JP4718369B2 - Solder alloy - Google Patents

Solder alloy Download PDF

Info

Publication number
JP4718369B2
JP4718369B2 JP2006129305A JP2006129305A JP4718369B2 JP 4718369 B2 JP4718369 B2 JP 4718369B2 JP 2006129305 A JP2006129305 A JP 2006129305A JP 2006129305 A JP2006129305 A JP 2006129305A JP 4718369 B2 JP4718369 B2 JP 4718369B2
Authority
JP
Japan
Prior art keywords
alloy
solder
weight
silicon chip
soldered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006129305A
Other languages
Japanese (ja)
Other versions
JP2007301570A (en
Inventor
憲治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006129305A priority Critical patent/JP4718369B2/en
Publication of JP2007301570A publication Critical patent/JP2007301570A/en
Application granted granted Critical
Publication of JP4718369B2 publication Critical patent/JP4718369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、金属の接合剤として用いられるはんだ合金に関し、さらに詳しくは鉛を含まないはんだ合金に関する。   The present invention relates to a solder alloy used as a metal bonding agent, and more particularly to a solder alloy containing no lead.

従来、金属の接合剤として用いられるはんだ合金として、Pb−Sn合金またはPb−Sn合金にさらにSb、Bi、Cd等の成分を加えた合金が用いられている。ところが、前記従来のはんだ合金はPbを必須成分として含んでいるので、該はんだ合金を用いた電子機器等が廃棄されると、Pbが溶出して環境を汚染するという問題がある。   Conventionally, as a solder alloy used as a metal bonding agent, a Pb—Sn alloy or an alloy obtained by adding a component such as Sb, Bi, or Cd to a Pb—Sn alloy has been used. However, since the conventional solder alloy contains Pb as an essential component, there is a problem that when an electronic device or the like using the solder alloy is discarded, Pb is eluted and pollutes the environment.

そこで、Pbを含まない各種はんだ合金が提案されている。このようなはんだ合金として、例えば、Sb10〜40質量%、Cu0.5〜10質量%、残部Snからなるはんだ合金、少なくとも約90重量%のSnを含み、さらにSb、Bi、Cuを含むはんだ合金、Bi20〜57重量%、Sb0.2〜5重量%、Ga0.01〜1重量%、残部Snからなるはんだ合金等が知られている(特許文献1〜3参照)。   Therefore, various solder alloys not containing Pb have been proposed. As such a solder alloy, for example, a solder alloy comprising 10 to 40% by mass of Sb, 0.5 to 10% by mass of Cu and the balance Sn, a solder alloy containing at least about 90% by weight of Sn, and further including Sb, Bi and Cu , Bi20 to 57 wt%, Sb 0.2 to 5 wt%, Ga 0.01 to 1 wt%, and a solder alloy composed of the remaining Sn are known (see Patent Documents 1 to 3).

前記はんだ合金は、例えば、シリコンチップと純銅からなる基板との接合に用いられる。前記シリコンチップは表面にAgが蒸着されており、前記基板は表面に電解Niメッキが施こされている。   The solder alloy is used for joining, for example, a silicon chip and a substrate made of pure copper. The silicon chip has Ag deposited on the surface, and the substrate has electrolytic Ni plating on the surface.

前記シリコンチップと前記基板とは、例えば、室温から180℃まで加熱し、再び室温まで冷却するというような熱サイクルを繰り返すと、加熱時には膨張、冷却時には収縮する。ところが、前記シリコンチップと前記基板とでは熱膨張係数が異なっているので、前記熱サイクルを繰り返すと、両者を接合するはんだ合金に負荷がかかる。そこで、前記はんだ合金は前記熱サイクルに対して優れた耐久性を備えることが望まれる。   The silicon chip and the substrate expand when heated, and shrink when cooled, for example, by repeating a thermal cycle of heating from room temperature to 180 ° C. and cooling to room temperature again. However, since the thermal expansion coefficient is different between the silicon chip and the substrate, when the thermal cycle is repeated, a load is applied to the solder alloy that joins the two. Therefore, it is desired that the solder alloy has excellent durability against the thermal cycle.

しかしながら、Pbを含まない前記はんだ合金は、熱サイクルに対する耐久性が低く、脆化しやすいという不都合がある。
特開2004−298931号公報 特開平7−88679号公報 特開平7−40079号公報
However, the solder alloy containing no Pb has a disadvantage that it has low durability against thermal cycles and is easily embrittled.
JP 2004-298931 A JP 7-88679 A Japanese Unexamined Patent Publication No. 7-40079

本発明は、かかる不都合を解消して、Pbを含まず、熱サイクルに対して優れた耐久性を備えるはんだ合金を提供することを目的とする。   An object of the present invention is to solve such inconvenience and to provide a solder alloy that does not contain Pb and has excellent durability against thermal cycling.

かかる目的を達成するために、本発明のはんだ合金は、Cu12〜30重量%、Sb20〜40重量%、Sn30〜65重量%からなる合金組成を有することを特徴とする。本発明のはんだ合金は、前記合金組成を備えることにより、Pbを含まないにも関わらず、熱サイクルに対して優れた耐久性を得ることができる。   In order to achieve this object, the solder alloy of the present invention is characterized by having an alloy composition consisting of Cu 12 to 30% by weight, Sb 20 to 40% by weight, and Sn 30 to 65% by weight. The solder alloy of the present invention can have excellent durability against thermal cycling even though it does not contain Pb by providing the alloy composition.

また、本発明のはんだ合金は、Cu−Sb−Sn3元状態図上で、Cuがx重量%、Sbがy重量%、Snがz重量%である点を(x,y,z)とするときに、(30,40,30)、(15,20,65)、(12,30,58)の各点を頂点とする三角形で囲まれる領域内の合金組成を有することにより、熱サイクルに対してさらに優れた耐久性を得ることができる Further, in the solder alloy of the present invention, the point where Cu is x wt%, Sb is y wt%, and Sn is z wt% on the Cu—Sb—Sn ternary phase diagram is (x, y, z). Sometimes, by having an alloy composition in a region surrounded by a triangle with each point of (30, 40, 30), (15, 20, 65), (12, 30, 58) as a vertex, the thermal cycle On the other hand, further excellent durability can be obtained .

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本発明の実施形態のはんだ合金の合金組成を示すCu−Sb−Sn3元状態図である Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. Figure 1 is a Cu-Sb-Sn3 binary phase diagram showing the alloy composition of the solder alloy implementation of the invention.

本発明の実施形態のはんだ合金は、Cu12〜30重量%、Sb20〜40重量%、Sn30〜65重量%からなる合金組成を有する。前記合金組成は、図1に示すCu−Sb−Sn3元状態図上で、Cu12重量%、Cu30重量%、Sb20重量%、Sb40重量%、Sn65重量%の直線で囲まれた五角形1の領域内(五角形1を形成する直線を含む)にある。 The solder alloy of implementation of the invention has Cu12~30 wt%, Sb20~40 wt%, the alloy composition consisting Sn30~65 wt%. The alloy composition is in the region of pentagon 1 surrounded by a straight line of Cu 12 wt%, Cu 30 wt%, Sb 20 wt%, Sb 40 wt%, Sn 65 wt% on the Cu—Sb—Sn ternary phase diagram shown in FIG. (Including the straight line forming the pentagon 1).

また、本実施形態のはんだ合金は、図1に示すCu−Sb−Sn3元状態図上で、Cuがx重量%、Sbがy重量%、Snがz重量%である点を(x,y,z)とするときに、(30,40,30)、(15,20,65)、(12,30,58)の各点を頂点とする三角形2で囲まれる領域内(三角形2を形成する直線を含む)の合金組成を有することが好ましい。   In addition, the solder alloy of the present embodiment is such that Cu is x wt%, Sb is y wt%, and Sn is z wt% on the Cu—Sb—Sn ternary phase diagram shown in FIG. , Z) in the region surrounded by the triangle 2 having the points (30, 40, 30), (15, 20, 65), (12, 30, 58) as vertices (forms the triangle 2) It is preferable to have an alloy composition including a straight line.

前記はんだ合金は、Cu、Sb、Snの純金属をそれぞれ前記範囲となるように秤量して、真空中で、高周波溶解炉にて溶解し、所定の鋳型を用いて鋳造することにより母合金を得ることができる。前記母合金は、前記合金組成の範囲のCu、Sb、Snを含むと共に、前記Cu、Sb、Snの純金属の製造過程で不可避的に混入する不純物を含んでいてもよい In the solder alloy, Cu, Sb, and Sn pure metals are weighed so as to be within the above ranges, melted in a high-frequency melting furnace in vacuum, and cast using a predetermined mold to form a mother alloy. Obtainable. The master alloy may contain Cu, Sb, and Sn within the range of the alloy composition, and may contain impurities inevitably mixed in the process of producing the pure metal of Cu, Sb, and Sn .

実施形態のはんだ合金は、前記母合金を黒鉛坩堝中等で加熱溶解したのち、回転している銅製ロール上に吹き付けて凝固させることにより、例えば約100μmの厚さの箔状のはんだ材料とすることができる。前記箔状のはんだ材料は、例えば、表面にAgが蒸着されたシリコンチップと、表面に電解Niメッキが施こされた純銅基板とのような金属の接合に用いられる。前記箔状のはんだ材料は、例えば、該はんだ材料により接合された前記シリコンチップと前記純銅基板とを、室温から180℃まで加熱し、再び室温まで冷却する熱サイクルに付したときに、該熱サイクルに対して優れた耐久性を得ることができる。 The solder alloy of the present embodiment, before after the Kihaha alloy was heated and dissolved at a graphite crucible secondary, rotated by solidifying by blowing onto a copper roll has, eg if the solder material foil of a thickness of about 100μm It can be. The foil-like solder material is used, for example, for joining metals such as a silicon chip having Ag deposited on its surface and a pure copper substrate having electrolytic Ni plating on its surface. The foil-shaped solder material is, for example, when the silicon chip and the pure copper substrate joined by the solder material are subjected to a heat cycle in which the silicon chip and the pure copper substrate are heated from room temperature to 180 ° C. and cooled to room temperature again. Excellent durability against the cycle can be obtained.

次に、本発明の実施例と比較例とを示す。   Next, examples of the present invention and comparative examples will be described.

本実施例では、まず、Cu、Sb、Snの純金属を、Cu30重量%、Sb40重量%、Sn30重量%となるように秤量して、真空中で、高周波溶解炉にて溶解し、所定の鋳型を用いて鋳造することにより母合金を得た。前記母合金の合金組成を図1に○で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。   In this example, first, Cu, Sb, and Sn pure metals are weighed so as to be Cu 30 wt%, Sb 40 wt%, and Sn 30 wt%, and melted in a high-frequency melting furnace in vacuum, A mother alloy was obtained by casting using a mold. The alloy composition of the mother alloy is indicated by ◯ in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、前記母合金を黒鉛坩堝中等で加熱溶解したのち、回転している銅製ロール上に吹き付けて凝固させることにより、厚さ約100μm、幅30mmの箔状はんだ材料を得た。次に、5mm×5mmの大きさに裁断した前記箔状はんだ材料を、水素雰囲気下、前記はんだ合金の液相線温度より20℃高い温度に加熱して溶融させ、表面にAgが蒸着されたシリコンチップと、表面に電解Niメッキが施こされた純銅基板とのはんだ付けを行った。前記シリコンチップと、前記純銅基板とは、いずれも5mm×5mmの大きさを備えている。   Next, the master alloy was heated and melted in a graphite crucible or the like, and then sprayed and solidified on a rotating copper roll to obtain a foil solder material having a thickness of about 100 μm and a width of 30 mm. Next, the foil-shaped solder material cut to a size of 5 mm × 5 mm was melted by heating to a temperature 20 ° C. higher than the liquidus temperature of the solder alloy in a hydrogen atmosphere, and Ag was deposited on the surface. Soldering between the silicon chip and a pure copper substrate having electrolytic Ni plating on the surface was performed. Each of the silicon chip and the pure copper substrate has a size of 5 mm × 5 mm.

次に、前記はんだ合金によりはんだ付けされた前記シリコンチップと前記純銅基板とを、室温から180℃まで加熱し、再び室温まで冷却することを1サイクルとする熱サイクル試験に供し、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip soldered with the solder alloy and the pure copper substrate are subjected to a heat cycle test in which one cycle is heating from room temperature to 180 ° C. and cooling to room temperature again, The number of cycles until cracks were generated was measured. The results are shown in Table 1.

尚、前記シリコンチップの熱膨張係数は室温〜300℃の範囲で2.8ppm/Kであり、前記純銅基板の熱膨張係数は室温〜300℃の範囲で16.5ppm/Kである。   The thermal expansion coefficient of the silicon chip is 2.8 ppm / K in the range of room temperature to 300 ° C., and the thermal expansion coefficient of the pure copper substrate is 16.5 ppm / K in the range of room temperature to 300 ° C.

本実施例では、Cu15重量%、Sb20重量%、Sn65重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に○で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。   In this example, a master alloy was obtained in exactly the same manner as in Example 1 except that Cu was 15% by weight, Sb was 20% by weight, and Sn was 65% by weight. The alloy composition of the mother alloy is indicated by ◯ in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本実施例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in this example was used, and the soldered silicon chip and the soldered The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.

本実施例では、Cu12重量%、Sb30重量%、Sn58重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に示す。また、前記母合金の固相線温度と、液相線温度とを表1に○で示す。   In this example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 12% by weight, Sb was 30% by weight, and Sn was 58% by weight. The alloy composition of the mother alloy is shown in FIG. Further, the solidus temperature and the liquidus temperature of the master alloy are indicated by ○ in Table 1.

次に、本実施例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in this example was used, and the soldered silicon chip and the soldered The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.

本実施例では、Cu13重量%、Sb31重量%、Sn56重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に○で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。   In this example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 13 wt%, Sb 31 wt%, and Sn 56 wt%. The alloy composition of the mother alloy is indicated by ◯ in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本実施例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in this example was used, and the soldered silicon chip and the soldered The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.

本実施例では、Cu19重量%、Sb33重量%、Sn48重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に○で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。   In this example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 19% by weight, Sb was 33% by weight, and Sn was 48% by weight. The alloy composition of the mother alloy is indicated by ◯ in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本実施例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in this example was used, and the soldered silicon chip and the soldered The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.

本実施例では、Cu22重量%、Sb35重量%、Sn43重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に○で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。   In this example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 22% by weight, Sb was 35% by weight, and Sn was 43% by weight. The alloy composition of the mother alloy is indicated by ◯ in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本実施例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in this example was used, and the soldered silicon chip and the soldered The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.

本実施例では、Cu30重量%、Sb35重量%、Sn35重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に○で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。   In this example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 30% by weight, Sb was 35% by weight, and Sn was 35% by weight. The alloy composition of the mother alloy is indicated by ◯ in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本実施例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in this example was used, and the soldered silicon chip and the soldered The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.

本実施例では、Cu25重量%、Sb25重量%、Sn50重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に○で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。   In this example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 25% by weight, Sb was 25% by weight, and Sn was 50% by weight. The alloy composition of the mother alloy is indicated by ◯ in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本実施例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。
〔比較例1〕
本比較例では、Cu35重量%、Sb40重量%、Sn25重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に●で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。
Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in this example was used, and the soldered silicon chip and the soldered The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.
[Comparative Example 1]
In this comparative example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 35% by weight, Sb was 40% by weight, and Sn was 25% by weight. The alloy composition of the mother alloy is shown by ● in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本比較例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。
〔比較例2〕
本比較例では、Cuを全く含まず、Sb40重量%、Sn60重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に●で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。
Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in the present comparative example was used, and the soldered silicon chip and the solder The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.
[Comparative Example 2]
In this comparative example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was not contained at all and Sb was 40% by weight and Sn was 60% by weight. The alloy composition of the mother alloy is shown by ● in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本比較例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。
〔比較例3〕
本比較例では、Cu10重量%、Sb45重量%、Sn45重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に●で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。
Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in the present comparative example was used, and the soldered silicon chip and the solder The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.
[Comparative Example 3]
In this comparative example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 10% by weight, Sb 45% by weight, and Sn 45% by weight. The alloy composition of the mother alloy is shown by ● in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本比較例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。
〔比較例4〕
本比較例では、Cu10重量%、Sb20重量%、Sn70重量%となるようにした以外は実施例1と全く同一にして母合金を得た。前記母合金の合金組成を図1に●で示す。また、前記母合金の固相線温度と、液相線温度とを表1に示す。
Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in the present comparative example was used, and the soldered silicon chip and the solder The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.
[Comparative Example 4]
In this comparative example, a mother alloy was obtained in exactly the same manner as in Example 1 except that Cu was 10 wt%, Sb 20 wt%, and Sn 70 wt%. The alloy composition of the mother alloy is shown by ● in FIG. Table 1 shows the solidus temperature and liquidus temperature of the master alloy.

次に、本比較例で得られた前記母合金を用いた以外は実施例1と全く同一にして、前記シリコンチップと前記純銅基板とのはんだ付けを行い、はんだ付けされた前記シリコンチップと前記純銅基板とを前記熱サイクル試験に供して、前記はんだ材料にクラックが生じるまでのサイクル数を測定した。結果を表1に示す。   Next, the silicon chip and the pure copper substrate were soldered in exactly the same manner as in Example 1 except that the mother alloy obtained in the present comparative example was used, and the soldered silicon chip and the solder The pure copper substrate was subjected to the thermal cycle test, and the number of cycles until cracks occurred in the solder material was measured. The results are shown in Table 1.

Figure 0004718369
Figure 0004718369

表1から、実施例1〜8のはんだ合金は、いずれも固相線温度が243℃以上、液相線温度が382℃以下であり、はんだ材料に適した物性を備えていることが明らかである。   From Table 1, it is clear that the solder alloys of Examples 1 to 8 each have a solidus temperature of 243 ° C. or higher and a liquidus temperature of 382 ° C. or lower, and have physical properties suitable for the solder material. is there.

次に、表1から、図1に示す五角形1の領域内の合金組成を備える実施例1〜8のはんだ合金によれば、クラックが発生したサイクル数はいずれも2000サイクル以上であり、図1に示す五角形1の領域外の合金組成を備える比較例1〜4のはんだ合金がいずれも300サイクル未満であることと比較して、熱サイクルに対して優れた耐久性を備えていることが明らかである。   Next, from Table 1, according to the solder alloys of Examples 1 to 8 having the alloy composition in the region of the pentagon 1 shown in FIG. 1, the number of cycles in which cracks occurred is 2000 or more, and FIG. It is clear that the solder alloys of Comparative Examples 1 to 4 having an alloy composition outside the region of the pentagon 1 shown in FIG. It is.

また、表1から、図1に示す三角形2の領域内の合金組成を備える実施例1〜6のはんだ合金によれば、クラックが発生したサイクル数はいずれも3000サイクル以上であり、熱サイクルに対してさらに優れた耐久性を備えていることが明らかである Further, from Table 1, according to the solder alloys of Examples 1 to 6 having the alloy composition in the region of the triangle 2 shown in FIG. 1, the number of cycles in which cracks occurred is 3000 cycles or more, and the heat cycle On the other hand, it is clear that it has further excellent durability .

本発明の第1の実施形態のはんだ合金の合金組成を示すCu−Sb−Sn3元状態図 The Cu-Sb-Sn ternary phase diagram which shows the alloy composition of the solder alloy of the 1st Embodiment of this invention .

1,2…第1の実施形態のはんだ合金の合金組成 1, 2... Alloy composition of the solder alloy of the first embodiment .

Claims (2)

Cu12〜30重量%、Sb20〜40重量%、Sn30〜65重量%からなる合金組成を有することを特徴とするはんだ合金。   A solder alloy having an alloy composition consisting of Cu 12 to 30% by weight, Sb 20 to 40% by weight, and Sn 30 to 65% by weight. Cu−Sb−Sn3元状態図上で、Cuがx重量%、Sbがy重量%、Snがz重量%である点を(x,y,z)とするときに、(30,40,30)、(15,20,65)、(12,30,58)の各点を頂点とする三角形で囲まれる領域内の合金組成を有することを特徴とする請求項1記載のはんだ合金。   On the Cu-Sb-Sn ternary phase diagram, when (x, y, z) is a point where Cu is x wt%, Sb is y wt%, and Sn is z wt%, (30, 40, 30 2. The solder alloy according to claim 1, wherein the solder alloy has an alloy composition in a region surrounded by a triangle having each of the points (15, 20, 65) and (12, 30, 58) as vertices.
JP2006129305A 2006-05-08 2006-05-08 Solder alloy Expired - Fee Related JP4718369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129305A JP4718369B2 (en) 2006-05-08 2006-05-08 Solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129305A JP4718369B2 (en) 2006-05-08 2006-05-08 Solder alloy

Publications (2)

Publication Number Publication Date
JP2007301570A JP2007301570A (en) 2007-11-22
JP4718369B2 true JP4718369B2 (en) 2011-07-06

Family

ID=38835962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129305A Expired - Fee Related JP4718369B2 (en) 2006-05-08 2006-05-08 Solder alloy

Country Status (1)

Country Link
JP (1) JP4718369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737194A (en) * 2013-12-23 2014-04-23 苏州宏泉高压电容器有限公司 Welding material and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466085B (en) * 2008-02-22 2018-03-16 科罗拉多州立大学研究基金会 Lithium ion battery
CN101332544A (en) * 2008-05-28 2008-12-31 广州瀚源电子科技有限公司 High-melting point lead-free solder and production technique thereof
JP5278616B2 (en) * 2010-06-30 2013-09-04 千住金属工業株式会社 Bi-Sn high temperature solder alloy
JP2013076143A (en) * 2011-09-30 2013-04-25 Energy Support Corp Alloy for fixing between ceramic and metal fitting, and power distribution apparatus
JP5847520B2 (en) * 2011-09-30 2016-01-20 エナジーサポート株式会社 Alloy for fixing between porcelain and metal fittings and power distribution equipment
CN108284286B (en) * 2013-01-28 2020-07-03 日本半田株式会社 Brazing alloy for die bonding
DE102015121438B4 (en) * 2015-12-09 2023-12-28 Tdk Electronics Ag Electrical protective component with short-circuit device
CN106392366B (en) * 2016-12-02 2019-07-19 北京康普锡威科技有限公司 A kind of BiSbAg system high temperature lead-free solder and preparation method thereof
JP6903037B2 (en) * 2018-07-20 2021-07-14 千住金属工業株式会社 Solder paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126647A (en) * 1999-08-17 2001-05-11 Nippon Electric Glass Co Ltd Panel for cathode-ray tube and method of manufacturing same
JP2003154485A (en) * 2001-11-20 2003-05-27 Tdk Corp Composition for high-temperature cream solder
JP2003290976A (en) * 2002-04-05 2003-10-14 Yamaha Corp Solder alloy and method for manufacturing the same, and solder alloy paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126647A (en) * 1999-08-17 2001-05-11 Nippon Electric Glass Co Ltd Panel for cathode-ray tube and method of manufacturing same
JP2003154485A (en) * 2001-11-20 2003-05-27 Tdk Corp Composition for high-temperature cream solder
JP2003290976A (en) * 2002-04-05 2003-10-14 Yamaha Corp Solder alloy and method for manufacturing the same, and solder alloy paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737194A (en) * 2013-12-23 2014-04-23 苏州宏泉高压电容器有限公司 Welding material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007301570A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4718369B2 (en) Solder alloy
JP6951438B2 (en) SnBiSb-based low-temperature lead-free solder
JP3671815B2 (en) Solder composition and soldered article
JP5858512B1 (en) Nickel brazing material with excellent corrosion resistance
JP2006255784A (en) Unleaded solder alloy
JP6423447B2 (en) Lead-free eutectic solder alloy containing zinc as the main component and aluminum as alloying metal
JP2007196289A (en) Lead-free metallic material for electronic component
JP6860484B2 (en) Brazing alloy
CN101716703B (en) Low-silver SnAgCuBi series lead-free solder alloy and preparation method thereof
CN103243234B (en) A kind of Electronic Packaging soldering serial low silver leadless solder and preparation method thereof
JP5421915B2 (en) Au-Ga-In brazing material
JP2009142849A (en) Mg-BASED SOLDER ALLOY
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
EP0128356B1 (en) Homogeneous low melting point copper based alloys
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JP2013052433A (en) SOLDER ALLOY OF Pb-FREE Zn SYSTEM
JP2017196647A (en) Au-Sn-Ag-α-TYPE SOLDER ALLOY, ITS SOLDER MATERIAL, AND MOUNTING SUBSTRATE BONDED OR SEALED BY USING SOLDER MATERIAL
JP4314388B2 (en) Aluminum alloy and method for producing aluminum alloy member
JP7376842B1 (en) Solder alloys, solder balls, solder pastes and solder joints
JPS586793A (en) Brazing filter metal
JP2024118996A (en) Solder alloys, solder balls, solder pastes and solder joints
JP2011235315A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT
JP2011240372A (en) Pb-FREE SOLDER ALLOY COMPOSED PRINCIPALLY OF Zn
JP2015020189A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Ref document number: 4718369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees