JP4318449B2 - Lead-free solder alloy - Google Patents

Lead-free solder alloy Download PDF

Info

Publication number
JP4318449B2
JP4318449B2 JP2002351005A JP2002351005A JP4318449B2 JP 4318449 B2 JP4318449 B2 JP 4318449B2 JP 2002351005 A JP2002351005 A JP 2002351005A JP 2002351005 A JP2002351005 A JP 2002351005A JP 4318449 B2 JP4318449 B2 JP 4318449B2
Authority
JP
Japan
Prior art keywords
lead
free solder
mass
solder alloy
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002351005A
Other languages
Japanese (ja)
Other versions
JP2004181485A (en
Inventor
稔 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Priority to JP2002351005A priority Critical patent/JP4318449B2/en
Publication of JP2004181485A publication Critical patent/JP2004181485A/en
Application granted granted Critical
Publication of JP4318449B2 publication Critical patent/JP4318449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、鉛フリーはんだ合金、特にコイルの端部のはんだ付けや予備メッキするのに適したSn主成分の鉛フリーはんだ合金に関する。
【0002】
【従来の技術】
電子機器にはトランスのようにリード部分に銅細線が巻かれたコイル部品が使われ、またコンピューターのディスクドライブや冷却ファン等のモーターにはやはりコイルを巻いた部品が使われている。これらのコイルは導通をとるため、端部が電子機器やモーターの端子とはんだ付けされる。
【0003】
一般にコイル部品の銅線は、表面にエナメルが塗装され、さらにその上にポリウレタン樹脂が被覆されているため、このままではコイル端部と端子とは、はんだ付けができない。そこではんだ付けするときには、コイル端部のエナメルやポリウレタン樹脂(以下、被覆材という)を除去しなければならない。この被覆材の除去は、機械的に刃物で剥がすことも考えられるが、機械的除去は手間がかかって生産性が悪い。そこでコイル端部の被覆材の除去は、被覆材を熱で溶かして除去する方法が採られている。被覆材を熱で除去する方法とは、溶融はんだ中にコイル端部を浸漬することにより、溶融はんだの熱で被覆材を溶かして除去するものである。
【0004】
ところでコイル端部を端子にはんだ付けするときは、良好なはんだ付け部を得るために、コイル端部に予め予備メッキを施しておく。一般にコイル端部の予備メッキは、溶融はんだ中にコイル端部を浸漬することにより行うが、前述の被覆材の除去でもコイル端部を溶融はんだに浸漬することから、この溶融はんだへのコイル端部の浸漬は、被覆材の除去と同時に予備メッキを行うという合理的な作業ができることになる。
【0005】
コイル端部の被覆材の除去と予備メッキは、コイル端部にフラックスを塗布し、その後、該端部を溶融はんだ中に浸漬する。すると溶融はんだの熱により被覆材が溶け、またコイル端部に塗布したフラックスが浸漬したコイル端部の周囲に浮く。従って、被覆材が除去され、銅線が露出したところにフラックスが作用して、溶融はんだが銅線に金属的に接合する。
【0006】
コイル端部の予備メッキとして、従来はPb-Snはんだを使用していたが、Pb-SnはんだはPb公害のため使用が規制されるようになってきたことから、近時はPbを含まない鉛フリーはんだを使用するようになってきた。コイル端部のはんだ付けの場合、被覆材を溶解、除去するため溶融はんだの温度を400℃近傍としなければならない。鉛フリーはんだにおいて溶融はんだの温度を高くすると、溶融はんだ表面の酸化が進行して大量の酸化物が発生する。該酸化物の大量発生は、はんだ付け部に付着する量も多くなって製品の外観特性を低下させるとともに、高価な鉛フリーはんだが酸化して廃棄されるため経済的にも好ましいものではない。
【0007】
鉛フリー合金の酸化物抑制対策としては、P、Geの添加が250℃近傍において有効であることが報告されている(例えば文献1参照)。またSn-Cu系鉛フリーはんだ合金にやはり酸化物抑制策としてGeを入れたもの(例えば文献2)やGaを入れたもの(例えば文献3)がある。
【0008】
【特許文献1】
特開平11-77366号公報(第2頁0009)
【特許文献2】
特開平11-77367号公報(第3頁0023)
【特許文献3】
特開平10-291087号公報(第3頁0006)
【0009】
【発明が解決しようとする課題】
ところで、溶融はんだ表面の酸化が進行する要因は、はんだ表面に形成される酸化物の主成分がSnであり、該Snが大気中の酸素で容易に酸化して、それが進行するためと考えられる。P、Ge、Gaを単独で添加した従来の酸化抑制鉛フリーはんだでは、250℃近傍において酸化は抑制されるが、400℃近傍では酸化の抑制効果は得られない。本発明は、400℃近傍で酸化抑制効果を示す鉛フリーはんだ合金を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、Sn主成分に対して、P、Ge、Gaは250℃近傍において単独の添加で酸化抑制効果があるが、Gaを添加したものに、さらにPおよび/またはGeを添加すると、Gaとの相乗作用で400℃近傍でも耐酸化抑制効果があることを知り、本発明を完成させた。
【0011】
請求項1は、主成分がSnであり、Cuが3〜8質量%、Gaが0.005〜0.1質量%、およびP、Geのうちの少なくとも1種以上が0.001〜0.2質量%添加されているとともに液相線温度が420℃以下であることを特徴とする鉛フリーはんだ合金である。
【0012】
請求項2は、銅食われ抑制元素が添加されていることを特徴とする請求項1の鉛フリーはんだ合金である。
【0013】
請求項3は、前記銅食われ抑制元素として、Co、Niのうちの少なくとも1種以上が0.01〜3質量%添加されていることを特徴とする請求項2記載の鉛フリーはんだ合金である。
【0014】
請求項4は、濡れ性改善元素が添加されている請求項1〜3記載の鉛フリーはんだ合金である。
【0015】
請求項5は、前記濡れ性改善元素として、Agが0.005〜2質量%添加されていることを特徴とする請求項4記載の鉛フリーはんだ合金である。
【0016】
【発明の実施の形態】
コイルの被覆材であるエナメルやポリウレタン樹脂の被覆材を除去する場合、400℃近傍まで加熱しなければならない。溶融はんだに物品を浸漬してはんだ付けする場合の温度は、部品の熱容量にもよるが、液相線温度+20〜50℃で行うのが一般的である。しかしながら、はんだ付け温度が470℃以上になると、コイル端部を溶融はんだに浸漬したときに被覆材が瞬時に炭化してコイル端部に付着し、これがはんだの金属的接合を妨げるようになる。そこでコイル端部の予備メッキに使用するはんだ合金は、はんだ付け温度が470℃以下となるように、はんだ液相線温度420℃以下のはんだ合金が望ましい。またはんだ付け温度が470℃以上になると、銅食われが激しくなってしまう。
【0017】
本発明の鉛フリーはんだ合金では、銅食われ防止効果のあるCuが3質量%よりも少ないと銅食われ防止の効果が現れず、しかるにCuを8質量%よりも多く添加すると、液相線温度が420℃以上となり、銅食われが激しくなるとともに、はんだ付け性が悪くなる。
【0018】
本発明の鉛フリーはんだ合金はSn-Cu系合金に対してGaを添加するとともにPおよび/またはGeを添加することで従来のSn-Cuはんだ合金よりも耐酸化性を改善したものである。Gaは0.005質量%より少ない添加では酸化抑制効果が現れず、しかるに0.1質量%よりも多くなると、はんだ付け性を阻害するようになる。
【0019】
Gaを添加したSn-Cu系合金にP、Geを1種以上同時に添加すると高温時における酸化抑制効果が現れる。ここでのP、Geの添加量は、それぞれ単独,或いは同時の添加でも添加量が0.001質量%より少ないと高温での酸化抑制効果が現れず、0.2質量%を超えて添加されるとGa同様はんだ付け性を阻害するようになる
【0020】
Sn-Cu系合金では400℃近傍における銅食われが激しいため、銅食われ防止効果のあるCoやNiを1種以上添加しておくこともできる。NiとCoは添加量が0.01質量%よりも少ない添加では、その効果が現れず、しかるにNi、Coの添加量が各々3質量%を超えて添加すると液相線温度が本発明が目的とする420℃を超えてしまう。
【0021】
溶融はんだにコイル端部を浸漬したときに、溶融はんだはコイル端部の浸漬した部分まで十分に濡れなければならないが、Sn-Cu-Ga-P/Ge系鉛フリーはんだは濡れ性が十分でなく、溶融はんだに浸漬した部分まで濡れなかったり、未はんだが発生したりすることがある。このような場合、濡れ性改善元素を添加してもよい。濡れ性改善元素としてはAgがある。Agの添加が0.05質量%よりも少ないと濡れ性向上効果が現れず、しかるに2質量%より多く添加しても、それ以上の効果は期待できないばかりでなく、高価なAgの大量の添加は経済的に好ましいものではない。
【0022】
【実施例】
本発明の実施例と比較例を表1に示す。
【0023】
【表1】

Figure 0004318449
【0024】
表1の説明
酸化物発生量:はんだ槽の中ではんだを440℃の温度で溶融状態にしておく。次に、30秒毎にはんだ表面に形成された酸化被膜を7回掻き取りその重量の合計を測定する。
【0025】
実験結果からも明らかなように、本発明の鉛フリーはんだ合金は、従来のP、Ge、Gaを単独に添加したSn-Cu系鉛フリーはんだ合金よりも400℃近傍での酸化物の発生量が少なく酸化が抑制されていることが分かる。
【0026】
【発明の効果】
以上説明したように、本発明の鉛フリーはんだ合金は酸化が容易に進行するSn主成分であるにもかかわらず、酸化の進行が抑制され、メッキ表面への酸化屑のの付着を防ぎ、さらに廃棄処分される酸化屑を減少できるばかりでなく、生産コストを抑制できるという従来のSn-Cu系鉛フリーはんだ合金にない優れた効果を奏するものである。[0001]
[Technical field to which the invention belongs]
The present invention relates to a lead-free solder alloy, particularly a Sn-based lead-free solder alloy suitable for soldering or pre-plating the end of a coil.
[0002]
[Prior art]
Electronic devices use coil parts with copper wires wound around the lead like transformers, and motors such as computer disk drives and cooling fans also use coiled parts. Since these coils are conductive, their ends are soldered to the terminals of electronic devices and motors.
[0003]
In general, the copper wire of the coil component is coated with enamel on the surface and further coated with polyurethane resin. Therefore, the coil ends and the terminals cannot be soldered as they are. Therefore, when soldering, enamel and polyurethane resin (hereinafter referred to as a coating material) at the coil end must be removed. The removal of the covering material may be mechanically peeled off with a blade, but the mechanical removal takes time and is inferior in productivity. Therefore, the method of removing the coating material at the coil end is performed by melting the coating material with heat. The method of removing the coating material with heat is to dissolve the coating material with the heat of the molten solder and remove it by immersing the end of the coil in the molten solder.
[0004]
By the way, when the coil end is soldered to the terminal, the coil end is preliminarily plated in order to obtain a good soldered portion. In general, pre-plating of the coil end is performed by immersing the coil end in the molten solder. However, since the coil end is immersed in the molten solder even when the above-described coating material is removed, the coil end to the molten solder is removed. The immersion of the part enables a rational operation of performing preliminary plating simultaneously with the removal of the covering material.
[0005]
For removing the coil end covering material and pre-plating, a flux is applied to the coil end, and then the end is immersed in molten solder. Then, the coating material is melted by the heat of the molten solder, and the flux applied to the coil end part floats around the immersed coil end part. Accordingly, the coating material is removed, and the flux acts where the copper wire is exposed, so that the molten solder is metallically joined to the copper wire.
[0006]
Previously, Pb-Sn solder was used as a pre-plating for coil ends. However, Pb-Sn solder has been restricted due to Pb pollution, so recently it does not contain Pb. Lead-free solder has been used. When soldering coil ends, the temperature of the molten solder must be around 400 ° C in order to dissolve and remove the coating material. When the temperature of the molten solder is increased in the lead-free solder, oxidation of the molten solder proceeds and a large amount of oxide is generated. The generation of a large amount of the oxide is not economically preferable because the amount attached to the soldering portion is increased to deteriorate the appearance characteristics of the product and expensive lead-free solder is oxidized and discarded.
[0007]
It has been reported that the addition of P and Ge is effective in the vicinity of 250 ° C. as an oxide suppression measure for lead-free alloys (see, for example, Reference 1). There are also Sn-Cu-based lead-free solder alloys that contain Ge as an oxide suppression measure (for example, Reference 2) and those that contain Ga (for example, Reference 3).
[0008]
[Patent Document 1]
JP 11-77366 A (Page 2 0009)
[Patent Document 2]
JP 11-77367 A (page 3 0023)
[Patent Document 3]
JP 10-291087 A (Page 3 0006)
[0009]
[Problems to be solved by the invention]
By the way, the cause of the progress of oxidation on the surface of the molten solder is considered to be that the main component of the oxide formed on the solder surface is Sn, which is easily oxidized by oxygen in the atmosphere and proceeds. It is done. In the conventional oxidation-suppressed lead-free solder to which P, Ge, and Ga are added alone, oxidation is suppressed at around 250 ° C., but the effect of suppressing oxidation cannot be obtained at around 400 ° C. It is an object of the present invention to provide a lead-free solder alloy that exhibits an oxidation inhibiting effect near 400 ° C.
[0010]
[Means for Solving the Problems]
The inventor has an effect of suppressing oxidation by adding P, Ge, Ga alone in the vicinity of 250 ° C. with respect to the Sn main component, but when adding P and / or Ge to those added with Ga, As a result of the synergistic action with Ga, it was found that there was an oxidation resistance suppressing effect even at around 400 ° C., and the present invention was completed.
[0011]
In claim 1, the main component is Sn, Cu is 3 to 8% by mass, Ga is 0.005 to 0.1% by mass, and at least one of P and Ge is added in an amount of 0.001 to 0.2% by mass. A lead-free solder alloy having a liquidus temperature of 420 ° C. or lower.
[0012]
The lead-free solder alloy according to claim 1, wherein a copper erosion suppressing element is added.
[0013]
The lead-free solder alloy according to claim 2, wherein at least one of Co and Ni is added in an amount of 0.01 to 3% by mass as the copper erosion suppressing element.
[0014]
A fourth aspect of the present invention is the lead-free solder alloy according to any one of the first to third aspects, to which a wettability improving element is added.
[0015]
A lead-free solder alloy according to claim 4, wherein 0.005 to 2% by mass of Ag is added as the wettability improving element.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
When removing the enamel or polyurethane resin coating material that is the coil coating material, it must be heated to around 400 ° C. The temperature at which the article is immersed in the molten solder for soldering is generally at a liquidus temperature of +20 to 50 ° C., although it depends on the heat capacity of the component. However, when the soldering temperature is 470 ° C. or higher, the coating material instantly carbonizes and adheres to the coil end when the coil end is immersed in the molten solder, which hinders the metallic bonding of the solder. Therefore, the solder alloy used for the pre-plating of the coil end is preferably a solder alloy having a solder liquidus temperature of 420 ° C. or lower so that the soldering temperature is 470 ° C. or lower. In addition, when the soldering temperature is 470 ° C. or higher, copper erosion becomes severe.
[0017]
In the lead-free solder alloy of the present invention, if the Cu content that prevents copper erosion is less than 3% by mass, the effect of preventing copper erosion does not appear. However, if more than 8% by mass of Cu is added, the liquidus The temperature becomes 420 ° C. or higher, and the copper erosion becomes intense and the solderability is deteriorated.
[0018]
The lead-free solder alloy of the present invention has improved oxidation resistance compared to conventional Sn-Cu solder alloys by adding Ga and Sn and Cu to Sn-Cu alloys. When Ga is added in an amount of less than 0.005% by mass, the effect of suppressing oxidation does not appear. On the other hand, if Ga is added in an amount of more than 0.1% by mass, solderability is inhibited.
[0019]
When one or more of P and Ge are added simultaneously to a Sn—Cu alloy containing Ga, an oxidation inhibition effect at high temperatures appears. The addition amount of P and Ge here is independent or simultaneous addition, if the addition amount is less than 0.001% by mass, the effect of suppressing oxidation at high temperature does not appear, and if added over 0.2% by mass, it is the same as Ga Inhibits solderability [0020]
Since Sn-Cu-based alloys are severely eroded by copper in the vicinity of 400 ° C., it is possible to add one or more kinds of Co and Ni having an effect of preventing copper erosion. When Ni and Co are added in amounts less than 0.01% by mass, the effect does not appear. However, when the added amounts of Ni and Co exceed 3% by mass, the liquidus temperature is the object of the present invention. It will exceed 420 ℃.
[0021]
When the coil end is immersed in the molten solder, the molten solder must be sufficiently wetted up to the immersed part of the coil end. In some cases, the portion immersed in the molten solder may not be wetted or unsolder may occur. In such a case, a wettability improving element may be added. Ag is a wettability improving element. If the amount of Ag added is less than 0.05% by mass, the effect of improving wettability will not appear. However, if more than 2% by mass is added, not only the effect can be expected, but the addition of a large amount of expensive Ag is economical. This is not preferable.
[0022]
【Example】
Examples and comparative examples of the present invention are shown in Table 1.
[0023]
[Table 1]
Figure 0004318449
[0024]
Description of Table 1 Oxide generation amount: Solder is melted at a temperature of 440 ° C. in a solder bath. Next, the oxide film formed on the solder surface is scraped 7 times every 30 seconds and the total weight is measured.
[0025]
As is clear from the experimental results, the lead-free solder alloy of the present invention generates more oxide at around 400 ° C than the conventional Sn-Cu-based lead-free solder alloy to which P, Ge, and Ga are added alone. It can be seen that there is little oxidation and oxidation is suppressed.
[0026]
【The invention's effect】
As explained above, despite the fact that the lead-free solder alloy of the present invention is a Sn main component that easily oxidizes, the progress of the oxidation is suppressed, preventing the deposition of oxide debris on the plating surface, This not only reduces the amount of oxide waste that is discarded, but also has an excellent effect not found in conventional Sn-Cu-based lead-free solder alloys that can reduce production costs.

Claims (2)

銅線の端部を予備めっきするはんだ合金において、Cuが3〜8質量%、Niが0.01〜3質量%、Coが0.01〜3質量%、Gaが0.005〜0.1質量%、PまたはGeのうちの少なくとも1種以上が0.001〜0.2質量%、残部がSnからなることを特徴とする予備めっき用はんだ合金。In a solder alloy for pre-plating the end of a copper wire, Cu is 3 to 8% by mass, Ni is 0.01 to 3% by mass, Co is 0.01 to 3% by mass, Ga is 0.005 to 0.1% by mass, and P or Ge A solder alloy for pre-plating, characterized in that at least one of these is 0.001 to 0.2% by mass and the balance is Sn. 前記、予備めっき用はんだ合金においてさらに、Agが0.005〜2質量%添加されていることを特徴とする請求項1に記載の予備めっき用はんだ合金。The solder alloy for pre-plating according to claim 1, wherein 0.005 to 2 mass% of Ag is further added to the solder alloy for pre-plating.
JP2002351005A 2002-12-03 2002-12-03 Lead-free solder alloy Expired - Lifetime JP4318449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351005A JP4318449B2 (en) 2002-12-03 2002-12-03 Lead-free solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351005A JP4318449B2 (en) 2002-12-03 2002-12-03 Lead-free solder alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008137643A Division JP2008221341A (en) 2008-05-27 2008-05-27 Lead-free solder alloy

Publications (2)

Publication Number Publication Date
JP2004181485A JP2004181485A (en) 2004-07-02
JP4318449B2 true JP4318449B2 (en) 2009-08-26

Family

ID=32753035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351005A Expired - Lifetime JP4318449B2 (en) 2002-12-03 2002-12-03 Lead-free solder alloy

Country Status (1)

Country Link
JP (1) JP4318449B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842973B1 (en) * 2014-09-04 2016-01-13 千住金属工業株式会社 Lead-free solder alloy and electronic parts for terminal pre-plating
JP6369620B1 (en) * 2017-12-31 2018-08-08 千住金属工業株式会社 Solder alloy
JP6890201B1 (en) * 2020-08-27 2021-06-18 有限会社 ナプラ Alloy ingot for bonding material
JP2023060639A (en) * 2021-10-18 2023-04-28 Tdk株式会社 Solder composition and electronic component

Also Published As

Publication number Publication date
JP2004181485A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4821800B2 (en) Pre-plating method for coil ends
JP4904953B2 (en) WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
US4441118A (en) Composite copper nickel alloys with improved solderability shelf life
JP4911254B2 (en) Wiring conductor and terminal connection
JP4086949B2 (en) Metal coated member
JP4673552B2 (en) Coil parts
JP2001334384A (en) Solder composition and soldered article
JP2004154864A (en) Lead-free soldering alloy
JP4318449B2 (en) Lead-free solder alloy
JP2008221341A (en) Lead-free solder alloy
JP4039653B2 (en) Sn alloy for lead plating
KR101945683B1 (en) Fe erosion-resistant solder alloy, resin flux-containing solder, lead solder, solder containing resin flux, flux-clad solder, solder joint and soldering method
JP4363372B2 (en) Solder composition and soldered article
JP5842973B1 (en) Lead-free solder alloy and electronic parts for terminal pre-plating
JP4724650B2 (en) Solder joining method and solder joint
JP3657874B2 (en) Semiconductor device and electronic equipment
JPH0365630B2 (en)
JPH04235292A (en) Tinned copper alloy material and its manufacture
JP2009071315A (en) Coil part
JP2007038228A (en) Solder alloy
JP3365158B2 (en) Terminal treatment method for electronic components and connection terminals
JP3906584B2 (en) Lead for electronic parts
JPH07150272A (en) Tin plated copper alloy material for electrical and electronic parts and production thereof
JP2002030468A (en) Lead wire for electronic parts
JP4673860B2 (en) Pb / Sb-free solder alloys, printed wiring boards, and electronic equipment products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term