)
Other versions
JP4940081B2 (en
Inventor
Atsushi Kodama
篤志 児玉
Koichiro Tanaka
幸一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2007254171A priority Critical patent/JP4940081B2/en
Publication of JP2009084616A publication Critical patent/JP2009084616A/en
Application granted granted Critical
Publication of JP4940081B2 publication Critical patent/JP4940081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Sn plated material maintaining satisfactory solderability and low contact resistance even if being exposed to a high temperature environment, and also having low insertability/extractability. <P>SOLUTION: The Sn plated material is provided in which the surface of copper or a copper alloy is provided with a substrate Ni plated layer, an intermediate Cu-Zn based plated layer and a surface Sn plated layer in order. The substrate Ni plated layer is composed of Ni or an Ni alloy, the intermediate Cu-Zn based plated layer comprises 5 to 10,000 mass ppm Zn, and also, an Sn-Cu-Zn alloy layer is formed at least on the side in contact with the surface Sn plated layer in the intermediate Cu-Zn based plated layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は銅又は銅合金の表面にリフローSnめっきを施したリフローSnめっき材に関する。また、本発明は当該めっき材を用いたコネクタ、端子、スイッチ及びリードフレーム等の電子部品に関する。   The present invention relates to a reflow Sn plated material obtained by performing reflow Sn plating on the surface of copper or a copper alloy. The present invention also relates to electronic components such as connectors, terminals, switches and lead frames using the plating material.

一般に、自動車、家電、OA機器等の各種電子機器に使用されるコネクタ・端子等の電子部品には銅又は銅合金が母材として使用され、これらは防錆、耐食性向上、電気的特性向上といった機能向上を目的としてめっき処理がなされている。めっきにはAu、Ag、Cu、Sn、Ni、半田及びPd等の種類があるが、特にSn又はSn合金めっきを施したSnめっき材はコスト面、接触信頼性及びはんだ付け性等の観点からコネクタ、端子、スイッチ及びリードフレームのアウターリード部等に多用されている。   In general, copper or copper alloy is used as a base material for electronic parts such as connectors and terminals used in various electronic devices such as automobiles, home appliances, OA devices, and the like, such as rust prevention, improved corrosion resistance, and improved electrical characteristics. Plating treatment is performed for the purpose of functional improvement. There are various types of plating, such as Au, Ag, Cu, Sn, Ni, solder, and Pd. Especially, Sn plating material plated with Sn or Sn alloy is from the viewpoint of cost, contact reliability, solderability, etc. Widely used in connectors, terminals, switches, outer lead parts of lead frames, and the like.

Snめっき材の中でも、電気Snめっきした材料を加熱し、Snを溶融、凝固させて製造したリフローSnめっき材は、優れた耐ウィスカー性を有しているため、鉛フリーの電子部品用材料として広く使用されている。ウィスカーとはSnの針状結晶が成長したもので、数十μm長の髭状に成長して電気的な短絡を起こすことがあるため、その生成の防止が望まれるものである。   Among the Sn plating materials, the reflow Sn plating material manufactured by heating and melting and solidifying the Sn Sn electroplating material has excellent whisker resistance, so it can be used as a lead-free electronic component material. Widely used. The whisker is a growth of a needle crystal of Sn, which grows in a bowl shape of several tens of μm in length and may cause an electrical short circuit. Therefore, it is desired to prevent the formation of the whisker.

リフローSnめっき材に対しては、高温環境下にあってもはんだ付け性や接触抵抗が劣化しにくいことが強く要求されている。例えば、めっきした後の材料を海外の気温の高い地域に輸出する場合は、長時間高温環境下に保管されるため、はんだ付け性が劣化する場合がある。一方、めっき材を加工した電子部品をはんだ付けする際には、部品が実装用炉の内部で加熱されて、はんだ付け性や接触抵抗劣化する場合があった。更に、自動車用コネクタにはSnめっきが一般的に施されるが、エンジンルーム等高温環境下で使用される場合には、使用中にコネクタの接触抵抗が上昇する場合がある。これらの性能劣化は、高温環境下において母材のCuとめっき層を構成するSnが相互に熱拡散することによってCu−Sn拡散層が成長したり、Snが酸化したりすることに起因するものである。   There is a strong demand for reflow Sn plating materials that solderability and contact resistance are less likely to deteriorate even in a high temperature environment. For example, when the plated material is exported to an area with high air temperature overseas, it is stored in a high temperature environment for a long time, so that the solderability may deteriorate. On the other hand, when soldering an electronic component processed with a plating material, the component may be heated inside the mounting furnace, resulting in deterioration of solderability and contact resistance. Furthermore, Sn plating is generally applied to automobile connectors. However, when used in a high temperature environment such as an engine room, the contact resistance of the connector may increase during use. These performance deteriorations are caused by Cu-Sn diffusion layers growing or Sn oxidation due to mutual thermal diffusion of the base material Cu and Sn constituting the plating layer in a high temperature environment. It is.

また、近年では、コネクタのピンの数が増え、これに伴うコネクタ挿入力の増加も問題になっている。自動車等のコネクタの組み立て作業は人手に頼ることが多く、挿入力の増大は作業者の手にかかる負担が大きくなるため、コネクタの低挿入力化が望まれているが、Snは端子の嵌合接続時の摩擦が大きく、コネクタの芯数が著しく増大すると強大な挿抜力が必要になる。   In recent years, the number of connector pins has increased, and the accompanying increase in connector insertion force has also become a problem. Connector assembly work for automobiles and the like often relies on human hands, and increasing the insertion force increases the burden on the operator's hand, so a low insertion force of the connector is desired. When the connection is large and the number of cores of the connector is remarkably increased, a strong insertion / extraction force is required.

高温環境下におけるはんだ付け性や接触抵抗の劣化を防ぐため、更には挿抜力を軽減するため、Cu又はCu合金母材にNi下地めっき層、Cuめっき層、及びSnめっき層を順に形成した後に、リフロー処理等を利用した熱拡散反応によってCu−Sn合金層を形成するいわゆる3層めっきが知られており、斯界では3層めっきの改良を目的とした研究が種々行われている。   In order to prevent deterioration of solderability and contact resistance in a high temperature environment, and further to reduce the insertion / extraction force, after forming a Ni base plating layer, a Cu plating layer, and a Sn plating layer in order on a Cu or Cu alloy base material So-called three-layer plating is known in which a Cu—Sn alloy layer is formed by a thermal diffusion reaction utilizing a reflow process or the like, and various studies for improving the three-layer plating have been conducted in this field.

例えば、特許文献1にはめっき層の厚み、Cu−Snめっき層の組成、めっき層の結晶粒径、及びめっき層のビッカース硬さ等を規定した3層めっきが記載されている。具体的には、銅又は銅合金の表面上に、Ni又はNi合金層が形成され、最表面側に厚さ0.25〜1.5μmのSn又はSn合金層が形成され、前記Ni又はNi合金層と前記Sn又はSn合金層の間にCuとSnを含む中間層が1層以上形成され、これらの中間層のうち前記Sn又はSn合金層と接している中間層のCu含有量が50重量%以下、Ni含有量が20重量%以下であり且つ平均結晶粒径が0.5〜3.0μmであることを特徴とする、めっきを施した銅又は銅合金が請求項1及び4に記載されている。該Ni又はNi合金層のビッカース硬さをHV400以下とすることも記載されている。また、Sn又はSn合金層を薄くすることにより、材料表面の摩擦係数を小さく抑えることができ、端子の挿入力を低減させることができることが記載されている。   For example, Patent Document 1 describes three-layer plating that defines the thickness of the plating layer, the composition of the Cu—Sn plating layer, the crystal grain size of the plating layer, the Vickers hardness of the plating layer, and the like. Specifically, a Ni or Ni alloy layer is formed on the surface of copper or a copper alloy, and a Sn or Sn alloy layer having a thickness of 0.25 to 1.5 μm is formed on the outermost surface side. One or more intermediate layers containing Cu and Sn are formed between the alloy layer and the Sn or Sn alloy layer, and among these intermediate layers, the intermediate layer in contact with the Sn or Sn alloy layer has a Cu content of 50. A plated copper or copper alloy according to claims 1 and 4, characterized in that the weight percent or less, the Ni content is 20 wt% or less, and the average crystal grain size is 0.5 to 3.0 µm. Are listed. It is also described that the Vickers hardness of the Ni or Ni alloy layer is HV400 or less. Further, it is described that by thinning the Sn or Sn alloy layer, the coefficient of friction of the material surface can be kept small, and the insertion force of the terminal can be reduced.

また、特許文献2には、Cu又はCu合金からなる母材表面に、Ni層及びCu−Sn合金層からなる表面めっき層がこの順に形成され、かつ前記Ni層の厚さが0.1〜1.0μm、前記Cu−Sn合金層の厚さが0.1〜1.0μm、そのCu濃度が35〜75at%であることを特徴とする接続部品用導電材料が請求項1に記載されている。そして、表層にはSn層を形成することができ、挿入力の上昇を避けるためにはSn層の厚さを0.5μm以下に規制する必要があることが記載されている。しかしながら、Sn層の厚さが0.5μm以下にすると今度ははんだ付け性が低下することが記載されている。
特許第3880877号公報 特開2004−68026号公報
Further, in Patent Document 2, a surface plating layer composed of a Ni layer and a Cu—Sn alloy layer is formed in this order on the surface of a base material composed of Cu or Cu alloy, and the thickness of the Ni layer is 0.1 to 0.1%. The conductive material for connecting parts is characterized by being 1.0 μm, the thickness of the Cu—Sn alloy layer being 0.1 to 1.0 μm, and the Cu concentration being 35 to 75 at%. Yes. It is described that an Sn layer can be formed on the surface layer, and that the thickness of the Sn layer needs to be regulated to 0.5 μm or less in order to avoid an increase in insertion force. However, it is described that when the thickness of the Sn layer is 0.5 μm or less, the solderability is lowered.
Japanese Patent No. 3880877 JP 2004-68026 A

3層めっきは優れたはんだ付け性及び接触抵抗を有するSnめっき材を得る上で有効な手段であるが、更に低挿抜性にも優れたSnめっき材を得るとなると未だ改良の余地がある。すなわち、挿抜力を低減するにはSnめっき厚を薄くすればよいが、Snめっきの厚みが薄くなると今度は高温環境下で表層のSnが素材のCu又は下地めっきのNi及びCuと合金化して表層にSnが残存しなくなり、はんだ付け性や接触抵抗が劣化し、特に高温雰囲気中での劣化が顕著になるという問題がある。   Three-layer plating is an effective means for obtaining an Sn plating material having excellent solderability and contact resistance, but there is still room for improvement when an Sn plating material having excellent low insertion / extraction properties is obtained. That is, in order to reduce the insertion / extraction force, the Sn plating thickness may be reduced. However, when the Sn plating thickness is reduced, the surface Sn is alloyed with the material Cu or the base plating Ni and Cu in a high temperature environment. There is a problem that Sn does not remain on the surface layer, solderability and contact resistance deteriorate, and deterioration particularly in a high temperature atmosphere becomes remarkable.

そこで、本発明は3層めっきを更に改良し、高温環境下に曝されても良好なはんだ付け性及び低接触抵抗を保持し、すなわち優れた耐熱性を有し、且つ挿抜力の低いSnめっき材を提供することを課題とする。本発明は該Snめっき材の製造方法を提供することを別の課題とする。本発明は該Snめっき材を用いた電子部品を提供することを更に別の課題とする。   Therefore, the present invention further improves the three-layer plating, and maintains good solderability and low contact resistance even when exposed to a high temperature environment, that is, Sn plating having excellent heat resistance and low insertion / extraction force. The problem is to provide materials. This invention makes it another subject to provide the manufacturing method of this Sn plating material. Another object of the present invention is to provide an electronic component using the Sn plating material.

本発明者は上記課題を解決すべく鋭意検討を重ねたところ、意外にも、3層めっきにおいて、中間層のCuめっき層に極微量のZnを添加し、Snめっき後に加熱処理することによりCuとZnとSnを含有するSn−Cu−Zn合金層がSnめっき層の下層に形成され、Snめっきが薄くても良好なはんだ付け性及び低接触抵抗を示すと共に、耐熱性も向上したSnめっき材が得られることを見出した。しかも、該Snめっき材は表層Snめっきを薄くすることができるため、端子として使用する場合の挿入力が低い。このような現象が生じることは従来の知見からは予想できないものである。   The present inventor has made extensive studies to solve the above-mentioned problems. Surprisingly, in the three-layer plating, a very small amount of Zn is added to the Cu plating layer of the intermediate layer, and heat treatment is performed after Sn plating. Sn-Cu-Zn alloy layer containing Zn, Sn and Sn is formed in the lower layer of the Sn plating layer, and exhibits good solderability and low contact resistance even when Sn plating is thin, and Sn plating with improved heat resistance It was found that a material was obtained. Moreover, since the Sn plating material can reduce the surface Sn plating, the insertion force when used as a terminal is low. Such a phenomenon cannot be predicted from conventional knowledge.

本発明は斯かる驚くべき知見に基づいて完成されたものであり、以下によって特定される。
(1)銅又は銅合金の表面に下地Niめっき層、中間Cu−Zn系めっき層及び表面Snめっき層を順に有するSnめっき材であって、下地Niめっき層はNi又はNi合金で構成され、中間Cu−Zn系めっき層はZnを5〜10000質量ppm含有し、且つ、中間Cu−Zn系めっき層中には少なくとも表面Snめっき層に接する側にSn−Cu−Zn合金層が形成されているSnめっき材。
(2)前記中間Cu−Zn系めっき層中には、Cu−Zn合金層が前記下地Niめっき層と接する側に厚み0.1μm未満で形成されているか又は存在しない(1)に記載のSnめっき材。
(3)前記表面Snめっき層の厚さが0.1〜1.2μmである(1)又は(2)に記載のSnめっき材。
(4)最表面にZn濃度が0.1質量%を超えて10質量%までのZn高濃度層をさらに有する(1)〜(3)の何れか一項に記載のSnめっき材。
(5)前記Zn高濃度層の厚さが3〜100nmである(4)に記載のSnめっき材。
(6)前記下地Niめっき層がNi−P合金で構成される(1)〜(5)の何れか一項に記載のSnめっき材。
(7)前記Sn−Cu−Zn合金層は、前記表面Snめっき層との境界にZn濃度が1質量%を超えて10質量%までのZn濃縮層を有する(1)〜(6)の何れか一項に記載のSnめっき材。
(8)前記Zn濃縮層の厚さが0.01〜0.3μmである(7)に記載のSnめっき材。
(9)(1)〜(8)の何れか一項に記載のSnめっき材を用いた電子部品。
(10)以下の工程:
(a)銅又は銅合金の表面にNi又はNi合金めっき層を厚さ0.1〜5μmで形成する工程と、
(b)次いで該Ni又はNi合金めっき層の上に、Znを5〜10000質量ppm含有するCu−Znめっき層を厚さ0.1〜0.5μmで形成する工程と、
(c)次いで該Cu−Znめっき層の上にSnめっき層を厚さ0.1〜1.2μmで形成する工程と、
(d)次いで熱拡散反応をもって、前記Ni又はNi合金めっき層と前記Snめっき層の間の、少なくとも前記Snめっき層側にSn−Cu−Zn合金層を有するCu−Zn系合金層を形成する工程と、
を行うことを含むSnめっき材の製造方法。
(11)工程(c)と工程(d)の間に前記Snめっき層の表面を亜鉛塩の水溶液に接触させる工程を行う(10)に記載の製造方法。
(12)熱拡散反応をリフロー処理によって行う(10)又は(11)に記載の製造方法。
The present invention has been completed based on such surprising findings and is specified by the following.
(1) An Sn plating material having a base Ni plating layer, an intermediate Cu-Zn-based plating layer, and a surface Sn plating layer in this order on the surface of copper or a copper alloy, wherein the base Ni plating layer is made of Ni or a Ni alloy, The intermediate Cu—Zn-based plating layer contains 5 to 10,000 ppm by mass of Zn, and an Sn—Cu—Zn alloy layer is formed on the intermediate Cu—Zn-based plating layer at least on the side in contact with the surface Sn plating layer. Sn plating material.
(2) In the intermediate Cu—Zn-based plating layer, a Cu—Zn alloy layer is formed with a thickness of less than 0.1 μm on the side in contact with the underlying Ni plating layer or does not exist. Plating material.
(3) Sn plating material as described in (1) or (2) whose thickness of the said surface Sn plating layer is 0.1-1.2 micrometers.
(4) The Sn plating material according to any one of (1) to (3), further including a Zn high-concentration layer having a Zn concentration of more than 0.1% by mass to 10% by mass on the outermost surface.
(5) The Sn plating material according to (4), wherein the Zn high-concentration layer has a thickness of 3 to 100 nm.
(6) The Sn plating material according to any one of (1) to (5), wherein the base Ni plating layer is made of a Ni-P alloy.
(7) The Sn—Cu—Zn alloy layer has a Zn concentration layer having a Zn concentration of more than 1% by mass and up to 10% by mass at the boundary with the surface Sn plating layer. Sn plating material as described in any one of Claims.
(8) Sn plating material as described in (7) whose thickness of the said Zn concentration layer is 0.01-0.3 micrometer.
(9) An electronic component using the Sn plating material according to any one of (1) to (8).
(10) The following steps:
(A) forming a Ni or Ni alloy plating layer with a thickness of 0.1 to 5 μm on the surface of copper or copper alloy;
(B) Next, on the Ni or Ni alloy plating layer, a step of forming a Cu-Zn plating layer containing 5 to 10000 mass ppm of Zn with a thickness of 0.1 to 0.5 µm;
(C) Next, forming a Sn plating layer with a thickness of 0.1 to 1.2 μm on the Cu—Zn plating layer;
(D) Next, a Cu—Zn alloy layer having a Sn—Cu—Zn alloy layer on at least the Sn plating layer side is formed between the Ni or Ni alloy plating layer and the Sn plating layer by a thermal diffusion reaction. Process,
The manufacturing method of Sn plating material including performing.
(11) The production method according to (10), wherein a step of bringing the surface of the Sn plating layer into contact with an aqueous solution of zinc salt is performed between step (c) and step (d).
(12) The production method according to (10) or (11), wherein the thermal diffusion reaction is performed by reflow treatment.

本発明によれば、高温環境下で保管あるいは使用しても、はんだ付け性と接触抵抗の劣化が少なく、挿抜力の低いSnめっき材を得ることができる。   According to the present invention, even if stored or used in a high temperature environment, it is possible to obtain a Sn plating material with low solderability and low contact resistance and low insertion / extraction force.

以下、本発明に係る耐熱性の優れたリフローSnめっき材の実施の形態について説明する。   Hereinafter, an embodiment of a reflow Sn plating material having excellent heat resistance according to the present invention will be described.

<めっき母材>
めっき母材として使用する銅又は銅合金は、コネクタや端子等の電子部品に使われる母材として公知である任意の銅又は銅合金としてよいが、電気・電子機器の接続端子等に用いられることを考慮すれば、電気伝導率の高いもの(例えば、IACS(International Anneild Copper Standerd:国際標準軟銅の導電率を100としたときの値)が15〜80%程度)を用いるのが好ましく、例えばCu−Sn−P系(例えば燐青銅)、Cu−Zn系(例えば黄銅、丹銅)、Cu−Ni−Zn系(例えば洋白)、Cu−Ni−Si系(コルソン合金)、Cu−Fe−P系合金などが挙げられる。また、母材の形状には特に制限はないが、一般には板、条、プレス品などの形態として提供され、前めっき及び後めっきの何れでも構わない。
<Plating base material>
The copper or copper alloy used as the plating base material may be any copper or copper alloy known as a base material used for electronic parts such as connectors and terminals, but used for connection terminals of electrical and electronic equipment. In view of the above, it is preferable to use a material having a high electrical conductivity (for example, IACS (International Anneal Copper Standard: a value when the conductivity of an international standard soft copper is 100) is about 15 to 80%). -Sn-P system (for example, phosphor bronze), Cu-Zn system (for example, brass, red copper), Cu-Ni-Zn system (for example, white), Cu-Ni-Si system (Corson alloy), Cu-Fe- P-type alloy etc. are mentioned. The shape of the base material is not particularly limited, but is generally provided in the form of a plate, a strip, a pressed product, and any of pre-plating and post-plating may be used.

<下地Niめっき>
下地めっき層はめっき母材表面に形成され、本発明ではNi又はNi合金めっきが下地めっき層として施される。下地めっき層のNi又はNi合金めっきは、母材からSnめっきへのCuや合金元素の拡散を防止するバリアとなる。母材成分のCuは表層めっきのSnと相互拡散し、経時的にSn−Cu合金が生成されるが、これがウィスカーの発生原因となる場合がある。またSn−Cu合金がめっき表面にまで達しこれが酸化すると、はんだ付け性や接触抵抗が劣化する。
<Base Ni plating>
The base plating layer is formed on the surface of the plating base material. In the present invention, Ni or Ni alloy plating is applied as the base plating layer. Ni or Ni alloy plating of the base plating layer serves as a barrier that prevents diffusion of Cu and alloy elements from the base material to Sn plating. The base material component Cu interdiffuses with Sn in the surface plating, and an Sn—Cu alloy is produced over time, which may cause whisker generation. Further, when the Sn—Cu alloy reaches the plating surface and is oxidized, solderability and contact resistance are deteriorated.

Ni合金めっきとしては、Ni−P、Ni−Co、Ni−Fe、Ni−Cr、Ni−Bめっきなどが利用できるが、特にNi−P合金めっきの場合はPの一部が中間層又は表面めっきに拡散し、表面めっきの酸化を防止しはんだ付け性の劣化を抑えるため、本発明の下地めっきとして好ましい。Pの濃度は0.1〜10%が好ましく、より好ましくは0.5〜5%である。0.1%以下では効果が得られず、10%以上の場合にはめっき層が硬くなり、プレス加工性の低下などの弊害がある。Niめっき中のPの濃度は、めっき膜を酸に溶解させた液を分析するか、GD−MS(グロー放電質量分析計)を用いて分析することができる。   As Ni alloy plating, Ni-P, Ni-Co, Ni-Fe, Ni-Cr, Ni-B plating, etc. can be used. Especially in the case of Ni-P alloy plating, a part of P is an intermediate layer or surface. Since it diffuses into plating, prevents oxidation of surface plating and suppresses deterioration of solderability, it is preferable as the base plating of the present invention. The concentration of P is preferably 0.1 to 10%, more preferably 0.5 to 5%. If it is 0.1% or less, the effect cannot be obtained, and if it is 10% or more, the plating layer becomes hard, and there are problems such as deterioration of press workability. The concentration of P in the Ni plating can be analyzed by analyzing a solution obtained by dissolving a plating film in an acid or using a GD-MS (glow discharge mass spectrometer).

下地めっき層の厚さは、通常0.1μm〜5μm、好ましくは0.3〜2.0μmになるように形成する。下地めっき層の厚さが0.1μm未満だと拡散防止効果が充分に得られず、5μmを超えると曲げ加工性の劣化が顕著となるからである。Ni及びNi合金めっきは一般的に行われている方法で形成すればよく、例えばワット浴やスルファミン酸浴を使用し、あるいは合金めっきの場合はこれらのめっき浴に亜りん酸などを添加して電気めっきすればよい。   The thickness of the base plating layer is usually 0.1 μm to 5 μm, preferably 0.3 to 2.0 μm. This is because if the thickness of the underlying plating layer is less than 0.1 μm, a sufficient diffusion preventing effect cannot be obtained, and if it exceeds 5 μm, the deterioration of bending workability becomes significant. Ni and Ni alloy plating may be formed by a generally used method. For example, a watt bath or a sulfamic acid bath is used, or in the case of alloy plating, phosphorous acid or the like is added to these plating baths. What is necessary is just to electroplate.

<中間Cu−Zn系めっき>
中間層のめっきとして、下地めっき層の上にCu−Znめっき層を形成し、その上に更に表面Snめっき層を形成した後に加熱処理を施すことでSnめっき層中のSnとCu−Znめっき層中のCu及びZnが相互に熱拡散して少なくともSnめっき層に接する側にSn−Cu―Zn合金層が形成される。このとき、Snの拡散具合に応じて、Cu−Znめっき層がすべてSn−Cu―Zn合金層に変化する場合と、Cu−Znめっき層が下部に残留し、Cu−Znめっき層とSn−Cu―Zn合金めっき層の2層に分かれる場合があるが、本発明においては何れの場合でも得られる合金層は中間Cu−Zn系めっき層とよぶ。Sn−Cu−Zn合金めっきははんだ付け性がよく、耐熱性にも優れる。Cu−ZnとSnの相互拡散は常温においても進展し得るが、熱拡散反応の制御及び促進のためには150℃以上の温度で加熱処理をするのが好ましい。加熱処理はウィスカー防止の観点ではSnの融点(232℃)以上に加熱するリフロー処理(加熱、溶融)の方が望ましい。
Cu−Znめっきは一般的に行われている方法で形成すればよく、例えばシアン浴を用いて電気めっきすればよい。
<Intermediate Cu-Zn plating>
As an intermediate layer plating, a Cu—Zn plating layer is formed on a base plating layer, and a surface Sn plating layer is further formed thereon, followed by heat treatment, whereby Sn and Cu—Zn plating in the Sn plating layer are applied. Cu and Zn in the layer are thermally diffused to form a Sn—Cu—Zn alloy layer at least on the side in contact with the Sn plating layer. At this time, when the Cu—Zn plating layer is entirely changed to the Sn—Cu—Zn alloy layer according to the diffusion degree of Sn, the Cu—Zn plating layer remains in the lower part, and the Cu—Zn plating layer and the Sn— The Cu—Zn alloy plating layer may be divided into two layers. In the present invention, the alloy layer obtained in any case is called an intermediate Cu—Zn plating layer. Sn—Cu—Zn alloy plating has good solderability and excellent heat resistance. Although the interdiffusion of Cu—Zn and Sn can proceed even at room temperature, it is preferable to perform heat treatment at a temperature of 150 ° C. or higher in order to control and accelerate the thermal diffusion reaction. From the viewpoint of whisker prevention, the heat treatment is preferably a reflow treatment (heating, melting) that heats to a melting point of Sn (232 ° C.) or higher.
Cu—Zn plating may be formed by a generally performed method, for example, electroplating using a cyan bath.

加熱処理前のCu−Znめっき層の厚さは0.1μm〜0.5μmとするのが望ましい。Cu―Znめっき層の厚さが0.1μm未満の場合は後に生成するSn−Cu−Zn合金層の厚さが不足し、Niの表面Snめっき層への拡散を防止することができない。Niが表層まで拡散すると酸化物の形成により接触抵抗の低下をもたらす。また、加熱処理前のCu−Znめっき層の厚さは0.5μm以下が望ましく、より好ましくは0.3μm以下である。Cu―Zn厚さが0.5μmを超えると、リフロー処理後においても厚いCu−Znめっき層が残存する場合があり、経時的にSnとCu−Znとの合金化反応が進み、表面のSn層がなくなってはんだ付け性や接触抵抗が劣化しやすいなどの不都合が生じる。残存するCu−Znめっき層の厚みは、0.1μm未満が好ましく、消滅させるのがより好ましい。
また、後述するSn−Cu−Zn合金層の好ましい組成を達成するには、加熱処理前のCu−Znめっき層中におけるZn濃度を5〜10000質量ppm、好ましくは20〜8000質量ppmとするのが望ましい。
The thickness of the Cu—Zn plating layer before the heat treatment is preferably 0.1 μm to 0.5 μm. When the thickness of the Cu—Zn plating layer is less than 0.1 μm, the thickness of the Sn—Cu—Zn alloy layer to be formed later is insufficient, and the diffusion of Ni to the surface Sn plating layer cannot be prevented. When Ni diffuses to the surface layer, the contact resistance is lowered due to the formation of an oxide. In addition, the thickness of the Cu—Zn plating layer before the heat treatment is desirably 0.5 μm or less, and more preferably 0.3 μm or less. If the Cu—Zn thickness exceeds 0.5 μm, a thick Cu—Zn plating layer may remain even after the reflow treatment, and the alloying reaction of Sn and Cu—Zn progresses over time, and the surface Sn Inconveniences such as solderability and contact resistance tend to deteriorate due to loss of layers. The thickness of the remaining Cu—Zn plating layer is preferably less than 0.1 μm, and more preferably eliminated.
Moreover, in order to achieve the preferable composition of the Sn—Cu—Zn alloy layer described later, the Zn concentration in the Cu—Zn plating layer before the heat treatment is set to 5 to 10000 mass ppm, preferably 20 to 8000 mass ppm. Is desirable.

加熱処理後に得られるSn−Zn系めっき層の厚みは、残存するCu−Znによるウィスカー発生を抑える等の理由により、リフロー前のCu−Znめっき厚をXとすると、X+0.25μm以上になるように加熱を調整することが望ましい。また、Cu−Zn系めっき層の厚みはバリアとしての機能をもたせ(下限値)、しかも加工時の割れを抑える(上限値)等の理由により0.1〜0.8μmとするのが好ましく、0.2〜0.6μmとするのがより好ましい。   The thickness of the Sn—Zn-based plating layer obtained after the heat treatment is X + 0.25 μm or more, assuming that the Cu—Zn plating thickness before reflowing is X for reasons such as suppressing the occurrence of whiskers due to the remaining Cu—Zn. It is desirable to adjust the heating. Further, the thickness of the Cu—Zn-based plating layer is preferably set to 0.1 to 0.8 μm for reasons such as having a function as a barrier (lower limit) and suppressing cracking during processing (upper limit), etc. More preferably, the thickness is 0.2 to 0.6 μm.

Sn−Cu−Zn合金層の組成としては良好なはんだ付け性を得るために、Cu:3〜60質量%、Zn:5〜10000質量ppm、残りSnの組成が好ましく、Cu:5〜55質量%、Zn:20〜5000質量ppm、残りSnの組成がより好ましい。Sn−Cu−Zn合金層の厚みは良好なはんだ付け性を得るために0.01〜0.3μmとするのが好ましく、0.05〜0.15μmとするのがより好ましい。
ただし、Sn−Cu−Zn合金層は表面Snめっき層との界面においてZn濃度が局所的に高いZn濃縮層を一般に有する。これはZnが加熱処理によって拡散し、上記境界に移動したためと考えられる。Zn濃縮層は一般に1質量%を超えて10質量%までであり、典型的には2〜7質量%のZn濃度を有する。この局所的なZn濃縮層は一般に厚みが0.01〜0.3μm、典型的には0.1〜0.2μmである。このZn濃縮層はSnめっき材の耐熱性をより向上させる。
The composition of the Sn—Cu—Zn alloy layer is preferably Cu: 3 to 60 mass%, Zn: 5 to 10000 mass ppm, and the remaining Sn composition to obtain good solderability, Cu: 5 to 55 mass %, Zn: 20 to 5000 mass ppm, and the composition of the remaining Sn is more preferable. The thickness of the Sn—Cu—Zn alloy layer is preferably 0.01 to 0.3 μm and more preferably 0.05 to 0.15 μm in order to obtain good solderability.
However, the Sn—Cu—Zn alloy layer generally has a Zn enriched layer having a locally high Zn concentration at the interface with the surface Sn plated layer. This is presumably because Zn diffused by the heat treatment and moved to the boundary. The Zn enriched layer is generally greater than 1% to 10% by weight and typically has a Zn concentration of 2-7% by weight. This local Zn enriched layer generally has a thickness of 0.01 to 0.3 μm, typically 0.1 to 0.2 μm. This Zn enriched layer further improves the heat resistance of the Sn plating material.

<表面Snめっき>
中間層の上に表層めっきとしてSnめっきを施す。コネクタの挿入力はSnめっき厚さにも依存し、めっきが薄いほど挿入力は低くなる。ただしSnめっきが薄くなるとはんだ付け性等が悪くなるため、挿入力とはんだ付け性等を両立させるめっき厚の下限値が存在する。
<Surface Sn plating>
Sn plating is performed on the intermediate layer as surface plating. The insertion force of the connector also depends on the Sn plating thickness, and the thinner the plating, the lower the insertion force. However, as Sn plating becomes thinner, solderability and the like deteriorate, so there is a lower limit value of the plating thickness that achieves both insertion force and solderability.

Snめっきには添加元素としてAg、Bi、In、Pb、Cuなどを微量添加してもよく、これらの1種又は2種以上を合計で5〜1000ppm程度添加することでウィスカーの発生を抑制することができる。   A small amount of Ag, Bi, In, Pb, Cu or the like may be added as an additive element to the Sn plating, and the addition of one or two or more of these in a total amount of about 5 to 1000 ppm suppresses the generation of whiskers. be able to.

Snめっきは、それ自体公知の方法により行うことができるが、例えば有機酸浴(例えばフェノールスルホン酸浴、アルカンスルホン酸浴及びアルカノールスルホン酸浴)、硼フッ酸浴、ハロゲン浴、硫酸浴、ピロリン酸浴等の酸性浴、或いはカリウム浴やナトリウム浴等のアルカリ浴を用いて電気めっきすることができる。   Sn plating can be performed by a method known per se. For example, an organic acid bath (for example, a phenol sulfonic acid bath, an alkane sulfonic acid bath and an alkanol sulfonic acid bath), a boron hydrofluoric acid bath, a halogen bath, a sulfuric acid bath, pyrroline Electroplating can be performed using an acidic bath such as an acid bath or an alkaline bath such as a potassium bath or a sodium bath.

加熱処理(好ましくはリフロー処理)前のSnめっき厚さは好ましくは0.2〜2.5μm、より好ましくは0.3〜2.0μm程度である。厚さが0.2μm未満だと加熱処理後にSn層が残留しなくなるおそれがあり、逆に2.5μmを超えると加熱処理後にも厚いSn層が残留し、コネクタとして使用したときの挿抜性が悪化するおそれがある。   The Sn plating thickness before heat treatment (preferably reflow treatment) is preferably about 0.2 to 2.5 μm, more preferably about 0.3 to 2.0 μm. If the thickness is less than 0.2 μm, the Sn layer may not remain after the heat treatment, and conversely if it exceeds 2.5 μm, a thick Sn layer remains after the heat treatment, and insertion / extraction when used as a connector is possible. May get worse.

加熱処理(好ましくはリフロー処理)後の表層のSnめっき厚さは好ましくは0.1〜1.5μmであり、より好ましくは0.15〜1.0μm、更により好ましくは0.2〜0.6μmである。厚さが0.1μm未満でははんだ付け性が悪くなり、1.5μmを超える場合は挿入力が大きくなる。Snめっき厚みは電気化学的にSnめっき層を陽極溶解させる前後のめっき厚さを蛍光X線膜圧計で測定することにより得られる。めっき厚さは、加熱処理前のめっき厚と加熱処理時の温度、及び加熱時間により調節することができる。   The Sn plating thickness of the surface layer after the heat treatment (preferably reflow treatment) is preferably 0.1 to 1.5 μm, more preferably 0.15 to 1.0 μm, still more preferably 0.2 to 0. 6 μm. When the thickness is less than 0.1 μm, the solderability is deteriorated, and when it exceeds 1.5 μm, the insertion force is increased. The Sn plating thickness is obtained by electrochemically measuring the plating thickness before and after the anodic dissolution of the Sn plating layer with a fluorescent X-ray film pressure gauge. The plating thickness can be adjusted by the plating thickness before the heat treatment, the temperature during the heat treatment, and the heating time.

加熱処理はリフロー処理とするのがウィスカー防止の観点から好ましく、その際の加熱炉温度は良好なめっき外観を得ながら目標の中間Cu−Zn系めっき層を得るために260〜550℃とするのが好ましく、300〜450℃とするのがより好ましく、処理時間は上記の理由により2〜60秒とするのが好ましく、5〜30秒とするのがより好ましい。斯かる温度条件とすることによって、表面Snめっき層の厚みのほか、Cu−Zn系めっき層の厚みや組成等を上記の好ましい範囲内に収めることが可能となる。   The heat treatment is preferably a reflow treatment from the viewpoint of preventing whisker, and the heating furnace temperature at that time is 260 to 550 ° C. in order to obtain a target intermediate Cu—Zn-based plating layer while obtaining a good plating appearance. It is preferable that the temperature is 300 to 450 ° C., and the treatment time is preferably 2 to 60 seconds and more preferably 5 to 30 seconds for the above reason. By setting it as such temperature conditions, in addition to the thickness of the surface Sn plating layer, it is possible to keep the thickness and composition of the Cu—Zn-based plating layer within the above preferable range.

本発明では、表面Snめっき層の上に最表面層としてZn濃度が0.1〜10質量%のZn高濃度層が存在することが更に好ましい。このような高濃度層が存在することにより、Znが優先的に酸化されてSn表面および内部の酸化が抑えられるため、はんだ付け性がより向上する。Zn濃度が1000ppmを超える濃度であっても、最表面の限られた領域に存在していればはんだ付け性が悪くなることはない。但し、Zn濃度が10質量%を超えると、亜鉛酸化物の影響が強くなりはんだ付け性が悪くなるおそれがある。Zn高濃度層中のZn濃度のより好ましい範囲は0.05〜5質量%である。   In the present invention, it is more preferable that a Zn high concentration layer having a Zn concentration of 0.1 to 10% by mass exists as the outermost surface layer on the surface Sn plating layer. The presence of such a high-concentration layer preferentially oxidizes Zn and suppresses the oxidation of the Sn surface and the interior, so that the solderability is further improved. Even if the Zn concentration exceeds 1000 ppm, the solderability does not deteriorate as long as it exists in a limited region on the outermost surface. However, if the Zn concentration exceeds 10% by mass, the influence of zinc oxide becomes strong and the solderability may be deteriorated. A more preferable range of the Zn concentration in the Zn high-concentration layer is 0.05 to 5% by mass.

Zn高濃度層の厚さは好ましくは3〜100nmである。3nm未満では高濃度層の効果が得られず、100nmを超えてZn高濃度層がSn内部まで存在する場合ははんだ付け性が悪くなる。Zn高濃度層は、リフロー前のSnめっき材表面に硫酸亜鉛や塩化亜鉛等の亜鉛塩の水溶液を接触させる方法により得ることができる。接触させる方法としては浸漬、塗布及び噴霧等が挙げられる。例示的には、亜鉛塩の0.05〜15%水溶液中にSnめっき材を0.1〜30秒程度浸漬させることでZn高濃度層を設けることができる。   The thickness of the Zn high concentration layer is preferably 3 to 100 nm. If the thickness is less than 3 nm, the effect of the high-concentration layer cannot be obtained. If the Zn high-concentration layer exceeds 100 nm and exists in the Sn, the solderability deteriorates. The Zn high concentration layer can be obtained by a method in which an aqueous solution of zinc salt such as zinc sulfate or zinc chloride is brought into contact with the surface of the Sn plating material before reflow. Examples of the contact method include dipping, coating, and spraying. Illustratively, the Zn high concentration layer can be provided by immersing the Sn plating material in a 0.05 to 15% aqueous solution of zinc salt for about 0.1 to 30 seconds.

Zn高濃度層がSnめっき材の最表面を形成する場合、Snめっき材の最表面にはSnとZnとO(酸素)を含有する酸化物層を有することが好ましい。酸化物層は、本発明のSnめっき材を大気中、または低濃度の酸素と一酸化炭素又は窒素とを含有する雰囲気中で加熱することにより得ることができる。酸化物層形成処理はリフロー処理で兼ねることもできる。この酸化物層は導電性を有するため、酸化膜生成による接触抵抗の上昇を最小限に抑えることができる。一方、SnとOのみの層あるいはZnとOのみの層の場合には接触抵抗が比較的高くなる。SnとZnとO(酸素)を含有する酸化物層厚さは10nm以下であり、好ましくは0.1〜4nmである。リフロー処理により厚さ0.1nm程度の酸化膜は不可避的に生成するが、10nmを超える場合には膜自身の抵抗が原因となり接触抵抗が高くなる。
この酸化物層中のO濃度は導電性を得るために3〜70質量%であるのが好ましく、10〜50質量%であるのがより好ましい。
When the Zn high concentration layer forms the outermost surface of the Sn plating material, it is preferable that the outermost surface of the Sn plating material has an oxide layer containing Sn, Zn, and O (oxygen). The oxide layer can be obtained by heating the Sn plating material of the present invention in the air or in an atmosphere containing a low concentration of oxygen and carbon monoxide or nitrogen. The oxide layer forming process can also serve as a reflow process. Since this oxide layer has conductivity, an increase in contact resistance due to generation of an oxide film can be minimized. On the other hand, the contact resistance becomes relatively high in the case of a layer of only Sn and O or a layer of only Zn and O. The thickness of the oxide layer containing Sn, Zn and O (oxygen) is 10 nm or less, preferably 0.1 to 4 nm. An oxide film having a thickness of about 0.1 nm is inevitably generated by the reflow process. However, when the thickness exceeds 10 nm, the resistance of the film itself causes the contact resistance to increase.
In order to obtain conductivity, the O concentration in the oxide layer is preferably 3 to 70% by mass, and more preferably 10 to 50% by mass.

本発明に係るSnめっき材はコネクタ、端子、スイッチ及びリードフレーム等の電子部品への利用に適している。先述したように、プレス加工等によって所望の形状に銅又は銅合金を加工した後に本発明に係るSnめっきを施してもよいし、加工前に本発明に係るSnめっきを施してもよい。本発明に係るSnめっき材を利用した電子部品は、優れた耐熱性を有し、端子等の嵌合部材へ適用すると低挿入力である。   The Sn plating material according to the present invention is suitable for use in electronic parts such as connectors, terminals, switches, and lead frames. As described above, the Sn plating according to the present invention may be performed after the copper or copper alloy is processed into a desired shape by pressing or the like, or the Sn plating according to the present invention may be performed before the processing. The electronic component using the Sn plating material according to the present invention has excellent heat resistance, and has a low insertion force when applied to a fitting member such as a terminal.

以下、本発明の実施例を記載するが、これらの実施例はあくまで例示のためであって、本発明が限定されることを意図するものではない。   Hereinafter, examples of the present invention will be described. However, these examples are merely illustrative and are not intended to limit the present invention.

1.各特性の測定方法
本発明において規定する各特性は以下の方法によって測定した。
(1)下地Ni層及びめっき直後のSnめっき層の厚み
下地Niめっき及びめっき直後のSnめっき層の厚みは、蛍光X線膜厚計(セイコー電子工業製SFT−5100)を使用して測定した。分析は各試料片につき2箇所に対して行い、その平均値を測定値とした。
測定条件:コリメータ計:100μm
(2)上記以外のめっき層の厚み、めっき組成、最表面酸化物層の厚み及び組成
下地Ni層及びめっき直後のSnめっき層の厚み以外のめっき層の厚み、めっき組成、最表面酸化物層の厚み及び組成はグロー放電質量分析計(FI. Elemental Analysis社製型式VG9000)を使用して測定した。分析は各試料片につき2箇所に対して行い、その平均値を測定値とした。
測定条件:
・到達真空度:5×10-10Torr(Arガス導入時1×10-8Torr)
・イオン種:Ar+
・加速電圧1kV
・掃引面積:2×3mm
・スパッタリングレート:1min≒0.005μm
図1はグロー放電質量分析計を用いて得られたデータの例である(試料No.9)。表面Snめっき層の厚みは最表面から中間層成分であるのCuが検出されるまでの地点(但し、Zn高濃度層がめっき材の最表面に存在する場合はZn濃度が1000質量ppmを超える地点までの厚みを控除する。)とし、中間Cu−Zn系めっき層の厚みはCu、Zn及びSnの3成分が検出される領域とした。また、図1と図2よりNo.9のSnめっき材は、下地Ni/Sn−Cu−Zn/表層Sn/Zn高濃度層のめっきの構造であることが分かる。また、Sn−Cu−Zn合金層の組成は、図1のSuとCuとZnがすべて検出される領域の各元素の平均濃度を採用して、Zn:6000質量ppm、Sn:47.4質量%、Cu:42.0質量%であった。Sn−Cu−Zn合金層中で表面Snめっき層との境界に位置するZn濃縮層の厚みはZnが1質量%を超えて検出される領域とした。Zn濃縮層のZn濃度はZn濃縮層中に検出されるZn濃度の最大濃度(質量%)とした。No.9については、Zn濃縮層の厚みは1.2μmであり、Zn濃縮層のZn濃度は4質量%であった。No.9の試料には存在しないがCu-Zn層が残留する場合にはSnが検出されず且つCuが検出される領域をCu-Zn層の厚みとした。
図2は試料No.9の最表面近傍をグロー放電質量分析計用いて測定したデータの例である。図2より、Zn高濃度層の平均Zn濃度は17000ppmであった。最表面酸化物層の厚みは最表面から酸素が検出されるまでの地点とした。最表面酸化物層中のO濃度は36質量%であった。
1. Measuring method of each characteristic Each characteristic defined in the present invention was measured by the following method.
(1) Thickness of the underlying Ni layer and the Sn plating layer immediately after plating The thickness of the underlying Ni plating and the Sn plating layer immediately after plating was measured using a fluorescent X-ray film thickness meter (SFT-5100 manufactured by Seiko Denshi Kogyo). . The analysis was performed on two locations for each sample piece, and the average value was taken as the measured value.
Measurement conditions: Collimator meter: 100 μm
(2) Thickness of plating layer other than the above, plating composition, thickness and composition of outermost surface oxide layer Thickness of plating layer, plating composition, outermost surface oxide layer other than thickness of underlying Ni layer and Sn plating layer immediately after plating The thickness and composition were measured using a glow discharge mass spectrometer (Model VG9000 manufactured by FI. Elemental Analysis). The analysis was performed on two locations for each sample piece, and the average value was taken as the measured value.
Measurement condition:
Ultimate vacuum: 5 × 10 −10 Torr (1 × 10 −8 Torr when Ar gas is introduced)
・ Ion species: Ar +
・ Acceleration voltage 1kV
・ Sweep area: 2 × 3mm
・ Sputtering rate: 1min ≒ 0.005μm
1 is an example of data obtained using a glow discharge mass spectrometer (Sample No. 9). The thickness of the surface Sn plating layer is a point from the outermost surface until Cu, which is an intermediate layer component, is detected. The thickness up to the point is subtracted.), And the thickness of the intermediate Cu—Zn plating layer is a region where three components of Cu, Zn and Sn are detected. In addition, from FIGS. It can be seen that the Sn plating material of No. 9 has a plating structure of a base Ni / Sn—Cu—Zn / surface layer Sn / Zn high concentration layer. Further, the composition of the Sn—Cu—Zn alloy layer employs the average concentration of each element in the region where all of Su, Cu and Zn in FIG. 1 are detected, Zn: 6000 mass ppm, Sn: 47.4 mass %, Cu: 42.0% by mass. In the Sn-Cu-Zn alloy layer, the thickness of the Zn enriched layer located at the boundary with the surface Sn plating layer was set to be a region where Zn was detected exceeding 1% by mass. The Zn concentration of the Zn concentration layer was the maximum concentration (mass%) of the Zn concentration detected in the Zn concentration layer. No. For 9, the thickness of the Zn enriched layer was 1.2 μm, and the Zn concentration of the Zn enriched layer was 4 mass%. No. When the Cu—Zn layer remained but not present in the sample No. 9, the region where Sn was not detected and Cu was detected was defined as the thickness of the Cu—Zn layer.
FIG. It is an example of the data which measured the surface vicinity of 9 using the glow discharge mass spectrometer. From FIG. 2, the average Zn concentration of the Zn high concentration layer was 17000 ppm. The thickness of the outermost surface oxide layer was a point from the outermost surface until oxygen was detected. The O concentration in the outermost oxide layer was 36% by mass.

(3)表層Zn高濃度層中のZn濃度及び該層の厚さ
表層Zn高濃度層中のZn濃度及び該層の厚さは、上記グロー放電質量分析計を使用して測定した。
図2より、最表面から深さ5nm付近までのZn高濃度層中の平均Zn濃度は17000ppmであった。また、Zn高濃度層の厚みは最表面からZn濃度が1000質量ppmを超える地点までとした。
(3) Zn concentration in the surface Zn high-concentration layer and the thickness of the layer The Zn concentration in the surface Zn high-concentration layer and the thickness of the layer were measured using the glow discharge mass spectrometer.
From FIG. 2, the average Zn concentration in the Zn high-concentration layer from the outermost surface to a depth of about 5 nm was 17000 ppm. The thickness of the high Zn concentration layer was from the outermost surface to the point where the Zn concentration exceeded 1000 ppm by mass.

(4)はんだ付け性
ソルダーチェッカ(レスカ社製SAT−5000)を使用し、フラックスとして市販のRMA級フラックスを用い、メニスコグラフ法にて半田濡れ時間を測定した。半田としてSn−3Ag−0.5Cu(250℃)を用いた。
(4) Solderability Using a solder checker (SAT-5000 manufactured by Reska Co., Ltd.), a commercially available RMA class flux was used as the flux, and the solder wetting time was measured by the menisograph method. Sn-3Ag-0.5Cu (250 ° C.) was used as the solder.

(5)接触抵抗
山崎精機製接点シミュレーターCRS−1を使用し、接点荷重50g、電流200mAの条件で4端子法にて測定した。
(5) Contact resistance A contact simulator CRS-1 manufactured by Yamazaki Seiki was used, and the contact resistance was measured by a four-terminal method under the conditions of a contact load of 50 g and a current of 200 mA.

(6)動摩擦係数測定方法
測定装置として薪東科学株式会社製HEIDEN−14型を使用し、圧子荷重500gの条件で測定した。
(6) Dynamic friction coefficient measuring method HEIDEN-14 type | mold made from Pingdong Science Co., Ltd. was used as a measuring apparatus, and it measured on the conditions of indenter load 500g.

2.リフローSnめっき材の作製
試料No.1では、母材として厚さ0.3mmの燐青銅条を端子形状にプレス加工したものを使用した。それ以外の試料(No.2〜16)ではめっき母材として厚さ0.3mmの純銅板を用いた。
母材表面に対して、Niめっき(スルファミン酸浴を基本として硫酸コバルト(No.5)や亜りん酸(No.4)を添加、陰極電流密度:4A/dm2、めっき直後のめっき厚さ:0.8μm)、及び中間層のCu−Znめっき(シアン浴、陰極電流密度:2A/dm2、めっき直後のめっき厚さ:0.25μm、めっき中Zn濃度:3〜16000質量ppm)を施した後、表1に記載の各条件でSnめっき(メタンスルホン酸浴)及びリフロー処理を行ってリフローSnめっき材を作製した。リフロー時の雰囲気は、酸素5体積%、窒素95%としてSnめっき材最表面に酸化物層を形成した。ただし、試料No.3は酸素10体積%、窒素90%、試料No.15とNo.16は酸素21体積%、窒素79%の雰囲気でリフローを行った。一方、表層めっきにZn高濃度層を形成した試料(No.9及び10)は、リフロー前にめっき材を50℃の硫酸亜鉛0.5%水溶液中に5秒(No.9)及び硫酸亜鉛10%水溶液中に5秒(No.10)浸漬させて作製した。No.15はNo.9及びNo.10よりも更にZn濃度の高い表層を得るために硫酸亜鉛20%水溶液中に3秒浸漬させて作製した。得られた各試料のめっき構造を表2に示す。
2. Preparation sample No. of reflow Sn plating material In No. 1, a phosphor bronze strip having a thickness of 0.3 mm was used as a base material and pressed into a terminal shape. In the other samples (Nos. 2 to 16), a pure copper plate having a thickness of 0.3 mm was used as a plating base material.
Ni plating (cobalt sulfate (No. 5) or phosphorous acid (No. 4) is added based on sulfamic acid bath, cathode current density: 4 A / dm 2 , plating thickness immediately after plating) on base metal surface : 0.8 μm), and Cu—Zn plating of the intermediate layer (cyan bath, cathode current density: 2 A / dm 2 , plating thickness immediately after plating: 0.25 μm, Zn concentration during plating: 3 to 16000 mass ppm) After the application, Sn plating (methanesulfonic acid bath) and reflow treatment were performed under the conditions shown in Table 1 to prepare a reflow Sn plating material. The atmosphere during reflow was 5% by volume of oxygen and 95% of nitrogen, and an oxide layer was formed on the outermost surface of the Sn plating material. However, Sample No. 3 is oxygen 10% by volume, nitrogen 90%, sample No. 15 and No. No. 16 was reflowed in an atmosphere of 21 volume% oxygen and 79% nitrogen. On the other hand, the samples (No. 9 and 10) in which the Zn high-concentration layer was formed on the surface layer were plated for 5 seconds (No. 9) and zinc sulfate in a 0.5% aqueous solution of zinc sulfate at 50 ° C. before reflow. It was prepared by immersing in a 10% aqueous solution for 5 seconds (No. 10). No. 15 is No.15. 9 and no. In order to obtain a surface layer having a higher Zn concentration than 10, it was immersed in a 20% aqueous solution of zinc sulfate for 3 seconds. Table 2 shows the plating structures of the obtained samples.

3.各試料の評価結果
各試料の評価結果を表3に示す。
3. Evaluation results of each sample Table 3 shows the evaluation results of each sample.

No.15とNo.1〜6及び8〜10とを比較する。No.1〜6及び8〜10は中間層にZnを5〜1000質量ppmの範囲で含有する一方、No.15はZnを含有しない。No.1〜6及び8〜10のSnめっき材は初期及び加熱後の半田濡れ時間、接触抵抗が低い。特に、加熱後のはんだ濡れ時間及び接触抵抗に関しては両者に大きな開きが生じており、例えばNo.1とNo.15を比較すると、加熱後のはんだ濡れ時間についてNo.1はNo.15の半分未満の時間であり、加熱後の接触抵抗もNo.1はNo.15の半分以下の値であった。   No. 15 and No. Compare 1-6 and 8-10. No. Nos. 1 to 6 and 8 to 10 contain Zn in the range of 5 to 1000 ppm by mass in the intermediate layer. 15 does not contain Zn. No. Sn plating materials 1-6 and 8-10 have low solder wetting time and contact resistance at the initial stage and after heating. In particular, there is a large gap between the solder wetting time after heating and the contact resistance. 1 and No. 15 and No. 15 regarding the solder wetting time after heating. 1 is No. 1. 15 and the contact resistance after heating is also No. 1 is No. 1. The value was less than half of 15.

また、No.7は表面Sn層が薄い場合であり、動摩擦係数は小さいがはんだ濡れ時間がやや長く接触抵抗がやや高い。No.11は下地めっきにNiが無い場合、No.12は中間層が無い場合であり、加熱後のはんだ濡れ時間が長く、接触抵抗が高い。No.13及び14は中間層Zn濃度の影響を示す例である。No.16は最表面酸化物層のZn濃度の影響を示す例である。No.9、10はZn高濃度層中のZn濃度の影響を示す例である。試料No.16は表層のZn濃度が高すぎたため、加熱後のはんだ濡れ時間が長く,加熱後の接触抵抗もやや高い。   No. 7 is a case where the surface Sn layer is thin. Although the dynamic friction coefficient is small, the solder wetting time is slightly long and the contact resistance is slightly high. No. No. 11 is No. when there is no Ni in the base plating. 12 is a case where there is no intermediate layer, and the solder wetting time after heating is long and the contact resistance is high. No. 13 and 14 are examples showing the influence of the intermediate layer Zn concentration. No. 16 is an example showing the influence of the Zn concentration of the outermost surface oxide layer. No. 9 and 10 are examples showing the influence of Zn concentration in the Zn high-concentration layer. Sample No. No. 16 has a surface Zn concentration that is too high, so that the solder wetting time after heating is long and the contact resistance after heating is also slightly high.

試料No.9をグロー放電質量分析計で測定したときの各成分の厚さ方向への濃度プロファイルを示す図である。Sample No. It is a figure which shows the density | concentration profile to the thickness direction of each component when 9 is measured with a glow discharge mass spectrometer. 試料No.9をグロー放電質量分析計で測定したときの各成分の厚さ方向への濃度プロファイル(最表面近傍)を示す図である。Sample No. It is a figure which shows the density | concentration profile (the outermost surface vicinity) of the thickness direction of each component when 9 is measured with a glow discharge mass spectrometer.

Claims (12)

銅又は銅合金の表面に下地Niめっき層、中間Cu−Zn系めっき層及び表面Snめっき層を順に有するSnめっき材であって、下地Niめっき層はNi又はNi合金で構成され、中間Cu−Zn系めっき層はZnを5〜10000質量ppm含有し、且つ、中間Cu−Zn系めっき層中には少なくとも表面Snめっき層に接する側にSn−Cu−Zn合金層が形成されているSnめっき材。   An Sn plating material having a base Ni plating layer, an intermediate Cu-Zn-based plating layer, and a surface Sn plating layer in this order on the surface of copper or a copper alloy, the base Ni plating layer being made of Ni or Ni alloy, and an intermediate Cu- The Zn-based plating layer contains 5 to 10,000 ppm by mass of Zn, and the Sn-Cu-Zn alloy layer is formed at least on the side in contact with the surface Sn plating layer in the intermediate Cu-Zn-based plating layer. Wood. 前記中間Cu−Zn系めっき層中には、Cu−Zn合金層が前記下地Niめっき層と接する側に厚み0.1μm未満で形成されているか又は存在しない請求項1に記載のSnめっき材。   2. The Sn plating material according to claim 1, wherein a Cu—Zn alloy layer is formed with a thickness of less than 0.1 μm on the side in contact with the base Ni plating layer or is not present in the intermediate Cu—Zn plating layer. 前記表面Snめっき層の厚さが0.1〜1.2μmである請求項1又は2に記載のSnめっき材。   The Sn plating material according to claim 1 or 2, wherein the surface Sn plating layer has a thickness of 0.1 to 1.2 µm. 最表面にZn濃度が0.1質量%を超えて10質量%までのZn高濃度層をさらに有する請求項1〜3の何れか一項に記載のSnめっき材。   The Sn plating material as described in any one of Claims 1-3 which further has Zn high concentration layer whose Zn density | concentration exceeds 0.1 mass% to 10 mass% on the outermost surface. 前記Zn高濃度層の厚さが3〜100nmである請求項4に記載のSnめっき材。   The Sn plating material according to claim 4, wherein the Zn high-concentration layer has a thickness of 3 to 100 nm. 前記下地Niめっき層がNi−P合金で構成される請求項1〜5の何れか一項に記載のSnめっき材。   The Sn plating material as described in any one of Claims 1-5 in which the said foundation | substrate Ni plating layer is comprised with a Ni-P alloy. 前記Sn−Cu−Zn合金層は、前記表面Snめっき層との境界にZn濃度が1質量%を超えて10質量%までのZn濃縮層を有する請求項1〜6の何れか一項に記載のSnめっき材。   The said Sn-Cu-Zn alloy layer has a Zn concentration layer whose Zn density | concentration exceeds 1 mass% to 10 mass% in the boundary with the said surface Sn plating layer. Sn plating material. 前記Zn濃縮層の厚さが0.01〜0.3μmである請求項7に記載のSnめっき材。   The Sn plated material according to claim 7, wherein the Zn enriched layer has a thickness of 0.01 to 0.3 μm. 請求項1〜8の何れか一項に記載のSnめっき材を用いた電子部品。   The electronic component using the Sn plating material as described in any one of Claims 1-8. 以下の工程:
(a)銅又は銅合金の表面にNi又はNi合金めっき層を厚さ0.1〜5μmで形成する工程と、
(b)次いで該Ni又はNi合金めっき層の上に、Znを5〜10000質量ppm含有するCu−Znめっき層を厚さ0.1〜0.5μmで形成する工程と、
(c)次いで該Cu−Znめっき層の上にSnめっき層を厚さ0.1〜1.2μmで形成する工程と、
(d)次いで熱拡散反応をもって、前記Ni又はNi合金めっき層と前記Snめっき層の間の、少なくとも前記Snめっき層側にSn−Cu−Zn合金層を有するCu−Zn系合金層を形成する工程と、
を行うことを含むSnめっき材の製造方法。
The following steps:
(A) forming a Ni or Ni alloy plating layer with a thickness of 0.1 to 5 μm on the surface of copper or copper alloy;
(B) Next, on the Ni or Ni alloy plating layer, a step of forming a Cu-Zn plating layer containing 5 to 10000 mass ppm of Zn with a thickness of 0.1 to 0.5 µm;
(C) Next, forming a Sn plating layer with a thickness of 0.1 to 1.2 μm on the Cu—Zn plating layer;
(D) Next, a Cu—Zn alloy layer having a Sn—Cu—Zn alloy layer on at least the Sn plating layer side is formed between the Ni or Ni alloy plating layer and the Sn plating layer by a thermal diffusion reaction. Process,
The manufacturing method of Sn plating material including performing.
工程(c)と工程(d)の間に前記Snめっき層の表面を亜鉛塩の水溶液に接触させる工程を行う請求項10に記載の製造方法。   The manufacturing method of Claim 10 which performs the process of making the surface of the said Sn plating layer contact the aqueous solution of zinc salt between a process (c) and a process (d). 熱拡散反応をリフロー処理によって行う請求項10又は11に記載の製造方法。   The production method according to claim 10 or 11, wherein the thermal diffusion reaction is performed by reflow treatment.
JP2007254171A 2007-09-28 2007-09-28 Reflow Sn plating material and electronic component using the same Active JP4940081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254171A JP4940081B2 (en) 2007-09-28 2007-09-28 Reflow Sn plating material and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254171A JP4940081B2 (en) 2007-09-28 2007-09-28 Reflow Sn plating material and electronic component using the same

Publications (2)

Publication Number Publication Date
JP2009084616A true JP2009084616A (en) 2009-04-23
JP4940081B2 JP4940081B2 (en) 2012-05-30

Family

ID=40658425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254171A Active JP4940081B2 (en) 2007-09-28 2007-09-28 Reflow Sn plating material and electronic component using the same

Country Status (1)

Country Link
JP (1) JP4940081B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237055A (en) * 2011-04-26 2012-12-06 Autonetworks Technologies Ltd Electrical contact material for connector, method for producing the same, and electrical contact for connector
WO2016010053A1 (en) * 2014-07-14 2016-01-21 矢崎総業株式会社 Electric element
JP2016020535A (en) * 2014-07-15 2016-02-04 矢崎総業株式会社 Terminal and connector
JP2016020524A (en) * 2014-07-14 2016-02-04 矢崎総業株式会社 Electric element
JP2016060928A (en) * 2014-09-16 2016-04-25 矢崎総業株式会社 Plating material and terminal metal fitting
JP2016084500A (en) * 2014-10-24 2016-05-19 矢崎総業株式会社 Plate-shaped conductor and method for treating surface of plate-shaped conductor
JP2016113666A (en) * 2014-12-15 2016-06-23 矢崎総業株式会社 Electrical element, and connector
JP2016518528A (en) * 2013-05-03 2016-06-23 デルフィ・テクノロジーズ・インコーポレイテッド Electrical terminal element
WO2017090638A1 (en) * 2015-11-27 2017-06-01 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and wire terminal part structure
WO2017195768A1 (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Tinned copper terminal material, terminal, and electrical wire end part structure
WO2018139628A1 (en) * 2017-01-30 2018-08-02 三菱マテリアル株式会社 Terminal material for connectors, terminal, and electric wire end part structure
TWI761560B (en) * 2017-07-28 2022-04-21 日商三菱綜合材料股份有限公司 Tin-plated copper terminal material and terminal and wire termination structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271395A (en) * 1990-03-19 1991-12-03 Mitsubishi Electric Corp Tin plated copper alloy material
JPH08176883A (en) * 1994-12-28 1996-07-09 Furukawa Electric Co Ltd:The Production of tin alloy plated material
JP2002510749A (en) * 1998-04-03 2002-04-09 オリン コーポレイション Coating with selected simple additives
JP2003171790A (en) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The Plating material, production method therefor, and electrical and electronic part obtained by using the same
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2005216749A (en) * 2004-01-30 2005-08-11 Hitachi Cable Ltd Conductor for flat cable, its manufacturing method and flat cable
JP2005344188A (en) * 2004-06-04 2005-12-15 Furukawa Electric Co Ltd:The Method for producing plating material and electrical/electronic component using the plating material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271395A (en) * 1990-03-19 1991-12-03 Mitsubishi Electric Corp Tin plated copper alloy material
JPH08176883A (en) * 1994-12-28 1996-07-09 Furukawa Electric Co Ltd:The Production of tin alloy plated material
JP2002510749A (en) * 1998-04-03 2002-04-09 オリン コーポレイション Coating with selected simple additives
JP2003171790A (en) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The Plating material, production method therefor, and electrical and electronic part obtained by using the same
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP2005216749A (en) * 2004-01-30 2005-08-11 Hitachi Cable Ltd Conductor for flat cable, its manufacturing method and flat cable
JP2005344188A (en) * 2004-06-04 2005-12-15 Furukawa Electric Co Ltd:The Method for producing plating material and electrical/electronic component using the plating material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237055A (en) * 2011-04-26 2012-12-06 Autonetworks Technologies Ltd Electrical contact material for connector, method for producing the same, and electrical contact for connector
JP2016518528A (en) * 2013-05-03 2016-06-23 デルフィ・テクノロジーズ・インコーポレイテッド Electrical terminal element
WO2016010053A1 (en) * 2014-07-14 2016-01-21 矢崎総業株式会社 Electric element
JP2016020524A (en) * 2014-07-14 2016-02-04 矢崎総業株式会社 Electric element
JP2016020535A (en) * 2014-07-15 2016-02-04 矢崎総業株式会社 Terminal and connector
JP2016060928A (en) * 2014-09-16 2016-04-25 矢崎総業株式会社 Plating material and terminal metal fitting
JP2016084500A (en) * 2014-10-24 2016-05-19 矢崎総業株式会社 Plate-shaped conductor and method for treating surface of plate-shaped conductor
JP2016113666A (en) * 2014-12-15 2016-06-23 矢崎総業株式会社 Electrical element, and connector
CN108352639A (en) * 2015-11-27 2018-07-31 三菱综合材料株式会社 Tin plating copper tip material and terminal and wire terminations portion structure
EP3382814A4 (en) * 2015-11-27 2019-09-04 Mitsubishi Materials Corporation Tin-plated copper terminal material, terminal, and wire terminal part structure
US11088472B2 (en) 2015-11-27 2021-08-10 Mitsubishi Materials Corporation Tin-plated copper terminal material, terminal, and wire terminal part structure
JPWO2017090638A1 (en) * 2015-11-27 2017-11-30 三菱マテリアル株式会社 Tin-plated copper terminal material and terminal and wire terminal structure
WO2017090638A1 (en) * 2015-11-27 2017-06-01 三菱マテリアル株式会社 Tin-plated copper terminal material, terminal, and wire terminal part structure
TWI704580B (en) * 2015-11-27 2020-09-11 日商三菱綜合材料股份有限公司 Tinned copper terminal material, terminal and wire end structure
CN108352639B (en) * 2015-11-27 2020-05-12 三菱综合材料株式会社 Tin-plated copper terminal material, terminal and electric wire terminal structure
CN109072471B (en) * 2016-05-10 2021-05-28 三菱综合材料株式会社 Tin-plated copper terminal material, terminal and electric wire terminal structure
US20190161866A1 (en) * 2016-05-10 2019-05-30 Mitsubishi Materials Corporation Tinned copper terminal material, terminal, and electrical wire end part structure
EP3456871A4 (en) * 2016-05-10 2019-12-11 Mitsubishi Materials Corporation Tinned copper terminal material, terminal, and electrical wire end part structure
CN109072471A (en) * 2016-05-10 2018-12-21 三菱综合材料株式会社 Tin plating copper tip material and terminal and wire terminations portion structure
US10801115B2 (en) 2016-05-10 2020-10-13 Mitsubishi Materials Corporation Tinned copper terminal material, terminal, and electrical wire end part structure
WO2017195768A1 (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Tinned copper terminal material, terminal, and electrical wire end part structure
TWI729129B (en) * 2016-05-10 2021-06-01 日商三菱綜合材料股份有限公司 Tinned copper terminal material and terminal and wire end part structure
JP2017203214A (en) * 2016-05-10 2017-11-16 三菱マテリアル株式会社 Copper terminal material with tin plating, terminal and wire terminal part structure
WO2018139628A1 (en) * 2017-01-30 2018-08-02 三菱マテリアル株式会社 Terminal material for connectors, terminal, and electric wire end part structure
TWI732097B (en) * 2017-01-30 2021-07-01 日商三菱綜合材料股份有限公司 Terminal material for connector, terminal and wire terminal structure
US11211729B2 (en) 2017-01-30 2021-12-28 Mitsubishi Materials Corporation Terminal material for connectors, terminal, and electric wire termination structure
TWI761560B (en) * 2017-07-28 2022-04-21 日商三菱綜合材料股份有限公司 Tin-plated copper terminal material and terminal and wire termination structure

Also Published As

Publication number Publication date
JP4940081B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
KR101162849B1 (en) Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
JP5319101B2 (en) Sn plating material for electronic parts
JP5667152B2 (en) Surface treatment plating material, method for producing the same, and electronic component
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP2018078109A (en) Tin-plated copper terminal material and terminal, and electric wire terminal part structure
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP2008274364A (en) Terminal for engaging type connector and manufacturing method therefor
JP2017203214A (en) Copper terminal material with tin plating, terminal and wire terminal part structure
US8524376B2 (en) Heat-resistant Sn-plated Cu-Zn alloy strip with suppressed whiskering
JP3953169B2 (en) Manufacturing method of plating material for mating type connection terminal
JP4111522B2 (en) Sn coated copper material and terminal
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP4740814B2 (en) Copper alloy reflow Sn plating material with excellent whisker resistance
WO2018164127A1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
JP5101235B2 (en) Sn plating material for electronic parts and electronic parts
JP2004225070A (en) Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP2020105574A (en) Anticorrosive terminal material, terminal and wire terminal structure
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP7040544B2 (en) Terminal material for connectors
JP4602285B2 (en) Copper alloy reflow Sn plating material excellent in whisker resistance and electronic component using the same
JP2019011503A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP7302248B2 (en) Connector terminal materials and connector terminals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4940081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250