JPH09124368A - 一方向性炭素繊維強化複合材料及びその製造方法 - Google Patents

一方向性炭素繊維強化複合材料及びその製造方法

Info

Publication number
JPH09124368A
JPH09124368A JP7306737A JP30673795A JPH09124368A JP H09124368 A JPH09124368 A JP H09124368A JP 7306737 A JP7306737 A JP 7306737A JP 30673795 A JP30673795 A JP 30673795A JP H09124368 A JPH09124368 A JP H09124368A
Authority
JP
Japan
Prior art keywords
composite material
carbon fiber
thermal conductivity
base material
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7306737A
Other languages
English (en)
Inventor
Takayuki Izumi
孝幸 泉
Eiki Tsushima
栄樹 津島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP7306737A priority Critical patent/JPH09124368A/ja
Publication of JPH09124368A publication Critical patent/JPH09124368A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】 【課題】 各種成型加工において、金属表面の温度分布
を制御するために、金型裏面より埋め込まれる材料とし
て用い得るような、繊維配列方向では熱伝導率が十分大
きいが、その方向に直角方向では熱伝導率が十分小さ
く、且つ加工精度が良く、割れにくく、金属との接着性
が良く、しかも耐熱性、耐熱衝撃性に優れた複合材料並
びにその製造方法を提供する。 【解決手段】 母材が炭素とセラミックスからなり、水
銀圧入法により求められる開気孔容積が全気孔容積の9
0%以上であり、且つその開気孔容積が母材部分の全容
積の30%〜60%を占め、しかも気孔の平均直径が2
μm以下であるものとする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、熱伝導率の異方性
が大きい一方向性炭素繊維強化複合材料及びその製造方
法に関する。更に詳しくは、本発明はガラス、プラスチ
ックなどの加熱成形加工における金型表面等の温度分布
を制御するような目的で、一種のヒートパイプとして用
いられる異方性熱伝導性部材として有用な、且つ十分な
強度、研削加工性、耐熱(衝撃)性、金属との接着性を
合せ持つ一方向性炭素繊維強化複合材料及びその製造方
法に関する。
【0002】
【従来の技術】従来、熱伝導率の高い材料としては、
銀、銅、アルミニウムやタングステンなどの金属、ある
いはこれらの合金の焼結体などが用いられているが、こ
れらの熱伝導率は等方性であるため、前述のヒートパイ
プ的な用途に用いようとすると周辺部からの熱流束をも
集めてしまい、温度分布を改善する効果が小さい。
【0003】熱伝導性の異方性を有する材料としては、
熱伝導性の優れた炭素繊維を一方向に配列した複合材料
が知られており、プラスチックを母材にしたCFRP、
金属を母材としたCFRM、ガラスやセラミックスを母
材としたもの、炭素を母材としたものが公知である。こ
のうち、CFRPは耐熱性が低く、150℃以上で著し
く劣化するので、このような用途には不向きである。C
FRMは繊維配列方向と直角方向の熱伝導率も大きく、
熱伝導の異方性は小さいし、高価である。ガラスやセラ
ミックスを母材としたものは、熱伝導率の異方性が大き
いが、製造方法が複雑で価格が高く、また金属との接着
性に問題がある。炭素を母材としたいわゆる炭素繊維強
化炭素複合材料(C/C複合材料)は、耐熱性、耐熱衝
撃性が高く、金属との接着も可能である。
【0004】しかしながら、従来のC/C複合材料は、
耐熱性高強度構造材料として主として開発されてきたた
めに、母材部分の炭素は、極力気孔のないよう含浸と焼
成を反復するか、あるいはCVI法、加圧焼成などによ
って製せられ、また高温で焼成してグラファイト微結晶
化されているものが普通であり、繊維の配列方向と直角
の方向にも熱伝導率の大きな母材としての炭素が充満し
ているために、この方向での熱伝導率は十分低いものが
得られなかった。また、C/C複合材料で、繊維の配列
方向と直角方向の熱伝導率が十分低いものは、再含浸焼
成をあまり行わないものなどで、母材中の気孔の多いも
のを作れば従来もできたが、これらは平均気孔径が大き
く母材中のヒビ割れを多く含み、強度、加工性に問題が
あった。
【0005】また、本発明者らが、既に開発し、特開平
3−247563号公報等で開示提案している方法によ
って製せられた一方向性C/C複合材料は、本発明の基
盤となるものであり、繊維配列に直角な方向の熱伝導率
が十分に低いものも存在したが、炭素繊維の含有率を上
げると繊維配列と直角方向の応力に弱く、繊維にそって
割れやすいから、加工時に割れが生じたり、金属との接
合時に割れたりする問題があった。
【0006】
【発明が解決しようとする課題】従って、本発明の目的
は、各種成型加工において、金属表面の温度分布を制御
するために、金型裏面より埋め込まれる材料として用い
得るような、繊維配列方向では熱伝導率が十分大きい
が、その方向に直角方向では熱伝導率が十分小さく、且
つ加工精度が良く、割れにくく、金属との接着性が良
く、しかも耐熱性、耐熱衝撃性に優れた複合材料を提供
することにある。
【0007】
【課題を解決するための手段】本発明者らは、前述の課
題を解決するために、複合材料の組成構造と諸物性の関
係、特に母材中の細孔の大きさと容積率に注目し、これ
らと材料の強度、加工性及び熱伝導率との関係につい
て、鋭意研究した結果、最適な領域を見出し、本発明に
到達した。
【0008】即ち、本発明によれば、母材が炭素とセラ
ミックスからなる一方向性炭素繊維強化複合材料におい
て、水銀圧入法により求められる開気孔容積が全気孔容
積の90%以上であり、且つその開気孔容積が母材部分
の全容積の30%〜60%を占め、しかも気孔の平均直
径が2μm以下であることを特徴とする一方向性炭素繊
維強化複合材料が提供される。
【0009】また、本発明によれば、一方向に配列され
た炭素繊維の束に、熱硬化性樹脂、平均粒子直径が0.
5μm以下の炭素質粉体、平均粒子直径が0.5μm以
下のセラミック粉体及び溶媒からなる母材前駆体液を含
浸し、溶媒を乾燥した後、炭素繊維が一方向に配列する
ように加圧加熱下に成形し、次いで焼成することを特徴
とする前記の一方向性炭素繊維強化複合材料の製造方法
が提供される。
【0010】なお、本発明で言う開気孔の直径及び容積
は、約1cm3に切り出した炭素繊維強化複合材料を、
一般的に用いられている水銀圧入法において、水銀圧を
0〜60,000Psiaの間で変化させ求められる。
また、本発明で言う全気孔容積〔Vtotal(cm3/
g)〕は、炭素繊維強化複合材料の嵩密度〔ρ(g/c
3)〕、炭素繊維体積含有率〔Vt(vol.
%)〕、及び炭素繊維強化複合材料を製造したと同じ温
度で個別に焼成した炭素繊維、マトリクスそれぞれ単味
の真密度〔ρf、ρm(g/cm3)〕を求めることによ
り、以下の式から算出される。
【数1】
【0011】
【発明の実施の形態】以下、本発明の一方向性炭素繊維
強化複合材料について、詳しく説明する。本発明の一方
向性炭素繊維強化複合材料は、母材が炭素とセラミック
スからなる複合材料において、水銀圧入法によって求め
られる開気孔容積が全気孔容積の90%以上であり、母
材部分の全容積の30%〜60%を占め且つ気孔の平均
直径が2μm以下であることを特徴とするのが、このこ
とから、繊維の配列方向(X方向と記す)では熱伝導率
が十分に大きく、繊維の配列方向に対して直角方向(Y
方向と記す)の熱伝導率が十分に小さく、且つ、切削加
工時にも割れにくく、Y方向の加工精度が良く、また使
用時にも割れにくく、金属との接着性が良く、耐熱性、
耐熱衝撃性に優れた材料を提供することができる。この
ような複合材料は、各種成形加工において、金型表面の
温度分布を制御するために金型の裏面側から埋め込みれ
て、一種のヒートパイプとして用いる材料として好適で
ある。
【0012】このような複合材料のX方向の熱伝導率を
制御する方法としては、(イ)原料の炭素繊維の熱伝導
率を制御する(ロ)炭素繊維の単位容積当たりの含有率
を制御する、(ハ)最終焼成温度、時間で制御するの3
つの方法があるが、これらを組合せることによって、X
方向の熱伝導率を500Kの温度において、50W/m
・Kから500W/m・Kに制御することは、比較的容
易である。すなわち、低い熱伝導率で十分な場合は、繊
維長さ方向の熱伝導率があまり大きくないPAN系炭素
繊維を低い含有率で母材中に埋め込めばよいし、高い熱
伝導率が必要であれば、繊維長さ方向の熱伝導率が非常
に大きな液晶ピッチ系炭素繊維が高い含有率となるよう
に複合材料を成形すればよい。
【0013】しかしながら、一般にこのような複合材料
の繊維の配列方向と直角をなす方向、すなわちY方向の
熱伝導率を十分小さくし、且つ、Y方向の強度、切削加
工時及び加工精度を保つことは難しかった。何故なら
ば、Y方向の熱伝導率は大部分が母材成分の熱伝導率で
決定され、母材中の気孔を減じて緻密性を上げると、強
度や切削加工性及び加工精度は出るものの熱伝導率が上
昇するし、母材中の気孔を増加し熱伝導率を下げると、
ひび割れや加工性、加工精度が悪くなるという問題が生
じたからである。
【0014】各種の成形加工用の金型として用いられる
材料は、ステンレス鋼をはじめ各種の鋼材が一般的であ
るが、500Kの温度における熱伝導率は、ステンレス
鋼やケイ素鋼で約20W/m・K、炭素鋼やクロムモリ
ブデン鋼で約40W/m・Kである。従って、これらの
金型に埋め込まれ、金型の一部を冷却又は加熱して、金
型裏面の温度分布を制御するために用いられるヒートパ
イプ材料としては、Y方向の熱伝導率は、これらの金型
材料の熱伝導率と比べて同等若しくはより小さい、20
W/m・K以下が好ましい。
【0015】本発明の材料は、500Kの温度における
熱伝導率は、炭素繊維の配列方向すなわち、X方向にお
いて100W/m・K以上であり、要すれば500W/
m・K以上とすることもでき、且つ炭素繊維の配列方向
に対して直角方向すなわちY方向において、10W/m
・K以下とすることができることが特徴である。しか
も、そのような特性を有しながら、なおその母材組織は
十分に緻密であり、Y方向のひび割れがなく、精密切削
研摩加工が容易で、金属とのロウ付けなどの接着性が良
好である。
【0016】本発明の材料において母材を構成する主成
分は細孔を有する炭素であるが、この中に熱伝導率の低
いセラミックス微粉体を包含させることが、製法上の特
徴である。このようなセラミックス微粒子は、金属炭化
物、金属窒化物でもよいが、シリカ、チタニア、ムライ
ト、ジルコニア、イットリア等の金属酸化物系のセラミ
ックスが好ましく、これらは500Kの温度における熱
伝導率が10W/m・K以下と低いので、それ自体母材
の熱伝導率を低下させることに寄与する部分もあるが、
好ましい気孔の形成に寄与する。
【0017】母材全容積に対するこれらのセラミックス
含有率は、約30vol%以下が好ましい。このセラミ
ックス含有率を40vol%より大きくすると、母材の
熱伝導率を小さくすることができるとしても、母材部分
の強度が低下し、加工時又は使用時の割れが生じやすく
なる。また、このセラミックス微粒子は平均粒径が1μ
m以下であれば、母材中の含有量が少くても、単位体積
当たり含有される粒子数が多くなるので、十分な気孔形
成の効果があり、Y方向の熱伝導率を低くすることがで
きる。
【0018】材料中に含まれる気孔の平均直径、全気孔
容積、気孔の分布曲線は、気孔のうち開気孔の部分が、
一般的な水銀圧入法(ポロシメーター)によって測定さ
れる。開気孔も含めて断面の光学顕微鏡、走査型電子顕
微鏡などによって測定することができ、また、嵩比重と
成分の真比重の差から全気孔容積を求めることができ
る。
【0019】本発明の材料は、全気孔容積が十分大き
く、且つその大部分が開気孔であり、その上平均気孔径
が十分小さく、気孔が均一に分散していることが特徴で
ある。材料中に含まれる気孔は、一般に複合材料の成形
及び焼成工程で形成されるものであり、繊維の気孔は極
めて少なく、母材前駆体が分解炭化する過程で放出され
るガスの通路が母材中の気孔として残るものが大部分で
ある。この気孔は、空気等のガス体が充たされているの
で、熱伝導率は10-2W/m・Kと非常に小さく、Y方
向の熱伝導率を下げるためには、気孔容積が大きいこと
が重要な因子である。
【0020】しかしながら、気孔容積が母材部分の60
vol%より大きなものは容易に作ることができるが、
そのようなものは母材部分の強度が弱く、Y方向にひび
割れ、剥離が生じやすく、加工性が著しく劣る。また、
全細孔容積を30vol%より小さくすることは、一般
に再含浸焼成法、CVD法などで気孔を埋めても作られ
るが、このようにすると、母材部分が緻密になり、強度
が増加し、加工性が向上する。しかし、このようなもの
は気孔が少ないために、Y方向の熱伝導率が20〜80
W/m・Kと大きくなってしまう。従って、全気孔容積
は母材部分の容積に対して30〜60%の比率が適度で
あることが見出された。
【0021】更に、母材中の細孔の全容積率が適度であ
ることに加えて、気孔の大きさ、平均直径が重要なもう
一つの因子である。平均気孔径が3μm以上のものは、
従来技術でも比較的容易に作ることができるが、このよ
うなものは直径10μm以上の気孔、すなわち炭素繊維
の太さ以上の気孔をかなり多量に含んでおり、繊維間の
母材部分が粗雑であり、一般にY方向の強度が弱く、切
削加工時に割れが生じやすい。本発明の材料は平均気孔
径が2μm以下であり、直径10μm以上の気孔が全気
孔容積の5%以下である。また、平均直径が2μm以下
の気孔が母材中に均一に分散し、且つ大部分が開気孔と
なっていることも重要である。このような材料は、ステ
ンレスや銅などの金属と金属ロウなどで接着して用いら
れるが、小さな、沢山の開気孔部分が、溶融ロウとの濡
れ性を良くし、また接着効果を上げ、金属との熱応力を
緩和する。
【0022】次に、本発明の一方向性炭素繊維強化複合
材料の製造方法について説明する。前述したような本発
明の複合材料を製造する方法は、特に限定されるもので
はないが、次に記す方法が好適である。すなわち、一方
向に引き揃えられた炭素繊維の束に、熱硬化性樹脂と平
均粒子直径がいずれも0.5μm以下の炭素質粉体とセ
ラミックス粉体と溶媒からなる母材前駆体液を含浸し、
溶媒を乾燥した後に、炭素繊維が一方向に配列するよう
に加圧、加熱下に成形し、次いで所望の範囲の気孔平均
直径、全気孔容積となるよう焼成する方法が、容易且つ
経済的である。
【0023】用いる炭素繊維の束は、市販のPAN系あ
るいはピッチ系の長繊維炭素繊維トウを用いることがで
きる。X方向の熱伝導率の必要な大きさに応じて、炭素
繊維の繊維軸方向の熱伝導特性が適切なものを選択す
る。X方向の熱伝導率は、複合材料として焼成後の炭素
繊維の熱伝導率と複合材料中の繊維含有率から設計する
ことができる。複合材料中の繊維含有率は、X方向の熱
伝導率を大きくする目的のために50vol%以上が好
ましく、あまり大きくするとひび割れが生じやすいの
で、75vol%以下が好ましい。炭素繊維の束に含浸
する母材前駆体液の組成と含浸量から予測設計すること
ができる。
【0024】母材前駆体液のうち、一つの成分である熱
硬化性樹脂は、フェノール樹脂、フラン樹脂又はこれら
の混合物が用い得る。常温で固体又は粘稠な液体のもの
で、120〜150℃で自己硬化性であり、600℃〜
1000℃の温度で収率よく炭化するものが好ましい。
【0025】炭素質粉体は、いわゆるピッチ又はコーク
スなどの粉体で、炭素含有率が高く、1000℃以上の
温度で高い炭化収率を示すもので、且つ300℃〜80
0℃の温度で流動性且つ粘着性を有するようなものが用
いられる。本発明の材料の製造方法において、最も重要
な因子の一つは、上記炭素質粉体の粒径であり、これは
平均粒子直径として0.5μm以下のものを用いること
が好ましい。これより大きな粒径のものを用いると、一
般に焼成後の気孔の平均直径が2μm以上となり、製品
のひび割れによる歩留りの低下や加工性が劣る傾向が生
じる。
【0026】セラミックス粉体は、金属炭化物、窒化物
などの粉体も用い得るが、シリカ、ムライト等のシリカ
・アルミナ、チタニア、ジルコニア、イットリア等の金
属酸化物が好ましい。これらは、それ自体の熱伝導率が
10W/m・K以下と低く、複合材料の焼成温度でも母
材中で炭素とあまり激しく反応しない。本発明の材料の
製造方法において、重要なもう一つの因子は、上記セラ
ミックス粉体の粒径であり、これも平均粒子直径として
0.5μm以下のものを用いることが好ましい。これよ
り大きな粒径のものを用いると、一般に焼成後の気孔の
平均直径が2μm以上となり、製品のひび割れによる歩
留りの低下や加工性が劣る傾向が生じる。
【0027】前記熱硬化性樹脂を溶解させる溶媒として
は、使用する熱硬化性樹脂を室温で良く溶解し、且つ炭
素質粉体とセラミックス粉体を良く分散、懸濁するもの
が用いられる。従って、使用する熱硬化性樹脂の種類、
特性によって、溶媒は種々のものが用いられるが、メタ
ノール、エタノール、イソプロピルアルコール、フルフ
リルアルコール等のアルコール類のほか、フルフラー
ル、アセトン、エチルセルソルブ、トルエン、キシレン
等の溶媒を用いることができる。水溶性のフェノール樹
脂を用いると、水を溶媒とすることも可能である。フェ
ノール樹脂又はフラン樹脂を用いた場合の、これらに対
する溶解性、炭素質粉末とセラミックス粉末の分散性、
及びその後の含浸、乾燥、加圧成形における取扱い性の
良さ、製品の品質から考慮すると、フルフリルアルコー
ル又はフルフラールが好ましい。
【0028】上記溶媒に熱硬化性樹脂を溶解し、次に炭
素質粉体、セラミックス粉体を添加して分散懸濁させ、
母材前駆体液とするが、この際の溶解、粉砕、混合、分
散の手順と方法は特に問うものではない。溶媒に対する
熱硬化性樹脂、炭素質粉体、セラミックス粉体の濃度
は、炭素繊維束に十分均一に含浸させ得るような粘度、
付着性の範囲で使用される。これらは、熱硬化性樹脂の
粘度、粉体の粒径によっても変動するが、一般的には、
溶媒100重量部に対して、熱硬化性樹脂5〜20重量
部、炭素質粉体10〜30重量部、セラミックス粉体1
〜15重量部が好ましい濃度である。
【0029】母材前駆体液を炭素繊維に含浸するには、
その液に炭素繊維の束を浸漬し、引上げる方法で十分で
ある。含浸量を制御するためには、この液を含んだ炭素
繊維の束を、所定のスリット又は圧搾ローラーを通過さ
せることで行われる。
【0030】溶媒の乾燥は、熱硬化性樹脂の硬化温度よ
り十分低い温度で、また溶媒の沸点よりも十分低い温度
で、例えば60℃〜100℃で、気流下、又は減圧下で
行うことが好ましい。その結果得られた乾燥した母材前
駆体含有炭素繊維(中間材)では、炭素繊維100重量
部に対する母材前駆体の割合は、50〜300重量部と
することができ、この範囲内で母材前駆体含浸量を変え
ることによって、焼成後の製品の炭素繊維含有率を約3
0〜75vol%の範囲で変えることができ、通常は5
0〜70vol%の範囲とするが、これによって繊維配
列方向の熱伝導率をある範囲で制御することができる。
【0031】得られた母材前駆体含有炭素繊維の束ある
いはシート状物は、金型の中に一方向に配列されて積層
され、熱硬化性樹脂の硬化が始まる温度から約300℃
迄の温度で加圧されつつ成形硬化し、次いで不活性ガス
雰囲気で炭化焼成処理される。加圧成形温度は、熱硬化
性樹脂に一般的なフェノール樹脂を用いた場合は100
℃から200℃であり、この範囲を連続的に徐々に昇温
することが好ましく、加熱時間は数分から数時間であ
る。圧力は10〜500Kg/cm2が好ましく、100
〜300Kg/cm2がより好ましい。
【0032】成形体の焼成は、通常、大気圧不活性雰囲
気中、1,000℃から3,200℃の温度で行う。使
用するセラミックス粉体の種類にもよるが、高い温度で
長時間焼成するほど、セラミックス粒子と炭素の化学反
応が進行し、母材中の気孔が大きくなり、全気孔容積も
増加する。成形体の焼結を助長するために、焼成過程で
面圧、等方静圧によって、加圧することもできるが、常
圧で、しかも一回の焼成で製造できることが、本発明の
製造方法の特徴である。
【0033】このようにして製せられた一方向性炭素繊
維強化複合材料は、非酸化性雰囲気では2,000℃以
上迄も高温でそのまま用いることができ、空気中でも約
400℃以下の温度ならばそのまま用いることができ
る。空気に触れる条件で、400℃以上の温度で長時間
使用する場合は、母材中の炭素と炭素繊維が次第に酸化
され損耗するので、この材料の表面を酸化防止被覆する
ことが必要である。
【0034】酸化防止被覆の方法はいくつかの方法が提
供される。一つは、成形研削加工された本発明の材料を
熱分解蒸着(熱CVD)装置の中に導入し、表面及び表
面近くの気孔中にシリコンカーバイト等の非酸化性被膜
を蒸着形成する方法である。他の方法は、ある段階まで
成形研削した本発明の材料を、使用温度以上の融点を持
つ金属、例えば金属ロウ剤の融液中に浸漬して、表面及
び表面近くの気孔を金属で被覆し、その後研磨する方法
で、有効な酸化防止被覆をすることができる。より完全
な方法は、成形研削加工された本発明の材料を、ステン
レススチール等の肉薄の円筒物(キャニスター)の中に
封入し、金属ロウ剤などで接着封止する方法がある。
【0035】本発明の材料は、表面に2μm以下の小さ
な気孔が沢山あるために、上述のような酸化防止被覆、
金属ロウ剤などの封止接着が容易に行われることも特徴
である。
【0036】
【作用】本発明の意図は、金属、ガラス、プラスチック
スなどの加熱成形加工における金型表面等の温度分布を
制御するような目的で用いられる熱伝導率の異方性が大
きい材料、すなわち、材料のある方向(X方向)では熱
伝導率が非常に大きく、X方向と直角方向(Y方向)で
は熱伝導率が非常に小さい特性を持ち、且つ十分な強度
と研削加工精度、耐熱性、耐熱衝撃性及び金属との接着
性を合せ持つ材料を提供することである。X方向の熱伝
導率が大きい材料として、一方向性炭素繊維強化炭素母
材複合材料が従来から知られているが、これは炭素繊維
のX方向の熱伝導率が非常に大きく、300〜1,00
0W/m・Kにも及ぶからである。しかし、炭素繊維の
Y方向及び母材成分の炭素の熱伝導率も、小さいとはい
え100W/m・Kに近いので、一方向性複合材料のY
方向の熱電導率を低くするためには、更に熱伝導率の低
い第三物質を混入するか、気孔を包含せしめることが考
えられる。しかしながら、一般に、通常の方法で複合材
料の母材中の気孔を多くしたり、セラミックスなどの粉
体を混入すると、母材部分の強度を著るしく低下させ、
ひび割れを発生させ、研削加工時や接着時、使用時に問
題を生じる。
【0037】本発明では、この関係に注目し、この問題
を改善するために、母材中に平均径0.5μm以下のセ
ラミックス微粒子を導入すると共に、平均径0.5μm
以下の炭素質粉体と熱硬化性樹脂を母材前駆体として用
いる方法によって、母材中の気孔を小さい直径で均一に
分散し、且つ気孔が大量に含有されるような母材組織と
することが可能になり、その結果、一方向性複合材料の
X方向の熱伝導率が十分大きく、Y方向の熱伝導率を1
0W/m・K以下とすることを実現し、且つ十分なY方
向の強度と精密加工精度を得ることができるようになっ
た。更に説明を加えると、母材中に熱伝導率が小さい、
好ましくは10W/m・K以下のセラミック微粒子を含
有せしめることによって母材全体の熱伝導率を低下させ
る作用を及ぼすと同時に、このセラミックス微粒子は母
材中に焼成過程で形成される細孔の平均径を2μm以下
に保ち、且つ細孔径の分布を比較的均一に保つ作用を有
する。従って、これによって母材のY方向での強度と精
密加工性が改善される。
【0038】この機構は明らかではないが、熱硬化性樹
脂と炭素質粉体が炭化過程で分解ガスを放出して気孔が
生成する時に、セラミックス微粒子が気孔部分の支持体
となり、母材中のガスの通路の収縮を制御すると同時
に、セラミックスが一部炭素と反応し気孔径を適度に大
きくするものと思われる。全気孔容積が十分大きいこと
が、Y方向の熱伝導率を小さくすることに大きな作用を
及ぼす。本発明の材料は上記の平均気孔直径を有する場
合において、母材容積中の30vol%〜60vol%
の範囲の大きな気孔容積を有するが、このような範囲の
気孔容積を制御するためにも、セラミックス微粒子の含
有が作用しており、焼成過程でセラミックスと炭素が一
部反応し、気孔を増加させる。これらの気孔部分は、通
常はガス体で満たされているが、ガス体の熱伝導度は1
-2W/m・K程度であるので、このような範囲の気孔
を含む母材部分の熱伝導率は非常に低くなる。
【0039】本発明の材料は、常圧で、一回焼成で製造
され、母材前駆体液の再含浸、再焼成を行わず、また、
CVIによる緻密化や加圧炭化なども行わないので、簡
単な工程で、低コストで製造されることが特徴であり、
また、そのために、気孔の大部分、90%以上、通常は
ほぼ100%が全て表面に連続している開気孔であるこ
とが特徴である。このために、表面にも平均直径が2μ
m以下の細孔が均一にたくさん存在しており、このため
に他の金属表面と、金属ロウ剤等で接着する場合、溶融
した金属ロウ剤と濡れやすく、且つあまり深く浸み込ま
ず、適度なアンカー効果で強固な接着性を発現する。ま
た、このように母材中に小さい孔径の開気孔が大量に存
在することは、Y方向の熱膨張係数を約10-5/℃と金
属材料のそれと近いものとすると同時に、母材に弾力性
を与え、Y方向の剛性を下げる作用をするので、金属材
料と接着して、温度を上下しても、ひび割れや剥がれが
生じず、熱衝撃耐久性が高い。
【0040】本発明の一方向性炭素繊維強化複合材料
は、前述のような物性を有することから、主としてガラ
ス、プラスチック等の加圧成形、鋳型成型、射出成形、
ブロー成形等の成形用加熱冷却金型の表面温度の分布を
制御して、所望の成形面を効率良く得るための、異方性
熱伝導性部材として金型に埋め込まれて用いられ、約4
00K〜1,200Kの高温で用いられる一種のヒート
パイプとして機能する。これらの成形金型は溶融したガ
ラス、プラスチックス等を流し込み、金型との接触面で
冷却固化して、金型面に対応したきれいな成形面を形造
るために用いられるので、成形開始から終了まで、成形
面の温度分布をできるだけ均一に保つ必要がある。とこ
ろが、複雑な形状の金型の場合、部分的に熱流束密度が
高い部分の温度が高く保たれ、あるいは他の部分が部分
的に低温となる場合がある。このような場合、成形製品
の反りやその表面に平滑性のムラやシミ、ヘコミ等が生
じ、成形製品の欠陥となる。このような現象を防ぎ、生
産性良く成形するために、金型の各部分の熱流束に応じ
て、金型の裏側すなわち冷却側から、本発明の材料のピ
ン、ロッド、あるいは板をロウ付け等で取り付けること
が有効である。これらの本発明の材料は、自由な形状に
切削加工されるが、熱伝導率の大きな方向すなわち炭素
繊維の配列方向が、熱流束の方向にほぼ一致して取付け
られる。
【0041】以上のような利用方法のほか、射出成形、
ブロー成形等において、特定の部分を他の部分より高温
に保ちたい場合にも利用される。すなわち、その部分の
裏側に本発明の材料を埋め込み、片側の端面を所定温度
に制御されたヒートブロックと接触させることによっ
て、スポット的に他の部分よりも高温に制御することが
できる。また、本発明の材料は、金型の設計製作の自由
度を拡げ、軽量化、低価格化に役立つ。すなわち、従
来、温度分布を均一にするために、必要以上の肉厚部分
を設けたり複雑形状の水冷ラインや冷却フィンを付けた
りしたものがあったが、これらを除いて、本発明の材料
を要所に取付けることによって、より優れた効果が得ら
れる。本発明の材料は、非常に軽量であり比重は約2で
ある。
【0042】
【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明の技術的範囲がこれらにより限定される
ものではない。なお、以下に示す部はすべて重量基準で
ある。
【0043】実施例1 レゾールタイプフェノール樹脂粉体20部と平均粒径
0.47μmの生コークス粉体35部と平均粒径約0.
5μmの酸化チタン粉体8部とフルフリルアルコール2
00部からなる母材前駆体液を調製し、この中を、石油
ピッチ系高弾性炭素繊維の6000フィラメントからな
る束を通して、次に約80℃の空気流の中を通して予備
乾燥した後、フレームに巻き取り、プリプレグを作製し
た。このプリプレグを切り出し、80℃で減圧下で30
分間乾燥した後、金型内に繊維配列方向を一方向に揃え
て積層し、200kgf/cm2の面圧下で170℃で1
時間処理してフェノール樹脂を硬化し、約25×42×
120mmの母材前駆体含浸炭素繊維の成形物を得た。
これを常圧窒素気流中で1,200℃まで昇温、1,2
00℃で20分間保持して降温し、一方向炭素繊維強化
複合材料を得た。
【0044】この複合材料を、金属研削用のダイヤモン
ドソー、ボール盤及び旋盤を用いて、削孔及び長手方向
が繊維配列方向とした10.0×10.0×20.0m
mの角柱、10.0φ×20.0mmの円柱等を切削加
工テストし、±10μm以下の精度で割れや欠けがな
く、加工することができる。この複合材料は炭素繊維含
有率として62vol%であり、500Kの温度におけ
るX方向の熱伝導率は392W/m・K、Y方向の熱伝
導率は6.4W/m・Kであった。また、この複合材料
の細孔分布を水銀圧入法で測定すると、平均細孔直径が
1.41μm、全開気孔容積は母材容積中の47%を占
め、嵩密度と成分の推定真比重との差から計算した全気
孔容積に対し開気孔容積が99%であった。
【0045】実施例2 母材前駆体液の構成成分のうち、酸化チタン粉体を平均
粒径約0.5μmのムライト6部に変えたほかは、実施
例1と同じ処理をして、一方向性炭素繊維強化複合材料
を得た。この複合材料も、実施例1の製品と同様の良い
加工性、加工精度を示した。また、この円筒状加工サン
プルと銅板との銀ロウ付けテストを行い、強固な接着性
を得た。この複合材料は、炭素繊維含有率としては61
vol%であり、500Kの温度でのX方向の熱伝導率
は369W/m・Kであり、Y方向では7.5W/m・
Kであり、平均細孔直径は1.26μm、全開気孔容積
は母材容積中の36%を占め、開気孔率は98%であっ
た。
【0046】実施例3 焼成温度をアルゴン中で3,000℃まで昇温し、3,
000℃で20分間保持して降温したほかは、実施例2
と同じ処理をして、一方向性炭素繊維強化複合材料を得
た。この複合材料も加工性、加工精度は実施例1、2と
同様良好であった。この複合材料は、炭素繊維含有率と
して64vol%であり、500Kの温度でのX方向の
熱伝導率は426W/m・K、Y方向では5.6W/m
・Kであり、平均細孔直径は1.94μm、全開気孔容
積は母材容積中の56%を占め、開気孔率は95%であ
った。
【0047】比較例1 実施例1の母材前駆体液の構成成分のうち、酸化チタン
粉体を平均粒径0.5μmの黒鉛粉体5部に変えたほか
は、実施例1と同じ処理をして一方向性炭素繊維強化複
合材料を得た。この複合材料は、実施例1の製品と同様
の加工テストで良い加工精度を示したが、500Kの温
度でのY方向の熱伝導が28.5W/m・Kと大きく、
試料の平均細孔直径は1.12μm、全開気孔容積の母
材中の割合は23%であった。
【0048】比較例2 実施例2の母材前駆体液の構成成分のうち、生コークス
粉体の平均粒径を1.25μmとしたほかは、実施例2
と同じ処理をして、一方向性炭素繊維強化複合材料を得
た。この複合材料は炭素繊維含有率58vol%で、5
00Kにおける熱伝導率はX方向で272W/m・K、
Y方向で7.1W/m・Kを示したが、実施例1と同じ
加工テストで割れる試料が多く、加工精度は±100μ
m程度であった。この複合材料の平均細孔直径は3.2
8μm、母材中の全開気孔容積の占める割合は63%で
あった。
【0049】比較例3 実施例2の母材前駆体液の構成成分のうち、ムライト粉
体の平均粒径を1.2μmとしたほかは、実施例2と同
じ処理をして、一方向性炭素繊維強化複合材料を製作し
たところ、焼成後の試料に多数の小さなひび割れが顕微
鏡で観察され、この試料の平均細孔直径は3.51μm
であり、全開気孔容積の占める割合は母材中の68%で
あった。
【0050】
【発明の効果】請求項1の一方向性炭素繊維強化複合材
料は、炭素繊維の配列方向の熱伝導率が高く、配列方向
に対して直角方向の熱伝導率が非常に低く、且つ研削加
工時に割れにくく、金属とのロウ付け接着性も良く、1
00℃〜900℃の高温における一種のヒートパイプと
して、ガラス、プラスチックス等の成形金型の局所温度
制御、あるいは均一温度制御等に使用できる材料が提供
される。
【0051】請求項2の一方向性炭素繊維強化複合材料
の製造方法は、常圧の一回焼成を特徴としており、加圧
焼成、再含浸再焼成、あるいは熱CVDなどの高価なプ
ロセスを含まず、低コスト且つ短時間で、前記物性、性
能を有する一方向性炭素繊維強化複合材料を提供するこ
とができる。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 母材が炭素とセラミックスからなる一方
    向性炭素繊維強化複合材料において、水銀圧入法により
    求められる開気孔容積が全気孔容積の90%以上であ
    り、且つその開気孔容積が母材部分の全容積の30%〜
    60%を占め、しかも気孔の平均直径が2μm以下であ
    ることを特徴とする一方向性炭素繊維強化複合材料。
  2. 【請求項2】 一方向に配列された炭素繊維の束に、熱
    硬化性樹脂、平均粒子直径が0.5μm以下の炭素質粉
    体、平均粒子直径が0.5μm以下のセラミックス粉体
    及び溶媒からなる母材前駆体液を含浸し、溶媒を乾燥し
    た後、炭素繊維が一方向に配列するように加圧加熱下に
    成形し、次いで焼成することを特徴とする請求項1記載
    の一方向性炭素繊維強化複合材料の製造方法。
JP7306737A 1995-10-31 1995-10-31 一方向性炭素繊維強化複合材料及びその製造方法 Pending JPH09124368A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7306737A JPH09124368A (ja) 1995-10-31 1995-10-31 一方向性炭素繊維強化複合材料及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7306737A JPH09124368A (ja) 1995-10-31 1995-10-31 一方向性炭素繊維強化複合材料及びその製造方法

Publications (1)

Publication Number Publication Date
JPH09124368A true JPH09124368A (ja) 1997-05-13

Family

ID=17960702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7306737A Pending JPH09124368A (ja) 1995-10-31 1995-10-31 一方向性炭素繊維強化複合材料及びその製造方法

Country Status (1)

Country Link
JP (1) JPH09124368A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102961A1 (ja) * 2004-04-23 2005-11-03 Toyota Jidosha Kabushiki Kaisha 金属炭化物粒子が分散した炭素複合材料及びその製造方法
EP4134359A4 (en) * 2020-04-10 2024-05-29 Toyo Tanso Co C/C COMPOSITE AND METHOD FOR PRODUCING THE SAME AND HEAT TREATMENT JIG AND METHOD FOR PRODUCING THE SAME

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102961A1 (ja) * 2004-04-23 2005-11-03 Toyota Jidosha Kabushiki Kaisha 金属炭化物粒子が分散した炭素複合材料及びその製造方法
JP2005306688A (ja) * 2004-04-23 2005-11-04 Toyota Motor Corp 金属炭化物粒子が分散した炭素複合材料及びその製造方法
KR100818577B1 (ko) * 2004-04-23 2008-04-02 도요다 지도샤 가부시끼가이샤 금속 탄화물 입자가 분산된 탄소 복합 재료 및 그 제조방법
CN100465135C (zh) * 2004-04-23 2009-03-04 丰田自动车株式会社 包含分散于其中的金属碳化物颗粒的碳复合材料及其制备方法
US8058197B2 (en) 2004-04-23 2011-11-15 Toyota Jidosha Kabushiki Kaisha Carbon composite materials comprising particles of metal carbides dispersed therein and method for producing the same
EP4134359A4 (en) * 2020-04-10 2024-05-29 Toyo Tanso Co C/C COMPOSITE AND METHOD FOR PRODUCING THE SAME AND HEAT TREATMENT JIG AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
RU2176628C2 (ru) Композит (варианты) и способ его приготовления, способ обработки волоконной заготовки (варианты)
JP4225684B2 (ja) ダイヤモンド−炭化ケイ素−ケイ素複合材料の製造法
US5552352A (en) Silicon carbide composite with coated fiber reinforcement
EP0518589B1 (en) Silicon carbide composite with metal boride coated fiber reinforcement
JP3942199B2 (ja) 金属窒化物で被覆された繊維強化材を有する炭化ケイ素複合材
JPH069279A (ja) 炭化ケイ素複合材中の強化材上に反応性中間層を有する保護コーティング
JP2004510674A (ja) 炭化ホウ素をベースとしたセラミックマトリックス複合材料
EP0192040A1 (en) Fluoride infiltrated carbide or nitride composite
WO2006027879A1 (ja) 炭素繊維Ti-Al複合材料及びその製造方法
JP3127371B2 (ja) セラミック含有炭素/炭素複合材料及びその製造方法
JP5031711B2 (ja) 多孔体、金属−セラミックス複合材料、及びそれらの製造方法
EP0519643B1 (en) Silicon carbide composite with metal carbide coated fiber reinforcement
JP5320132B2 (ja) 多孔体、金属−セラミックス複合材料、及びそれらの製造方法
JP5068218B2 (ja) 炭素繊維強化炭化ケイ素複合材料およびその製造方法
JPH09124368A (ja) 一方向性炭素繊維強化複合材料及びその製造方法
ZHENG et al. Preparation and fracture behavior of carbon fiber/SiC composites by multiple impregnation and pyrolysis of polycarbosilane
CN114908322A (zh) 一种耐烧蚀三维镶嵌陶瓷涂层及其制备方法
JPH05163065A (ja) ケイ素を含有しない炭化ケイ素およびケイ化モリブデンの溶浸形成性複合材
JP4612608B2 (ja) シリコン/炭化ケイ素複合材料の製造方法
JPH05306180A (ja) 炭素繊維強化炭素−無機化合物複合材料の製造方法
JP2000344582A (ja) 繊維強化複合材料
JP4217278B2 (ja) 金属−セラミックス複合材料の製造方法
JP2011136845A (ja) プリフォーム及び金属−セラミックス複合材料
CN116462523A (zh) 一种基于MCMB的激光3D打印Cf/SiC复合材料及其制备方法
Helmuth Adhesion between Nextel 312™ fibers and Blackglas™ silicon oxycarbide and its effect on composite properties