JP2006086513A - Material of electric and electronic component case or shield case and its manufacturing method - Google Patents

Material of electric and electronic component case or shield case and its manufacturing method Download PDF

Info

Publication number
JP2006086513A
JP2006086513A JP2005233882A JP2005233882A JP2006086513A JP 2006086513 A JP2006086513 A JP 2006086513A JP 2005233882 A JP2005233882 A JP 2005233882A JP 2005233882 A JP2005233882 A JP 2005233882A JP 2006086513 A JP2006086513 A JP 2006086513A
Authority
JP
Japan
Prior art keywords
resin film
layer
metal
case
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233882A
Other languages
Japanese (ja)
Inventor
Toshio Tani
俊夫 谷
Kazuo Tachihara
和夫 立原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005233882A priority Critical patent/JP2006086513A/en
Publication of JP2006086513A publication Critical patent/JP2006086513A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material of an electric and electronic component case or a shield case, which is suitable for a short-height cabinet of a connector, and in which whiskers do not occur after it is left to stand for a long period of time. <P>SOLUTION: The material of the electric and electronic component case or the shield case, has a resin film 2 deposited at a part on a metallic base material 1, and has an Sn or Sn alloy plating layer 3 re-melted and solidified on at least a part on a metallic base material other than the resin film. The material of the electric and electronic component case or the shield case, has at least one metallic layer on the metallic base material, and the resin film is prepared directly on the metallic base material, or prepared through at least one metallic layer. In the material of the electric and electronic component case or the shield case, the metallic base material or the metallic layer is subjected to surface treatment. In a metallic material for the electric and electronic component, the height from the surface of the metallic base material to the surface of the resin film is at most 60 μm. The electric and electronic component case or a part of the shield case is obtained by using the metallic material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気電子機器、特に携帯機器等のプリント基板に実装される素子内蔵用低背電気電子部品の、例えば、筐体、ケース、カバー、キャップなどや、プリント基板やケーブルに接続されるコネクタ部品、シールドケースに適した材料に関する。   The present invention is connected to, for example, a housing, a case, a cover, a cap, a printed circuit board, and a cable of a low-profile electrical / electronic component embedded in an electronic / electronic device, particularly a portable device. The present invention relates to materials suitable for connector parts and shield cases.

電気電子機器のプリント基板などに実装されるセラミック発振子、水晶発振器、電圧制御発振器、SAWフィルター、ダイプレクサ、カプラ、バラン、LPF、BPF、誘電体デュプレクサなどの個別部品やこれら個々の素子を複数内蔵させた各種モジュール部品、例えば、アンテナスイッチモジュール、フロントエンドモジュール、RF一体型モジュール、ブルートゥース(Bluetooth)モジュール、イメージセンサーモジュール、チューナーモジュール、無線LAN用途など、または、検出スイッチ、マイクロホンなどの部品は、電磁シールドのために金属製筐体内に入れたり、カバーで覆ったりして用いられるが、電気電子機器の携帯化が進展する中で前記筐体などには薄型化、低背化が要求され、その高さはモジュール部品では5mm以下、個別部品では2mmを割り1mm前後に突入しつつある。さらに、機器の軽薄短小化とデジタル、高周波化による高機能化が著しいため、構成要素である液晶ドライバ(LCD)やキーボード、マザーボードなども同様の傾向が強まっている。特に液晶ドライバーとのインターフェースの進化は非常に早い傾向にあり、携帯機器の世代更新と共に新製品開発されつつある。これらのプリント基板側の端子接続コネクタとFPCケーブル側などの接続コネクタは、通信ノイズや静電気防止目的から電磁波シールド性が必要とされ、導電性の金属製ケース、キャップ、カバーで覆ったりして用いられるが、機器の小型薄型化が進み、接続コネクタ、カードコネクタほかのコネクタ部品やソケットでも小型低背化が進んでいる。   Built-in individual components such as ceramic resonators, crystal oscillators, voltage controlled oscillators, SAW filters, diplexers, couplers, baluns, LPFs, BPFs, dielectric duplexers, etc. mounted on printed circuit boards of electrical and electronic equipment. Various module parts such as an antenna switch module, a front end module, an RF integrated module, a Bluetooth module, an image sensor module, a tuner module, a wireless LAN application, a detection switch, a microphone, etc. It is used by putting it in a metal casing or covering it with a cover for electromagnetic shielding, but the casing and the like are required to be thin and low in height while the portability of electric and electronic equipment is progressing. Its height is module parts Is 5mm or less, is being rushed to 2mm before and after the split 1mm than individual parts. Furthermore, since the devices are becoming lighter, thinner, and more sophisticated due to digital and higher frequencies, the same tendency is also increasing in liquid crystal drivers (LCDs), keyboards, motherboards, and the like. In particular, the evolution of the interface with the LCD driver is very fast, and new products are being developed as the generation of mobile devices is updated. The terminal connector on the printed circuit board side and the connector on the FPC cable side are required to have electromagnetic shielding properties for the purpose of preventing communication noise and static electricity, and are used by covering them with conductive metal cases, caps, and covers. However, devices are becoming smaller and thinner, and connector connectors and card connectors and other connector parts and sockets are also becoming smaller and lower in profile.

しかし、上記金属製筐体などは、低背化に伴って内容積が小さくなり、内蔵部品や端子、配線回路とケース、カバー、キャップ、筐体(カバー付きケース)などの電気電子部品との間の絶縁性が十分確保できなくなるという欠点があった。
このような場合従来は、特許文献1に開示したように、絶縁フィルムをシート状の所定寸法に裁断してケース内部に挿入したり、特許文献2に開示したように、金属基材上に樹脂皮膜を予め形成させた金属材料から所定寸法に切り取るなどが行われている。予め樹脂皮膜を金属基材上に形成した材料を用いることは、連続的に打ち抜きや曲げの成型加工ができて生産性や経済上から好ましく、また部分或いは全面、両面など任意に高品質で連続的に皮膜形成し得る材料であることから、近年良く用いられる傾向にある。
特開平1−6389号公報 特開2004−197224号公報
However, the above metal casings, etc., have a smaller internal volume as the height is reduced, and the built-in components, terminals, wiring circuits and cases, covers, caps, casings (cases with covers), etc. There was a drawback that sufficient insulation could not be secured.
In such a case, conventionally, as disclosed in Patent Document 1, the insulating film is cut into a sheet-like predetermined size and inserted into the case, or as disclosed in Patent Document 2, a resin is placed on the metal substrate. For example, a film is cut into a predetermined dimension from a metal material on which a film is formed in advance. Using a material in which a resin film is previously formed on a metal substrate is preferable from the viewpoint of productivity and economy because it can be continuously punched and bent, and can be continuously high in quality, such as partly, entirely, or both sides. In recent years, it tends to be frequently used because it is a material capable of forming a film.
Japanese Patent Laid-Open No. 1-6389 JP 2004-197224 A

しかし、このような電気電子部品やコネクタなどの主用途機器が、従来のパソコンレベル寸法から携帯電話などのモバイル機器へ中心が移って行くことから、電気電子部品やコネクタなどのケースやシールドケースの上記金属製筐体などは、低背化に伴って内容積が小さくなり、部品ケース内面やコネクタ端子部とケース、カバー、キャップ、筐体(カバー付きケース)などの外装シールド部との間の絶縁性が十分確保できなくなるという問題が出て来た。そこで、特許文献1に開示されている方法を用いることが出来るが、高コストで製造方法も煩雑であるという問題点が生じていた。
本発明は、従来のケース用金属材料から形成されたシールドケース部品では、電気電子部品やコネクタ部品のケース自体との絶縁性が十分確保できないという問題を解消し、さらに部品組立と耐熱実装性を確保出来る材料を提供する。コネクタ製品の場合には、実使用されるまで在庫保管などのための期間が長い可能性もあるが、その間に懸念されるウィスカを生じる心配の無い、プリント基板やFPCケーブルなどに接続される低背化されるシールドコネクタや薄型カードコネクタなどのケース筐体などに適し、且つコネクタ自体との絶縁性や放熱性、耐熱性が十分に確保できる、ケース材料を提供することを目的とする。
However, the main use equipment such as electrical and electronic parts and connectors will shift from the conventional PC level dimensions to mobile devices such as mobile phones. The metal housing, etc., has a smaller internal volume as the height is lowered, and the space between the inner surface of the component case and the connector terminal and the exterior shield part such as the case, cover, cap, and housing (case with cover) A problem has arisen that insulation cannot be secured sufficiently. Thus, although the method disclosed in Patent Document 1 can be used, there has been a problem that the manufacturing method is complicated due to high cost.
The present invention solves the problem that a conventional shield case part formed from a metal material for a case cannot sufficiently secure insulation from the case of an electrical / electronic part or connector part, and further improves the parts assembly and heat resistance mounting. Provide materials that can be secured. In the case of connector products, there is a possibility that the period for inventory storage etc. may be long until it is actually used, but there is no need to worry about causing whiskers during that period, and there is no need to connect to printed circuit boards or FPC cables. An object of the present invention is to provide a case material that is suitable for a case housing such as a shielded connector or a thin card connector that is turned over, and that can sufficiently ensure insulation, heat dissipation, and heat resistance from the connector itself.

本発明者らは、電気電子部品用材料の絶縁性について鋭意検討した結果、金属基材上の
絶縁を要する箇所に樹脂皮膜を設けることで、内蔵コネクタ自体との絶縁性を十分確保し
うることを見出した。さらに、はんだ接合による耐熱実装性を充分確保するために、樹脂
以外の部分にははんだ濡れ性に優れる表面処理層を形成する必要があるが、汎用されるS
nまたSn合金めっき層をリフロー処理により再溶融凝固(リフロー)させることで、ウ
ィスカ発生を防止するに至ったものである。
As a result of intensive studies on the insulation properties of electrical and electronic component materials, the present inventors can sufficiently ensure insulation with the built-in connector itself by providing a resin film on the metal substrate where insulation is required. I found. Furthermore, in order to sufficiently secure heat-resistant mounting by solder bonding, it is necessary to form a surface treatment layer having excellent solder wettability on portions other than the resin.
In addition, re-melting and solidification (reflow) of the Sn alloy plating layer by reflow treatment has led to prevention of whisker generation.

すなわち、本発明は、
(1)金属基材上の一部に樹脂皮膜を有し、前記樹脂皮膜が設けられない部位の金属基
材上の少なくとも一部にSnまたはSn合金のめっき層を有し、前記SnまたはSn合金
のめっき層が再溶融凝固させて設けられたことを特徴とする電気電子部品ケースまたはシールドケースの材料、
(2)前記金属基材上に設けられる樹脂皮膜が耐熱性樹脂であることを特徴とする電気電子部品ケースまたはシールドケースの材料、
(3)前記金属基材上に少なくとも1層の金属層を有し、かつ前記樹脂皮膜は前記金属
基材上に、直接、または、前記金属層を介して設けられていることを特徴とする電気電子部品ケースまたはシールドケースの材料、
(4)前記金属基材の表面、または、前記金属層の表面に下地処理層が設けられている
ことを特徴とする(1)〜(3)のいずれかに記載の電気電子部品ケースまたはシールドケースの材料、
(5)前記金属基材の表面から樹脂皮膜の表面までの高さが60μm以下であることを
特徴とする(1)〜(4)のいずれかに記載の電気電子部品ケースまたはシールドケースの材料。
(6)(1)〜(5)のいずれかに記載のシールドケース材料が用いられたことを特徴
とする電気電子部品ケースまたはシールドケース、
(7)清浄処理した金属基材、前記金属基材上に設けられた金属層、前記金属基材上に設けられた下地処理層、前記金属層上に設けられた下地処理層のいずれかの表面の一部に樹脂皮膜を形成し、次いで、前記樹脂皮膜が設けられていない前記いずれかの表面にSnまたはSn合金のめっき層を設けた後に、リフロー処理されることを特徴とする電気電子部品ケースまたはシールドケースの材料の製造方法、
を提供するものである。
That is, the present invention
(1) Having a resin film on a part of the metal substrate, and having a plated layer of Sn or Sn alloy on at least a part of the metal substrate at a portion where the resin film is not provided, and the Sn or Sn A material for an electrical / electronic component case or shield case, wherein the alloy plating layer is provided by remelting and solidifying;
(2) The material of the electrical / electronic component case or shield case, wherein the resin film provided on the metal substrate is a heat-resistant resin,
(3) It has at least one metal layer on the metal substrate, and the resin film is provided on the metal substrate directly or via the metal layer. Material for electrical / electronic parts case or shield case,
(4) The electrical and electronic component case or shield according to any one of (1) to (3), wherein a surface treatment layer is provided on the surface of the metal substrate or the surface of the metal layer. Case material,
(5) The material of the electric / electronic component case or shield case according to any one of (1) to (4), wherein the height from the surface of the metal base to the surface of the resin film is 60 μm or less .
(6) An electric / electronic component case or a shield case, wherein the shield case material according to any one of (1) to (5) is used;
(7) Any one of a cleaned metal base, a metal layer provided on the metal base, a base treatment layer provided on the metal base, and a base treatment layer provided on the metal layer An electrical and electronic device characterized in that a resin film is formed on a part of the surface, and then a Sn or Sn alloy plating layer is provided on any of the surfaces not provided with the resin film, followed by a reflow treatment. Manufacturing method of material of parts case or shield case,
Is to provide.

本発明の低背電気電子部品や薄型コネクタなどのケース用材料は、
第一に、金属基材上の少なくとも一部に樹脂皮膜を有しているので、例えば、前記樹脂皮膜を内側にして筐体に用いた場合、コネクタ自体との間の絶縁性が十分確保できる。従ってコネクタ筐体の低背化が実現でき、携帯機器などの薄型化に有用である。
第二に、前記樹脂皮膜が絶縁を要する箇所のみに設けられると、前記樹脂皮膜が設けられていない箇所は金属基材が露出していて放熱性が高度に維持される。
第三に、前記金属基材の露出箇所にリフローSnまたはSn合金金属層を設けることにより、はんだ接合性(はんだ実装性)、耐熱性、耐食性などの向上が図れ、しかもめっき形成したSnまたはSn合金層を加熱再溶融凝固させた内部応力が開放されたリフロー金属層であるので、SnまたはSn合金層で問題となるウィスカ発生の心配も無く、安心して使用することが可能である。
第四に、樹脂に耐熱性樹脂を用いることで、前記のリフロー加熱処理時に樹脂の変色や密着性、絶縁性等々の特性劣化を防止することができる。
第五に、前記金属基材に金属層を形成したもの、または、前記金属基材または前記金属層に下地処理を施したものは、その上に設ける樹脂皮膜の密着性が向上する。
第六に、金属基材表面から樹脂皮膜表面までの高さが60μm以下にすることにより、低背化筐体として好適に用いることができる。
これらのことによって、工業上顕著な効果を奏する。
Case materials such as low-profile electrical and electronic parts and thin connectors of the present invention,
First, since the resin film is provided on at least a part of the metal substrate, for example, when the resin film is used in a casing with the resin film inside, sufficient insulation between the connector itself can be ensured. . Therefore, it is possible to reduce the height of the connector housing, which is useful for reducing the thickness of portable devices and the like.
Secondly, when the resin film is provided only at a place where insulation is required, the metal base is exposed at a place where the resin film is not provided, and the heat dissipation is maintained at a high level.
Thirdly, by providing a reflow Sn or Sn alloy metal layer at the exposed portion of the metal base material, it is possible to improve solder jointability (solder mountability), heat resistance, corrosion resistance, etc., and Sn or Sn formed by plating. Since the alloy layer is a reflow metal layer in which internal stress is released by remelting and solidifying by heating, there is no risk of whisker generation which becomes a problem in the Sn or Sn alloy layer, and it can be used with confidence.
Fourthly, by using a heat-resistant resin as the resin, it is possible to prevent deterioration of characteristics such as discoloration, adhesion, and insulation properties of the resin during the reflow heat treatment.
Fifth, when the metal substrate is formed with a metal layer, or when the metal substrate or the metal layer is ground-treated, the adhesion of the resin film provided thereon is improved.
Sixth, when the height from the surface of the metal substrate to the surface of the resin film is 60 μm or less, it can be suitably used as a low-profile casing.
By these things, there is an industrially remarkable effect.

以下に本発明の電気電子部品用金属材料の好ましい実施態様を、図面を参照して詳細に説明する。なお、本発明は、これらの実施態様に限定されるものではない。   Hereinafter, preferred embodiments of the metal material for electrical and electronic parts of the present invention will be described in detail with reference to the drawings. The present invention is not limited to these embodiments.

本発明に係わるシールドケースの第1の実施形態は、金属基材上の一部に樹脂皮膜を有すると共に、樹脂皮膜以外の金属基材上の少なくとも一部に再溶融凝固させたSnまたはSn合金のめっき層を設けるものである。   A first embodiment of a shield case according to the present invention has a resin film on a part of a metal substrate and is remelted and solidified on at least a part of the metal substrate other than the resin film. The plating layer is provided.

図1は、本発明の第1の実施形態に係わるものを示す拡大断面図である。
金属基材1上の絶縁を要する1箇所に耐熱性樹脂皮膜2が設けられており、耐熱性樹脂皮膜2が設けられている箇所以外の金属基材上にリフローSnまたはSn合金めっき層3が設けられている。
FIG. 1 is an enlarged cross-sectional view showing a structure according to the first embodiment of the present invention.
A heat-resistant resin film 2 is provided at one place on the metal substrate 1 that requires insulation, and the reflow Sn or Sn alloy plating layer 3 is formed on the metal substrate other than the place where the heat-resistant resin film 2 is provided. Is provided.

図2は、本発明の第1の実施形態に係わるその他の実施態様を示す拡大断面図である。
金属基材1上の絶縁を要する2箇所に耐熱性樹脂皮膜2が設けられており、耐熱性樹脂皮膜2が設けられている箇所以外の金属基材上にリフローSnまたはSn合金めっき層3が設けられている。
FIG. 2 is an enlarged cross-sectional view showing another embodiment according to the first embodiment of the present invention.
The heat resistant resin film 2 is provided at two places on the metal substrate 1 that require insulation, and the reflow Sn or Sn alloy plating layer 3 is formed on the metal substrate other than the place where the heat resistant resin film 2 is provided. Is provided.

図1と2に示した金属材料は、耐熱性樹脂皮膜2が設けられている箇所以外の金属基材1上にリフローSnまたはSn合金めっき層3が設けられているのでウィスカ発生防止効果がある。   The metal material shown in FIGS. 1 and 2 has an effect of preventing the occurrence of whiskers because the reflow Sn or Sn alloy plating layer 3 is provided on the metal substrate 1 other than the portion where the heat resistant resin film 2 is provided. .

上記樹脂皮膜を有する部分は、絶縁を要する箇所であることが好ましい。一つの好ましい実施態様においては、樹脂皮膜は絶縁を要する箇所のみに設けられる。絶縁を要する箇所とは、その箇所を絶縁することによって、部品ケースである金属材料と部品内部のコネクタ端子部や素子、あるいは電気配線回路とが電気的短絡することを防止する必要のある箇所を意味する。また、樹脂皮膜は耐熱性樹脂皮膜であることが好ましい。部品をはんだ実装する際や、本発明のSn又はSn合金めっき層のリフロー加熱される際に、樹脂の外観変色や特性劣化を防止することができる。
耐熱性樹脂皮膜の厚みは、薄すぎると十分な絶縁性が得られず、またピンホールが発生し易いので、2μm以上が望ましく、3μm以上がさらに望ましい。一方あまり厚いと、筐体などへの成形加工性が低下するので50μm以下が望ましく、更には15μm未満が
望ましい。
また、耐熱性樹脂皮膜の絶縁性は、体積固有抵抗1010Ωcm以上が好ましく、1
14Ωcm以上がさらに好ましい。
The part having the resin film is preferably a part requiring insulation. In one preferable embodiment, the resin film is provided only at a location requiring insulation. A place that requires insulation is a place where it is necessary to prevent electrical short-circuit between the metal material that is the part case and the connector terminal part or element inside the part or the electrical wiring circuit by insulating the part. means. The resin film is preferably a heat resistant resin film. When the component is solder-mounted or when the Sn or Sn alloy plating layer of the present invention is reflow-heated, it is possible to prevent discoloration of the resin and deterioration of the characteristics.
If the thickness of the heat-resistant resin film is too thin, sufficient insulation cannot be obtained, and pinholes are likely to be generated. Therefore, the thickness is preferably 2 μm or more, and more preferably 3 μm or more. On the other hand, if it is too thick, the moldability to a housing or the like is lowered, so that it is preferably 50 μm or less, more preferably less than 15 μm.
In addition, the insulating property of the heat resistant resin film is preferably 10 10 Ωcm or more as a volume resistivity.
More preferably, it is 0 14 Ωcm or more.

金属基材上などに耐熱性樹脂皮膜を設ける方法には、金属基材上の絶縁を要する箇所に、(a)接着剤付き耐熱性樹脂フィルムを配し、前記接着剤を誘導加熱ロールにより溶融し、次いで加熱処理して反応硬化接合する方法、(b)樹脂または樹脂前躯体を溶媒に溶解したワニスを塗布し、次いで加熱処理して、溶媒を揮発させると共に樹脂を反応硬化接合する方法などが挙げられる。
(b)の方法は金属基材上に耐熱性樹脂皮膜を高精度に位置決めすることができる点で推奨される。(a)の方法でも、採用工法と装置によっては高精度化が可能である。例えば、塗装部をオフセット(平版)印刷やグラビア(凹版)印刷のロールコート法設備を応用した方法、或いは感光性耐熱樹脂の塗工と紫外線や電子線によるパターン形成と樹脂硬化技術を応用する方法、さらには回路基板における露光現象エッチング溶解による微細パターン形成技術の樹脂皮膜への応用(例えば、プリント基板に用いられる写真法エッチング技術やスクリーン印刷技術等)などから、樹脂皮膜の形成精度レベルに応じた製造工法を採用することができる。なお、金属基材上の耐熱性樹脂皮膜を設ける位置の公差は、多数の部品に通用させることを配慮すると、望ましくは±0.15mm、より望ましくは±0.10mm、さらに望ましくは±0.05mmである。
なお、樹脂皮膜を設ける方法は、前記(a)と(b)に限定されるものではなく、樹脂に適した方法で行うことが出来る。
In the method of providing a heat resistant resin film on a metal substrate, (a) a heat resistant resin film with an adhesive is arranged at a location requiring insulation on the metal substrate, and the adhesive is melted by an induction heating roll. Next, a method of heat-treating and heat-reacting and bonding, (b) A method of applying a varnish in which a resin or a resin precursor is dissolved in a solvent and then heat-treating to volatilize the solvent and reaction-hardening and bonding the resin, etc. Is mentioned.
The method (b) is recommended in that the heat-resistant resin film can be positioned with high accuracy on the metal substrate. Even with the method (a), high accuracy can be achieved depending on the employed construction method and apparatus. For example, a method that applies roll coating equipment for offset (planographic) printing or gravure (intaglio) printing on the painted part, or a method that applies photosensitive heat-resistant resin, pattern formation by ultraviolet rays or electron beams, and resin curing technology In addition, depending on the resin film formation accuracy level from the application of fine pattern formation technology to the resin film (eg, photographic etching technology and screen printing technology used for printed circuit boards) by exposure phenomenon etching dissolution in circuit boards Manufacturing methods can be adopted. The tolerance of the position where the heat-resistant resin film is provided on the metal substrate is preferably ± 0.15 mm, more preferably ± 0.10 mm, and even more preferably ± 0. 05 mm.
In addition, the method of providing a resin film is not limited to said (a) and (b), It can carry out by the method suitable for resin.

樹脂皮膜を形成する樹脂には、例えば、ポリイミド系、ポリアミドイミド系、ポリアミド系、エポキシ系、ポリエステル系(ポリエチレンテレフタレート系やポリエチレンナフタレート系等含む)、ポリスルホン系、ポリカーボネート系などの樹脂が用いられる。耐熱性樹脂としては、例えば、ガラス転移温度が200℃以上のもの、望ましくは250℃以上のものが適し、或いは米国UL規格のUL耐熱寿命温度では180℃以上の樹脂、望ましくは220℃以上の樹脂が良好に用いられる。Snの融点は232℃であるので、これを溶融するための加熱温度としては、さらに高温雰囲気が必要なので、熱分解開始温度は少なくとも350℃以上の樹脂が望ましい。即ち、ポリイミド系、ポリアミドイミド系の樹脂が好ましく、エポキシ系がこれに準ずる。   For the resin forming the resin film, for example, polyimide, polyamideimide, polyamide, epoxy, polyester (including polyethylene terephthalate, polyethylene naphthalate, etc.), polysulfone, and polycarbonate resins are used. . As the heat-resistant resin, for example, those having a glass transition temperature of 200 ° C. or higher, desirably 250 ° C. or higher are suitable, or a resin having a UL heat-resistant life temperature of US UL standard of 180 ° C. or higher, preferably 220 ° C. or higher. Resin is used well. Since the melting point of Sn is 232 ° C., a higher temperature atmosphere is required as the heating temperature for melting it, and therefore, a resin having a thermal decomposition starting temperature of at least 350 ° C. or higher is desirable. That is, a polyimide-based or polyamide-imide-based resin is preferable, and an epoxy-based resin conforms to this.

また、耐熱性樹脂皮膜を、接着剤を用いて金属基板上などに設ける場合、接着剤にはポリイミド系、エポキシ系、アクリル系、シリコン系などの樹脂が用いられる。これらの樹脂は半田接合やリフロー半田実装をはじめとする加熱工程に対する耐熱性を有する。加熱条件が厳しくない用途では、前記樹脂以外の耐熱性能の小さい樹脂(例えば、ポリアミド系、ポリエステル系、ポリカーボネート系の樹脂)を用いることも可能である。   Moreover, when providing a heat resistant resin film | membrane on a metal substrate etc. using an adhesive agent, resin, such as a polyimide type, an epoxy type, an acryl type, a silicon type, is used for an adhesive agent. These resins have heat resistance against heating processes such as solder bonding and reflow solder mounting. In applications where the heating conditions are not severe, it is also possible to use a resin having a low heat resistance other than the resin (for example, a polyamide-based, polyester-based, or polycarbonate-based resin).

一方、上記樹脂皮膜以外の金属基材の少なくとも一部上には、再溶融凝固させたリフローSnまたはSn合金めっき層は設けられる。 On the other hand, a reflow Sn or Sn alloy plating layer remelted and solidified is provided on at least a part of the metal substrate other than the resin film.

上記Sn系めっき層の厚みは、例えば、半田実装する用途の場合、半田濡れ性が良好に保たれ、リフローはんだ実装などの溶融接合が可能な1μm以上とするのが望ましい。上限は20μm程度で、それ以上厚くしても効果は飽和する。それ以外の用途においては、耐食性や樹脂密着性などの観点から厚みは0.1μm以上10μm以下の範囲が好ましい。 For example, in the case of solder mounting, the thickness of the Sn-based plating layer is desirably 1 μm or more, which maintains good solder wettability and enables fusion bonding such as reflow solder mounting. The upper limit is about 20 μm, and the effect is saturated even if the thickness is increased further. In other applications, the thickness is preferably in the range of 0.1 μm or more and 10 μm or less from the viewpoints of corrosion resistance and resin adhesion.

コネクタ用途の場合には光沢外観が好まれるので、Sn系皮膜では加熱再溶融凝固されたリフロー層とすることが、ウィスカ防止目的と共に必要である。光沢めっき層の場合にはNi下地めっき等によりウィスカはかなり抑制されるが、経時環境による発生危険は残る。従って、Sn、Sn−Cu、Sn−Ag、Sn−Bi、Sn−Znの各系(金属、合金、共析物、化合物)の無光沢めっき層形成後に、加熱再溶融凝固してウィスカ危険の殆どないリフローSn系めっき層として用いられる。Sn−Bi以外は融点の低い共晶付近の組成が用い易い。
特に、Sn、Sn−Cu系、Sn−Ag系合金は耐熱性に優れる。
前記Sn−Cu系、Sn−Ag系皮膜は合金皮膜形成のほか、Sn皮膜の上にCu層やAg層を薄く形成しておき、溶融時に合金化させて設けることもできる。
In the case of a connector application, since a glossy appearance is preferred, it is necessary to form a reflow layer that has been heated, remelted and solidified together with the purpose of preventing whisker in the Sn-based film. In the case of a bright plating layer, whiskers are considerably suppressed by Ni undercoating or the like, but the risk of occurrence due to the aging environment remains. Therefore, after forming the matte plating layer of each system (metal, alloy, eutectoid, compound) of Sn, Sn-Cu, Sn-Ag, Sn-Bi, Sn-Zn, it is heated and remelted and solidified. Used as almost no reflow Sn-based plating layer. Other than Sn-Bi, a composition near the eutectic with a low melting point is easy to use.
In particular, Sn, Sn—Cu, and Sn—Ag alloys are excellent in heat resistance.
The Sn-Cu-based and Sn-Ag-based coatings can be provided by forming a thin Cu layer or Ag layer on the Sn coating and forming an alloy upon melting in addition to forming an alloy coating.

Sn又はSn合金層のリフロー処理、加熱再溶融凝固させる方法は、一般に加熱方法と温度、及び曝露時間によって決まる加熱雰囲気と条件に、皮膜形成後の本発明材料を晒す方法が用いられる。Sn系皮膜の融点は200℃前後であるが、短時間に連続的に加熱溶融させるためには、300℃以上で、熱を皮膜や金属基材に伝え易い循環式加熱やファン内蔵加熱炉のほか、樹脂の劣化や変色を防ぎ易い、金属基材の高周波による誘導加熱方式も用いることができる。なお、Sn系合金めっき層の形成には後述する金属層形成方法である湿式法を用いて、樹脂皮膜形成後に行われる。 As a method for reflow treatment of Sn or Sn alloy layer and heating and remelting and solidifying, a method of exposing the material of the present invention after film formation to a heating atmosphere and conditions generally determined by the heating method and temperature and the exposure time is used. The melting point of the Sn-based film is around 200 ° C. However, in order to heat and melt continuously in a short time, the heating of 300 ° C. or higher is easy to transfer heat to the film or the metal substrate, or the heating furnace with a built-in fan. In addition, an induction heating method using a high frequency of a metal base material that can easily prevent deterioration and discoloration of the resin can also be used. In addition, the formation of the Sn-based alloy plating layer is performed after the resin film is formed by using a wet method which is a metal layer forming method described later.

本発明の第2の実施形態は、金属基材上に少なくとも1層の金属層を有し、かつ前記樹脂皮膜は前記金属基材上に、直接、または前記金属層を介して設けられるものである。   The second embodiment of the present invention has at least one metal layer on a metal substrate, and the resin film is provided directly or via the metal layer on the metal substrate. is there.

図3は、本発明の第2の実施形態に係わるものを示す拡大断面図である。
金属基材1上の少なくとも絶縁を要する1箇所に耐熱性樹脂皮膜2が設けられており、耐熱性樹脂皮膜2が設けられている箇所以外の金属基材1上にNi層4およびリフローSnまたはSn合金めっき層3がこの順に設けられている。
FIG. 3 is an enlarged cross-sectional view showing the structure according to the second embodiment of the present invention.
A heat-resistant resin film 2 is provided at least at one place on the metal substrate 1 that requires insulation, and the Ni layer 4 and reflow Sn or the like on the metal substrate 1 other than the place where the heat-resistant resin film 2 is provided. The Sn alloy plating layer 3 is provided in this order.

図4は、本発明の第2の実施形態に係わるその他の実施態様を示す拡大断面図である。
金属基材1上にNi層4が設けられており、その上の絶縁を要する2箇所に耐熱性樹脂皮膜2が設けられており、耐熱性樹脂皮膜2が設けられている箇所以外のNi層4上にリフローSnまたはSn合金めっき層3が設けられている。
FIG. 4 is an enlarged sectional view showing another embodiment according to the second embodiment of the present invention.
The Ni layer 4 is provided on the metal substrate 1, the heat-resistant resin film 2 is provided at two places on which insulation is required, and the Ni layer other than the place where the heat-resistant resin film 2 is provided. A reflow Sn or Sn alloy plating layer 3 is provided on 4.

図3と4に示した実施形態は、耐熱性樹脂皮膜2が設けられている箇所以外の金属基材1上にリフローSnまたはSn合金めっき層3が設けられているので半田接合やリフロー半田実装などが容易に行える。また金属基材1成分の拡散がNi層4により阻止されるためリフローSnまたはSn合金めっき層3の変色が防止される。この他、図4に示したものについては、耐熱性樹脂皮膜2がNi層4上に設けられているので樹脂皮膜との密着性向上効果が得られる。
また、図3と4に示すように金属基材と表層との中間に金属層を設けたものは、金属基材1が良好に保護され、金属基材1の耐熱性、耐酸化性、耐食性などが向上する。下地にNi層またはCu層を設けたものは、Sn層の化合物化が十分抑制されて、耐熱性や耐ウィスカ性が高度に維持され推奨される。下地金属層を2層以上設けるとさらに効果的であるが、コストパフォーマンスの点で下地金属層は1層が適当である。
In the embodiment shown in FIGS. 3 and 4, since the reflow Sn or Sn alloy plating layer 3 is provided on the metal substrate 1 other than the place where the heat resistant resin film 2 is provided, solder bonding or reflow solder mounting is performed. Etc. can be easily performed. Further, since the diffusion of the metal base material 1 component is blocked by the Ni layer 4, discoloration of the reflow Sn or Sn alloy plating layer 3 is prevented. In addition, since the heat resistant resin film 2 is provided on the Ni layer 4 in the case shown in FIG. 4, the effect of improving the adhesion with the resin film can be obtained.
Also, as shown in FIGS. 3 and 4, the metal substrate 1 provided with a metal layer between the metal substrate and the surface layer is well protected, and the metal substrate 1 has heat resistance, oxidation resistance, and corrosion resistance. Etc. improve. An underlayer provided with a Ni layer or a Cu layer is recommended because the compounding of the Sn layer is sufficiently suppressed, and heat resistance and whisker resistance are highly maintained. It is more effective to provide two or more base metal layers, but one base metal layer is appropriate in terms of cost performance.

上記金属層は単層に設けても、多層に設けても良い。単層の場合、即ち、Sn系めっき層の場合は第1の実施形態において述べた。多層の場合、即ち、最外層にSn系めっき層は下地金属層を介して設けた場合、コストパフォーマンスの点から外層Sn系めっき層と下地金属層からなる2層であることがより好ましく、その厚みは0.1μm以上10μm以下の範囲が好ましい。多層を構成するそれぞれの1層の厚さは0.1μm以上10μm以下が好ましい。 The metal layer may be provided in a single layer or multiple layers. The case of a single layer, that is, the case of an Sn-based plating layer has been described in the first embodiment. In the case of multiple layers, that is, when the Sn-based plating layer is provided on the outermost layer via a base metal layer, it is more preferable that it is two layers consisting of an outer Sn-based plating layer and a base metal layer from the viewpoint of cost performance, The thickness is preferably in the range of 0.1 μm or more and 10 μm or less. The thickness of each layer constituting the multilayer is preferably 0.1 μm or more and 10 μm or less.

上記下地金属層の材料は、NiまたはCuの各系を用いるのが好ましい。下地層が2層以上の場合、樹脂皮膜やSn系めっき層に接する層にはCu、Ag、Pdの各系を用いることが好ましい。下地金属層の上にSn系金属めっき形成後に加熱再溶融凝固したSnまたはSn合金層とさせて、ウィスカ発生を防止する。
Ni系やCu系の下地層にも合金を用いることができる。またその構成は単体または単体複層で十分である。厚みは薄過ぎるとピンホールが多くなり、厚過ぎると加工時に割れが発生し易くなるので0.1〜2μm程度が望ましい。
The material of the base metal layer is preferably Ni or Cu. When there are two or more underlayers, Cu, Ag, and Pd systems are preferably used for the layer in contact with the resin film and the Sn-based plating layer. Whisker generation is prevented by forming an Sn or Sn alloy layer that has been remelted and solidified by heating after the formation of Sn-based metal plating on the underlying metal layer.
An alloy can also be used for the Ni-based or Cu-based underlayer. In addition, a single structure or a single multilayer structure is sufficient. If the thickness is too thin, the number of pinholes increases. If the thickness is too thick, cracks are likely to occur during processing, so about 0.1 to 2 μm is desirable.

下地層を1層以上のNiやCuの各系皮膜とし、最外層をSn系皮膜とする構成は一般的な必要特性を満足するうえ、経済的なため汎用される。   A structure in which the base layer is one or more Ni- or Cu-based coatings and the outermost layer is a Sn-based coating satisfies general required characteristics and is widely used because it is economical.

金属層は湿式法により設けるのが一般的である。
湿式法には浸漬置換処理法、無電解めっき法、電析法などがあるが、中でも電析法は金属層の厚みの均一性、厚み制御性、浴の安定性などの点で優れる。トータルコストも安い。
前記電析法は、市販浴や公知のめっき液を用い、金属基材をカソードとし、可溶性または不溶性アノードとの間に適切な相対速度に前記めっき液を擁して、定電流電析により行われる。
The metal layer is generally provided by a wet method.
As the wet method, there are an immersion substitution treatment method, an electroless plating method, an electrodeposition method, and the like. Among these, the electrodeposition method is excellent in terms of uniformity of thickness of the metal layer, thickness controllability, bath stability, and the like. Total cost is also cheap.
The electrodeposition method is performed by constant current electrodeposition using a commercially available bath or a known plating solution, using the metal substrate as a cathode, and holding the plating solution at an appropriate relative speed between a soluble or insoluble anode. .

部分的にめっき層を設けるには、不要部分をマスキングする方法、必要部分のみにスポット的にめっき液を供給する方法などが適用できる。めっき以外の箇所は金属基材が露出した状態にしておいても良い。   In order to partially provide the plating layer, a method of masking unnecessary portions, a method of supplying a plating solution in a spot manner only to necessary portions, or the like can be applied. The portions other than the plating may be left in a state where the metal substrate is exposed.

本発明の第3の実施形態は、下地処理されている金属基材または金属層の上に樹脂皮膜と再溶融凝固させたSnまたはSn合金金属めっき層を設ける。   In the third embodiment of the present invention, a Sn or Sn alloy metal plating layer remelted and solidified with a resin film is provided on a metal substrate or metal layer that has been subjected to a base treatment.

図5は、本発明の第3の実施形態に係わるものを示す拡大断面図である。
金属基材1にシランカップリング処理やチタネート系カップリング処理などのカップリング処理をはじめとする有機および無機結合の下地処理が施され、その下地処理層5上の絶縁を要する1箇所に耐熱性樹脂皮膜2が設けられており、耐熱性樹脂皮膜2が設けられている箇所以外の下地処理層5上にNi層4およびリフローSnまたはSn合金めっき層3がこの順に設けられている。この場合は金属基材1がシランカップリング処理されているので、金属基材1と、耐熱性樹脂皮膜2との密着性が向上する。
FIG. 5 is an enlarged cross-sectional view showing the structure according to the third embodiment of the present invention.
The metal substrate 1 is subjected to a base treatment of organic and inorganic bonds including a coupling treatment such as a silane coupling treatment or a titanate coupling treatment, and heat resistance is applied to one place requiring insulation on the base treatment layer 5. The resin film 2 is provided, and the Ni layer 4 and the reflow Sn or Sn alloy plating layer 3 are provided in this order on the base treatment layer 5 other than the place where the heat resistant resin film 2 is provided. In this case, since the metal substrate 1 is subjected to silane coupling treatment, the adhesion between the metal substrate 1 and the heat-resistant resin film 2 is improved.

本発明シールドケース用材料の耐熱性樹脂皮膜2が設けられていない箇所には、さらに銅材などのヒートシンクを設けて、放熱性を著しく高めることも可能である。特に、図3〜5に示す材料では、はんだ付けにより容易にヒートシンクを接合できる。
また、図1〜5にhは金属基材表面から樹脂皮膜表面までの高さを示す。
It is also possible to provide a heat sink such as a copper material at a location where the heat-resistant resin film 2 of the shield case material of the present invention is not provided, thereby significantly improving the heat dissipation. In particular, with the materials shown in FIGS. 3 to 5, the heat sink can be easily joined by soldering.
Moreover, h shows the height from the metal base material surface to the resin film surface in FIGS.

本発明においては、金属基材または金属層にシランカップリング処理やチタネート系カップリング処理などのカップリング処理をはじめとする有機及び無機結合の下地処理が施されていることも好ましい。金属基材または金属層が例えばシランカップリング処理されていると、金属基材または金属層と、耐熱性樹脂皮膜との密着性が向上する。
例えば、シランカップリング処理は、一般に、シランカップリング剤を溶解した水溶液に金属基材を浸漬して行われる。シランカップリング剤は、市販品の中から使用する耐熱性樹脂皮膜や前記樹脂皮膜の接着に適したものを選択する。特にはエポキシ系シランカップリング剤が推奨される。
In the present invention, it is also preferred that the metal substrate or the metal layer is subjected to organic and inorganic bond base treatment including coupling treatment such as silane coupling treatment and titanate coupling treatment. When the metal substrate or the metal layer is subjected to, for example, silane coupling treatment, the adhesion between the metal substrate or the metal layer and the heat resistant resin film is improved.
For example, the silane coupling treatment is generally performed by immersing a metal substrate in an aqueous solution in which a silane coupling agent is dissolved. As the silane coupling agent, a heat-resistant resin film to be used or a material suitable for adhesion of the resin film is selected from commercially available products. In particular, an epoxy-based silane coupling agent is recommended.

図6は、本発明に係わるその他の実施態様を示す平面図である。
金属基材1上の絶縁を要する箇所に耐熱性樹脂皮膜2がストライプ状に設けられている。耐熱性樹脂皮膜2が設けられている箇所以外の金属基材上にリフローSnまたはSn合金めっき層3、あるいはNi層4およびリフローSnまたはSn合金めっき層3をこの順に設けてもよい。また金属基材1にシランカップリング処理やチタネート系カップリング処理などのカップリング処理をはじめとする有機及び無機結合の下地処理層5上の絶縁を要する1箇所に耐熱性樹脂皮膜2を設け、耐熱性樹脂皮膜2が設けられている箇所以外の下地処理層5上にNi層4およびリフローSnまたはSn合金めっき層3をこの順に設けてもよい。
FIG. 6 is a plan view showing another embodiment according to the present invention.
A heat-resistant resin film 2 is provided in stripes on the metal substrate 1 where insulation is required. The reflow Sn or Sn alloy plating layer 3 or the Ni layer 4 and the reflow Sn or Sn alloy plating layer 3 may be provided in this order on a metal substrate other than the place where the heat resistant resin film 2 is provided. In addition, the metal substrate 1 is provided with a heat-resistant resin film 2 at one place that requires insulation on the organic and inorganic bond base treatment layer 5 including coupling treatment such as silane coupling treatment and titanate coupling treatment, The Ni layer 4 and the reflow Sn or Sn alloy plating layer 3 may be provided in this order on the base treatment layer 5 other than the place where the heat resistant resin film 2 is provided.

図7は、本発明のその他の実施形態を示す平面図である。
金属基材1上の絶縁を要する箇所に耐熱性樹脂皮膜2がスポット状に設けられている。その他は図6に示す実施態様と同様である。
FIG. 7 is a plan view showing another embodiment of the present invention.
A heat-resistant resin film 2 is provided in a spot shape on the metal substrate 1 where insulation is required. Others are the same as the embodiment shown in FIG.

以上に述べた本発明において金属基材には、打抜加工や曲げ加工、絞り成形などが可能な延性を有する材料、或いはばね性を有するものが用いられる。具体的には、洋白(Cu−Ni系合金)やリン青銅(Cu−Sn−P系合金)などのCu系材料、42アロイ(Fe−Ni系合金)やステンレスなどのFe系材料が挙げられ、特にはリン青銅が好ましい。
上記金属基材の電気伝導率は、電磁シールド性の観点から5%IACS以上が好ましく、10%IACS以上がさらに好ましい。また、比透磁率は1以上が好ましい。また、金属基材の厚みは0.01〜0.5mmが好ましく、0.05〜0.2mmのものがさらに好ましい。
上記金属基材は、例えば、所定の金属材料を溶解鋳造し、得られる鋳塊を、常法により、順に、熱間圧延、冷間圧延、均質化処理、および脱脂する工程により製造することができる。
上記金属基材とは、様々な形状の金属を指すが、その中でも主に金属板または金属条のことを指す。
In the present invention described above, as the metal base material, a material having ductility that can be punched, bent, drawn, or the like, or a material having a spring property is used. Specifically, Cu-based materials such as white (Cu-Ni-based alloy) and phosphor bronze (Cu-Sn-P-based alloy), and Fe-based materials such as 42 alloy (Fe-Ni-based alloy) and stainless steel are listed. In particular, phosphor bronze is preferred.
The electrical conductivity of the metal substrate is preferably 5% IACS or more, more preferably 10% IACS or more from the viewpoint of electromagnetic shielding properties. The relative permeability is preferably 1 or more. The thickness of the metal substrate is preferably 0.01 to 0.5 mm, and more preferably 0.05 to 0.2 mm.
The metal substrate can be produced, for example, by melting and casting a predetermined metal material, and sequentially obtaining the ingot obtained by a hot rolling process, a cold rolling process, a homogenization process, and a degreasing process in a conventional manner. it can.
Although the said metal base material points out the metal of various shapes, it points out mainly a metal plate or a metal strip among them.

また、本発明に係わる電気電子部品やコネクタのケースやシールドケースとは、それに限定されるものではないが、例えば、筐体、ケース、カバー、キャップなどが挙げられ、低背化部品筐体ケースキャップがさらに好ましい。本発明の金属材料は、例えば、筐体を形成する場合には、金属基材の耐熱性樹脂皮膜形成面を内側にして形成することが好ましい。 Further, the case of electric / electronic parts and connectors and the shield case according to the present invention are not limited thereto, but examples include a case, a case, a cover, a cap, etc. More preferred is a cap. For example, when forming a housing, the metal material of the present invention is preferably formed with the heat-resistant resin film-forming surface of the metal substrate facing inward.

更に、本発明の材料が用いられるコネクタとしては、それに限定されるものではないが、例えば、パーソナルコンピュータ、AV機器、ゲーム機、携帯機器などにおける、例えば、LCDやキーボード、マザーボードなどのプリント基板端子やFPCケーブルに接続されるコネクタや、薄型のカードコネクタなどが挙げられる。   Furthermore, the connector in which the material of the present invention is used is not limited thereto. For example, in a personal computer, AV device, game machine, portable device, etc., for example, a printed circuit board terminal such as an LCD, a keyboard, or a motherboard. Or a connector connected to an FPC cable or a thin card connector.

また、本発明の材料を用いたコネクタ部品は、それに限定されるものではないが、例えば、パソコン、ゲーム機、携帯電話、携帯情報端末、ノートパソコン、デジタルカメラ、デジタルビデオなどの電子電気通信機器におけるLCDやキーボード、マザーボードなどのリジッド基板やフレキシブル基板の端子及びケーブル接続や、無線や接触型の薄型カードとの接続などに用いることができる。 In addition, the connector parts using the material of the present invention are not limited thereto. For example, electronic telecommunications equipment such as a personal computer, a game machine, a mobile phone, a portable information terminal, a notebook computer, a digital camera, and a digital video. Can be used for connecting terminals and cables of rigid substrates such as LCDs, keyboards and motherboards, flexible substrates, and wireless or contact type thin cards.

なお、金属基材表面から樹脂皮膜表面までの高さが60μm以下であることが好ましく、2μm以上30μm以下がさらに好ましい。この厚さが厚すぎると、低背部品には不適であり、部品形成精度が低下する。   The height from the metal substrate surface to the resin film surface is preferably 60 μm or less, more preferably 2 μm or more and 30 μm or less. If this thickness is too thick, it is unsuitable for low-profile parts, and the part formation accuracy is reduced.

以下に、本発明を実施例により詳細に説明する。
実施例1
JIS C5210R(リン青銅、古河電工製)、C7701R(洋白、三菱電機メテックス製)、および、SUS304−CSP(ステンレス、日本金属製)の厚み0.1mm、幅20mmの条を元の金属素条とした。前記各条に電解脱脂、酸洗処理、水洗、乾燥の各工程をこの順に施した。なお、一部の条には乾燥工程前にシランカップリング溶液やトリアジン溶液を用いて下地処理を施した。
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
JIS C5210R (phosphor bronze, manufactured by Furukawa Electric), C7701R (Yakuhoku, manufactured by Mitsubishi Electric Metecs), and SUS304-CSP (stainless steel, manufactured by Nippon Metals Co., Ltd.) with a thickness of 0.1 mm and a width of 20 mm are used as the original metal strip. It was. Each of the strips was subjected to electrolytic degreasing, pickling treatment, water washing and drying in this order. Some strips were subjected to a ground treatment using a silane coupling solution or a triazine solution before the drying step.

次に、乾燥後の各条の絶縁を要する箇所に、下記(a)または(b)のいずれかの方法により厚み3μm以上の耐熱性樹脂皮膜を設け、試料No.1〜21を作成した。
(a)n−メチル2−ピロリドンを溶媒とするポリイミド溶液または前躯体溶液、ポリアミドイミド溶液または前躯体溶液、またはメチルエチルケトンを溶媒とするエポキシ樹脂溶液の各ワニスを、条(金属基材)の片面の幅方向中央部分にストライプ状(幅10mm)に塗装し、次いで加熱処理を施して溶媒揮発させると共に、樹脂の硬化または重合させて耐熱性樹脂皮膜を設けた。
(b)予め接着剤(厚み15μm)を塗布した耐熱性ポリイミド樹脂フィルム(厚み12.5μm)を幅3mmにスリットし、これを条(金属基材)の片面の幅方向中央部分に2mm間隔に2本貼り付け、これを2本の誘導加熱ロール間で加熱圧着し、さらに二段加熱処理により接着剤を溶融硬化させて接合した。
Next, a heat-resistant resin film having a thickness of 3 μm or more is provided by a method of either (a) or (b) below at a place where insulation of each strip after drying is required. 1-21 were created.
(A) One side of a strip (metal substrate) of each varnish of a polyimide solution or precursor solution using n-methyl 2-pyrrolidone as a solvent, a polyamideimide solution or precursor solution, or an epoxy resin solution using methyl ethyl ketone as a solvent The film was coated in a stripe shape (width 10 mm) at the center in the width direction, and then subjected to heat treatment to evaporate the solvent, and the resin was cured or polymerized to provide a heat resistant resin film.
(B) A heat-resistant polyimide resin film (thickness 12.5 μm) pre-applied with an adhesive (thickness 15 μm) is slit to a width of 3 mm, and this is spaced at intervals of 2 mm at the center in the width direction on one side of the strip (metal substrate). Two of them were pasted and heat-pressed between two induction heating rolls, and the adhesive was melt-cured and joined by two-stage heat treatment.

前記耐熱性樹脂皮膜を部分的に設けた条を用いて、金属基材からの耐熱性樹脂皮膜の引き剥がし強度をテンシロン試験機により調べた。 Using a strip partially provided with the heat-resistant resin film, the peel strength of the heat-resistant resin film from the metal substrate was examined with a Tensilon tester.

前記条の耐熱性樹脂皮膜が形成されていない面に金属層を市販または公知の電気めっき浴を用いて電気めっきし、条材料を製造した。次いで、Sn系金属層を形成した材料には加熱処理によりリフローさせた光沢のあるSn系金属層とした。これらの試料を50℃の恒温槽に1500時間入れた後、ウィスカなどが発生したかどうかを顕微鏡にて表面観察した。   A metal layer was electroplated using a commercially available or publicly known electroplating bath on the surface of the strip where the heat-resistant resin film was not formed to produce a strip material. Next, the material on which the Sn-based metal layer was formed was a glossy Sn-based metal layer reflowed by heat treatment. After these samples were put in a thermostat at 50 ° C. for 1500 hours, the surface was observed with a microscope to determine whether whiskers or the like were generated.

次に、前記条材料を短尺に切断して概ね15mm角または5mm角に近い形状に打抜き、これをカバーに絞り成型した。   Next, the strip material was cut into short pieces and punched into a shape approximately 15 mm square or 5 mm square, and this was drawn into a cover.

前記カバーを試験用基板の部品(チップ数5、高さ2mm)の覆いに用い、前記樹脂と金属基材との間に直流100Vを1分印加後、1分放電した時点での絶縁抵抗を調べた。次に前記試験用基板を5時間連続作動させた後のカバー内部の温度(部品内温度)を測定して前記カバーの放熱性は調べた。さらに前記カバーを280℃の半田浴に3分間フロートした後、その外観を観察してリフロー耐熱性を調べた。   The cover is used to cover the parts of the test substrate (5 chips, 2 mm in height), and after 100 minutes of direct current is applied between the resin and the metal substrate for 1 minute, the insulation resistance when 1 minute is discharged. Examined. Next, the temperature inside the cover (in-part temperature) after the test substrate was continuously operated for 5 hours was measured to examine the heat dissipation of the cover. Furthermore, after the cover was floated in a solder bath at 280 ° C. for 3 minutes, the appearance was observed to examine the reflow heat resistance.

本実施例において、樹脂皮膜について、形成方法、皮膜の厚さと種類、また、樹脂皮膜は上記(b)の方法で形成した場合は接着剤に用いた樹脂の種類、Snめっき層については、めっき層の厚さと材質、その他については、下地めっき層の種類、シランカップリング溶液やトリアジン溶液を用いた下地処理の有無について調査した。調査の結果を表1と表2のNo.1〜No.21に示す。また、表1と表2には条材料の構成を併記した。なお、表1と表2において、樹脂形成方法の欄の「塗装」は上記(a)の方法で、「フィルム」は上記(b)の方法で、それぞれ皮膜が設けられたことを示す。また、表1の接着材の種類の欄の「ポリイミド」、「エポキシ」、「アクリル」および「シリコン」は、それぞれ上記(b)の方法における接着剤に用いられた樹脂の種類を示す。   In this example, regarding the resin film, the forming method, the thickness and the type of the film, and when the resin film is formed by the above method (b), the type of the resin used for the adhesive, and the Sn plating layer is plated. Regarding the thickness and material of the layer, etc., the type of the base plating layer and the presence or absence of the base treatment using a silane coupling solution or a triazine solution were investigated. The results of the survey are shown in Tables 1 and 2. 1-No. 21. Tables 1 and 2 also show the composition of the strip material. In Tables 1 and 2, “Coating” in the column of the resin forming method indicates that the coating is provided by the method (a), and “Film” indicates that the coating is provided by the method (b). Further, “Polyimide”, “Epoxy”, “Acrylic”, and “Silicon” in the column of adhesive type in Table 1 indicate the type of resin used for the adhesive in the method (b).

実施例2
耐熱性樹脂皮膜の厚みを2μmとした他は、実施例1の試料No.1と同じ方法により条材料(試料No.22)を製造し、Sn金属層は加熱処理によりリフローさせた。実施例1と同じ試験を行った。試験結果および条材料の構成を表2に示す。
Example 2
Sample No. 1 in Example 1 except that the thickness of the heat resistant resin film was 2 μm. The strip material (sample No. 22) was produced by the same method as in Example 1, and the Sn metal layer was reflowed by heat treatment. The same test as in Example 1 was performed. Table 2 shows the test results and the composition of the strip material.

実施例3
実施例1における(a)法により金属基材片面全面に耐熱性樹脂皮膜を設け(片面塗装)、耐熱性樹脂皮膜の厚さを7μmとした以外は、実施例1の試料No.2と同じ方法で条材料(試料No.23)を作成し、Sn金属層は加熱処理によりリフローさせた。また、実施例1における(a)法により金属基材片面全面に耐熱性樹脂皮膜を設け(片面塗装)、耐熱性樹脂皮膜の厚さを6μmとし、下地めっきの厚さを0.1μmとした以外は、実施例1の試料No.9と同じ方法で条材料(試料No.24)を作成した。これらを実施例1と同じ試験を行った。試験結果および条材料の構成を表2において示す。
Example 3
Sample No. 1 of Example 1 was used except that a heat-resistant resin film was provided on the entire surface of one side of the metal substrate by the method (a) in Example 1 (single-sided coating), and the thickness of the heat-resistant resin film was 7 μm. A strip material (sample No. 23) was prepared in the same manner as in No. 2, and the Sn metal layer was reflowed by heat treatment. In addition, a heat-resistant resin film was provided on the entire surface of one side of the metal substrate by the method (a) in Example 1 (single-sided coating), the thickness of the heat-resistant resin film was 6 μm, and the thickness of the base plating was 0.1 μm. Except for the sample No. in Example 1. A strip material (Sample No. 24) was prepared in the same manner as in Example 9. These were subjected to the same test as in Example 1. The test results and the composition of the strip material are shown in Table 2.

比較例
比較例として、りん青銅及び洋白の条材の表面に金属層を電気めっきしただけのもの(試料No.25とNo.26)を製造し、実施例1と同じ試験を行った。Sn金属層は加熱リフローさせずにめっき層のままとした。試験結果および条材料の構成を表2に示す。
Comparative Example As a comparative example, a material (sample No. 25 and No. 26) in which a metal layer was simply electroplated on the surface of phosphor bronze and white strips was manufactured, and the same test as in Example 1 was performed. The Sn metal layer was left as a plating layer without being heated and reflowed. Table 2 shows the test results and the composition of the strip material.

なお、実施例において、基材表面から耐熱性樹脂皮膜表面までの高さh(図1〜5参照)はいずれも60μm以下とした。   In the examples, the height h (see FIGS. 1 to 5) from the surface of the base material to the surface of the heat resistant resin film was 60 μm or less.

Figure 2006086513
Figure 2006086513

Figure 2006086513
*:リフロー耐熱性評価について、◎良好、○樹脂若干変色あるが耐熱性は良好、△はんだ接合可能な程度。
Figure 2006086513
*: Regarding reflow heat resistance evaluation, ◎ Good, ○ Resin slightly discolored, but heat resistance is good, △ Solderable.

表1と表2から明らかなように、実施例1〜3で作成した本発明例No.1〜24の材料は、いずれも樹脂皮膜の引き剥がし強度および絶縁抵抗が高く、カバー内部の温度が部品使用上限温度70℃よりも低く、かつリフロー耐熱性に優れ、ウィスカの発生危険のない耐熱実装性を確保出来るものであった。
No.3と4、並びに、No.23と24を比較すると樹脂形成前にシランカップリング処理すると引き剥がし強度が向上することが分かる。
実施例2で作成したNo.22の材料は耐熱性樹脂皮膜の厚みが比較的薄かったため、引き剥がし強度および絶縁抵抗が若干低下した。また樹脂に変色が認められたが、実用上支障がない程度であった。
実施例3で作成したNo.23、24の材料は金属基材片面全体に耐熱性樹脂皮膜を設けたためカバー内部温度が高めになるものの機能に問題は無く実用できた。
As is apparent from Tables 1 and 2, Example Nos. Of the present invention prepared in Examples 1 to 3 were used. Any of the materials 1 to 24 has high peeling strength and insulation resistance of the resin film, the temperature inside the cover is lower than the upper limit temperature for use of the component, 70 ° C., excellent reflow heat resistance, and no risk of whisker generation. It was possible to ensure mountability.
No. 3 and 4, and When comparing 23 and 24, it can be seen that if the silane coupling treatment is performed before the resin is formed, the peel strength is improved.
No. 2 prepared in Example 2. Since the material No. 22 had a relatively thin heat-resistant resin film, the peel strength and insulation resistance slightly decreased. Further, although discoloration was observed in the resin, it was in a level where there was no practical problem.
No. 1 prepared in Example 3. Since the materials of Nos. 23 and 24 were provided with a heat-resistant resin film on one side of the metal substrate, the internal temperature of the cover was increased, but the functions were not problematic and were practical.

これに対し、比較例(No.25,26)の材料は耐熱性樹脂皮膜が設けられていないため絶縁性に劣り、いずれも低背化に十分対応できないものであり、しかも恒温加速試験後に最外金属層のSn層からウィスカやその前段階の粒状突起が観察され、部品使用の際に短絡などの欠陥を生ずる恐れのあることが分かった。 On the other hand, the materials of Comparative Examples (No. 25 and 26) are inferior in insulation because they are not provided with a heat-resistant resin film, and none of them can sufficiently cope with the reduction in height, and after the constant temperature acceleration test, Whiskers and granular protrusions at the previous stage were observed from the Sn layer of the outer metal layer, and it was found that there is a possibility of causing defects such as a short circuit when using the parts.

本発明の第1の実施形態に係わるものを示す拡大断面図である。It is an expanded sectional view showing a thing concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係わるその他の実施態様を示す拡大断面図である。It is an expanded sectional view showing other modes concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係わるものを示す拡大断面図である。It is an expanded sectional view showing a thing concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係わるその他の実施態様を示す拡大断面図である。It is an expanded sectional view showing other modes concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係わるものを示す拡大断面図である。It is an expanded sectional view showing a thing concerning a 3rd embodiment of the present invention. 本発明のその他の実施形態を示す平面図である。It is a top view which shows other embodiment of this invention. 本発明のその他の実施形態を示す平面図である。It is a top view which shows other embodiment of this invention.

符号の説明Explanation of symbols

1 金属基材
2 耐熱性樹脂皮膜
3 リフローSnまたはSn合金めっき層
4 Ni層
5 下地処理層




DESCRIPTION OF SYMBOLS 1 Metal base material 2 Heat resistant resin film 3 Reflow Sn or Sn alloy plating layer 4 Ni layer 5 Ground treatment layer




Claims (7)

金属基材上の一部に樹脂皮膜を有し、前記樹脂皮膜が設けられない部位の金属基材上の少なくとも一部にSnまたはSn合金のめっき層を有し、前記SnまたはSn合金のめっき層が再溶融凝固させて設けられたことを特徴とする電気電子部品ケースまたはシールドケースの材料。   A part of the metal base material has a resin film, and a part of the metal base material where the resin film is not provided has a Sn or Sn alloy plating layer, and the Sn or Sn alloy plating A material for an electric / electronic component case or shield case, wherein the layer is provided by remelting and solidifying. 前記金属基材上に設けられた樹脂皮膜が耐熱性樹脂であることを特徴とする請求項1記載の電気電子部品ケースまたはシールドケースの材料。   The material for an electric / electronic component case or shield case according to claim 1, wherein the resin film provided on the metal substrate is a heat-resistant resin. 前記金属基材上に少なくとも1層の金属層を有し、かつ前記樹脂皮膜は前記金属基材上に、直接、または、前記金属層を介して設けられていることを特徴とする請求項1または2記載の電気電子部品ケースまたはシールドケースの材料。   The metal substrate has at least one metal layer, and the resin film is provided on the metal substrate directly or via the metal layer. Or the material of the electrical-electronic component case or shield case of 2. 前記金属基材の表面、または、前記金属層の表面に下地処理層が設けられていることを特徴とする請求項1〜3のいずれか1項に記載の電気電子部品ケースまたはシールドケースの材料。   The material for an electric / electronic component case or shield case according to any one of claims 1 to 3, wherein a base treatment layer is provided on the surface of the metal base material or the surface of the metal layer. . 前記金属基材の表面から樹脂皮膜の表面までの高さが60ミクロン以下であることを特徴とする請求項1〜4のいずれか1項に記載の電気電子部品ケースまたはシールドケースの材料。   The material from the surface of the metal substrate to the surface of the resin film is 60 microns or less, and the material for an electric / electronic component case or shield case according to any one of claims 1 to 4. 請求項1〜5のいずれか1項に記載の電気電子部品ケースまたはシールドケースの材料が用いられたことを特徴とする電気電子部品ケースまたはシールドケース。   An electrical / electronic component case or shield case, wherein the material of the electrical / electronic component case or shield case according to claim 1 is used. 清浄処理した金属基材、前記金属基材上に設けられた金属層、前記金属基材上に設けられた下地処理層、前記金属層上に設けられた下地処理層のいずれかの表面の一部に樹脂皮膜を形成し、次いで、前記樹脂皮膜が設けられていない前記いずれかの表面にSnまたはSn合金のめっき層を設けた後に、リフロー処理されることを特徴とする電気電子部品ケースまたはシールドケースの材料の製造方法。



One surface of any one of a cleaned metal base, a metal layer provided on the metal base, a base treatment layer provided on the metal base, and a base treatment layer provided on the metal layer A resin film is formed on the part, and then a plating layer of Sn or Sn alloy is provided on any of the surfaces where the resin film is not provided, and then reflow treatment is performed. A method of manufacturing a shield case material.



JP2005233882A 2004-08-16 2005-08-12 Material of electric and electronic component case or shield case and its manufacturing method Pending JP2006086513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233882A JP2006086513A (en) 2004-08-16 2005-08-12 Material of electric and electronic component case or shield case and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004236747 2004-08-16
JP2005233882A JP2006086513A (en) 2004-08-16 2005-08-12 Material of electric and electronic component case or shield case and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006086513A true JP2006086513A (en) 2006-03-30

Family

ID=36164716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233882A Pending JP2006086513A (en) 2004-08-16 2005-08-12 Material of electric and electronic component case or shield case and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006086513A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299722A (en) * 2006-04-06 2007-11-15 Hitachi Cable Ltd Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy
EP2119812A1 (en) * 2006-12-27 2009-11-18 Furukawa Electric Co., Ltd. Composite material for electric and electronic components, electric and electronic components, and method for manufacturing composite material for electric and electronic components
WO2009157458A1 (en) 2008-06-24 2009-12-30 古河電気工業株式会社 Composite material for electrical/electronic component, method for producing the same and electrical/electronic component
WO2009157456A1 (en) * 2008-06-24 2009-12-30 古河電気工業株式会社 Composite material for electrical/electronic component and electrical/electronic component using the same
WO2009157457A1 (en) * 2008-06-24 2009-12-30 古河電気工業株式会社 Composite material for electrical/electronic component and electrical/electronic component using the same
JP2010228306A (en) * 2009-03-27 2010-10-14 Furukawa Electric Co Ltd:The Composite material for electric and electronic components, electric and electronic components using the composite material and method for manufacturing composite material for electric and electronic components
JP2010245098A (en) * 2009-04-01 2010-10-28 Mitsubishi Shindoh Co Ltd Metal core substrate, conductive member for metal plate, and manufacturing method thereof
JP2011192652A (en) * 2006-04-06 2011-09-29 Hitachi Cable Ltd Wiring conductor, terminal connecting part, and pb-free solder alloy
CN102510712A (en) * 2011-11-14 2012-06-20 广州方邦电子有限公司 Paper-thin screened film with extremely high screening efficiency and manufacturing method therefor
JP5619307B1 (en) * 2014-01-06 2014-11-05 Jx日鉱日石金属株式会社 Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable
CN104868883A (en) * 2015-05-08 2015-08-26 长安大学 Signal processing circuit for output signal of acoustic surface wave oscillator
JP2016084528A (en) * 2014-10-22 2016-05-19 Jx金属株式会社 Copper heat releasing material, copper foil with carrier, connector, terminal, laminate, shield material, printed wiring board, metal processing member, electronic apparatus and manufacturing method of printed wiring board
CN107012489A (en) * 2016-01-06 2017-08-04 应用材料公司 System and method for covering workpiece features during electrochemical deposition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299722A (en) * 2006-04-06 2007-11-15 Hitachi Cable Ltd Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy
US8138606B2 (en) 2006-04-06 2012-03-20 Hitachi Cable, Ltd. Wiring conductor, method for fabricating same, terminal connecting assembly, and Pb-free solder alloy
JP2011192652A (en) * 2006-04-06 2011-09-29 Hitachi Cable Ltd Wiring conductor, terminal connecting part, and pb-free solder alloy
EP2119812A4 (en) * 2006-12-27 2010-04-14 Furukawa Electric Co Ltd Composite material for electric and electronic components, electric and electronic components, and method for manufacturing composite material for electric and electronic components
EP2119812A1 (en) * 2006-12-27 2009-11-18 Furukawa Electric Co., Ltd. Composite material for electric and electronic components, electric and electronic components, and method for manufacturing composite material for electric and electronic components
JP4748550B2 (en) * 2008-06-24 2011-08-17 古河電気工業株式会社 Composite material for electric and electronic parts and electric and electronic parts using the same
WO2009157457A1 (en) * 2008-06-24 2009-12-30 古河電気工業株式会社 Composite material for electrical/electronic component and electrical/electronic component using the same
US8158269B2 (en) 2008-06-24 2012-04-17 The Furukawa Electric Co., Ltd. Composite material for electrical/electronic part and electrical/electronic part using the same
US8337997B2 (en) 2008-06-24 2012-12-25 The Furukawa Electric Co., Ltd. Composite material for electrical/electronic part and electrical/electronic part using the same
JP4748551B2 (en) * 2008-06-24 2011-08-17 古河電気工業株式会社 COMPOSITE MATERIAL FOR ELECTRIC AND ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND ELECTRIC AND ELECTRONIC COMPONENT
WO2009157458A1 (en) 2008-06-24 2009-12-30 古河電気工業株式会社 Composite material for electrical/electronic component, method for producing the same and electrical/electronic component
US8110291B2 (en) 2008-06-24 2012-02-07 The Furukawa Electric Co., Ltd. Composite material for electric/electronic part, production method thereof, and electric/electronic part
WO2009157456A1 (en) * 2008-06-24 2009-12-30 古河電気工業株式会社 Composite material for electrical/electronic component and electrical/electronic component using the same
TWI449810B (en) * 2008-06-24 2014-08-21 Furukawa Electric Co Ltd Electrical and electronic components for the use of composite materials and electrical and electronic components
JP2010228306A (en) * 2009-03-27 2010-10-14 Furukawa Electric Co Ltd:The Composite material for electric and electronic components, electric and electronic components using the composite material and method for manufacturing composite material for electric and electronic components
JP2010245098A (en) * 2009-04-01 2010-10-28 Mitsubishi Shindoh Co Ltd Metal core substrate, conductive member for metal plate, and manufacturing method thereof
CN102510712A (en) * 2011-11-14 2012-06-20 广州方邦电子有限公司 Paper-thin screened film with extremely high screening efficiency and manufacturing method therefor
JP5619307B1 (en) * 2014-01-06 2014-11-05 Jx日鉱日石金属株式会社 Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable
JP2016084528A (en) * 2014-10-22 2016-05-19 Jx金属株式会社 Copper heat releasing material, copper foil with carrier, connector, terminal, laminate, shield material, printed wiring board, metal processing member, electronic apparatus and manufacturing method of printed wiring board
US10464291B2 (en) 2014-10-22 2019-11-05 Jx Nippon Mining & Metals Corporation Copper heat dissipation material, carrier-attached copper foil, connector, terminal, laminate, shield material, printed-wiring board, metal processed member, electronic device and method for manufacturing the printed wiring board
CN104868883A (en) * 2015-05-08 2015-08-26 长安大学 Signal processing circuit for output signal of acoustic surface wave oscillator
US11987897B2 (en) 2016-01-06 2024-05-21 Applied Materials, Inc. Systems and methods for shielding features of a workpiece during electrochemical deposition
CN107012489A (en) * 2016-01-06 2017-08-04 应用材料公司 System and method for covering workpiece features during electrochemical deposition

Similar Documents

Publication Publication Date Title
JP2006086513A (en) Material of electric and electronic component case or shield case and its manufacturing method
US6586683B2 (en) Printed circuit board with mixed metallurgy pads and method of fabrication
JP4748551B2 (en) COMPOSITE MATERIAL FOR ELECTRIC AND ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND ELECTRIC AND ELECTRONIC COMPONENT
US20050281994A1 (en) Metallic material for electric or electronic parts
US20080171138A1 (en) Process For Producing A Printed Wiring Board
CN110402020B (en) Flexible printed circuit board and manufacturing method thereof
EP3432693A1 (en) Encapsulation of circuit trace
JP2004197224A (en) Metallic material for electric and electronic component
JP4975976B2 (en) Material for electrical and electronic parts and method for producing the same
JP2008098613A (en) Flexible print circuit board
JP4316652B1 (en) COMPOSITE MATERIAL FOR ELECTRICAL AND ELECTRONIC COMPONENT, ELECTRIC ELECTRONIC COMPONENT AND METHOD FOR PRODUCING COMPOSITE MATERIAL FOR ELECTRIC ELECTRONIC ELECTRONIC COMPONENT
JP2006137184A (en) Metallic material for electrical/electronic components and its manufacturing method
JPH06105827B2 (en) Printed wiring board
JP4549807B2 (en) Multilayer printed wiring board manufacturing method, multilayer printed wiring board, and electronic device
TWI354517B (en)
KR20050106966A (en) Fpcb production method
US20090283305A1 (en) Tin-silver compound coating on printed circuit boards
JP4324032B2 (en) Flexible printed circuit board having component mounting portion and electrolytic plating method
JP5323418B2 (en) Composite materials for electrical and electronic parts and electrical and electronic parts
JP4856745B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP2008244273A (en) Circuit board, electronic device using circuit board, and manufacturing method of circuit board
JP2005039303A (en) Method of manufacturing wiring board
JP2000299242A (en) Ceramic electronic component and manufacture of the same
JP2005039302A (en) Method of manufacturing wiring board
JPH08213728A (en) Flexible wiring board