JPH0883615A - Processing method for hydrogen storage alloy powder - Google Patents

Processing method for hydrogen storage alloy powder

Info

Publication number
JPH0883615A
JPH0883615A JP6217677A JP21767794A JPH0883615A JP H0883615 A JPH0883615 A JP H0883615A JP 6217677 A JP6217677 A JP 6217677A JP 21767794 A JP21767794 A JP 21767794A JP H0883615 A JPH0883615 A JP H0883615A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
battery
alloy powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6217677A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP6217677A priority Critical patent/JPH0883615A/en
Publication of JPH0883615A publication Critical patent/JPH0883615A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide hydrogen storage alloy powder for the negative electrode of an alkaline secondary battery effectively eluting and removing a segregation constituent when an alloy is ingotted, suppressing the rise of the battery internal voltage at the time of overcharging, and increasing the capacity recovering factor after the voltage drop. CONSTITUTION: The powder 2 of a hydrogen storage alloy is cathode-polarized in a thermal alkaline solution 3 to manufacture this alloy powder. When the Co component is contained in the hydrogen storage alloy in particular, cathode polarization is conducted at the potential lower than the Hg/HgO single electrode potential by -0.8V to manufacture the alloy powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金粉末の処理
方法に関し、更に詳しくは、ニッケル・水素二次電池の
負極として組込まれる水素吸蔵合金電極の主材として有
用な水素吸蔵合金粉末を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a hydrogen storage alloy powder, and more particularly, to produce a hydrogen storage alloy powder useful as a main material of a hydrogen storage alloy electrode incorporated as a negative electrode of a nickel-hydrogen secondary battery. On how to do.

【0002】[0002]

【従来の技術】最近、高容量のアルカリ二次電池とし
て、ニッケル・水素二次電池が注目を集めている。この
ニッケル・水素二次電池は水素を負極活物質として作動
するものであり、可逆的に水素を吸蔵・放出することが
できる水素吸蔵合金を集電体に担持させて成る負極と、
正極活物質である水酸化ニッケルを同じく集電体に担持
させて成る正極とを、電気絶縁性でかつ通液性を備えた
セパレータを介して重ね合わせて発電要素を形成し、こ
の発電要素を水酸化カリウムのようなアルカリ電解液の
中に配置したのち全体を密封構造にして構成されてい
る。
2. Description of the Related Art Recently, nickel-hydrogen secondary batteries have been attracting attention as high-capacity alkaline secondary batteries. This nickel-hydrogen secondary battery operates with hydrogen as a negative electrode active material, and a negative electrode in which a hydrogen storage alloy capable of reversibly storing and releasing hydrogen is carried on a current collector,
A power generating element is formed by stacking a positive electrode, which is also a positive electrode active material nickel hydroxide supported on a current collector, through a separator having electrical insulation and liquid permeability, and forming the power generating element. After being placed in an alkaline electrolyte such as potassium hydroxide, the entire structure is hermetically sealed.

【0003】この電池で使用する負極は、通常、水素吸
蔵合金粉末と導電材粉末と結着材粉末と所定の割合で混
合し、その混合粉末を増粘剤水溶液に投入・撹拌してス
ラリーを調製し、そのスラリーを集電体に塗着したのち
乾燥・圧延して所望の形状に成形して製造されている。
従来、負極用の水素吸蔵合金としては、主に、LaNi
5 などの合金が用いられてきたが、この合金で構成した
負極を組込んだ電池は充放電サイクル寿命が30サイク
ル程度と短く、実用的でないという問題があった。
The negative electrode used in this battery is usually prepared by mixing a hydrogen-absorbing alloy powder, a conductive material powder, and a binder powder in a predetermined ratio, and pouring the mixed powder into an aqueous thickener solution and stirring it to form a slurry. It is manufactured by preparing the slurry, coating the slurry on a current collector, drying and rolling it into a desired shape.
Conventionally, as a hydrogen storage alloy for a negative electrode, LaNi is mainly used.
Although alloys such as 5 have been used, there is a problem in that a battery incorporating a negative electrode made of this alloy has a short charge / discharge cycle life of about 30 cycles and is not practical.

【0004】そのため、最近では、LaNi5 のNiの
一部をCo,Al,Mnなどで置換して多元合金化し、
あわせて、経済性の観点から、LaをLa,Ce,P
r,Ndなど希土類元素の混合物であるミッシュメタル
(Mm)で置換した水素吸蔵合金が広く使用されはじめ
ている。このような合金は、通常、各成分元素の所定量
を目的とする合金組成に適合するように混合したのち例
えばアーク溶解炉で溶製して製造されている。
Therefore, recently, a part of Ni of LaNi 5 is replaced with Co, Al, Mn or the like to form a multi-component alloy,
In addition, from the viewpoint of economic efficiency, La is replaced with La, Ce,
Hydrogen storage alloys substituted with misch metal (Mm), which is a mixture of rare earth elements such as r and Nd, have begun to be widely used. Such an alloy is usually manufactured by mixing predetermined amounts of the respective component elements so as to be compatible with the target alloy composition, and then smelting in an arc melting furnace, for example.

【0005】ところで、ニッケル・水素二次電池の負極
を構成する水素吸蔵合金が充電反応を起こす電位はアル
カリ電解液中の水の電解電位に近接した値であるため、
過充電時にあっては、水の電解による水素ガスが多量に
発生して電池内圧の上昇が引き起こされる。通常、ニッ
ケル・水素二次電池には、電池内圧が20気圧を超える
と、電池に設けられている安全弁が作動して内部ガスを
排出するような設計が施されているが、しかしこのよう
な状態が反復して起こると、その都度電解液が減量して
電池寿命が短期で尽きるようになる。
By the way, the potential at which the hydrogen storage alloy forming the negative electrode of the nickel-hydrogen secondary battery causes a charging reaction is a value close to the electrolysis potential of water in the alkaline electrolyte.
At the time of overcharging, a large amount of hydrogen gas is generated by electrolysis of water, which causes an increase in battery internal pressure. Normally, the nickel-hydrogen secondary battery is designed so that when the internal pressure of the battery exceeds 20 atm, the safety valve provided in the battery is activated to discharge the internal gas. When the condition is repeated, the amount of electrolyte is reduced each time and the battery life becomes short.

【0006】この過充電時における電池内圧の上昇を抑
制するために、負極を構成する水素吸蔵合金には、前記
したように、Co成分を含有させることが行われてい
る。また、負極に用いた水素吸蔵合金が、その溶製時に
完全に合金化されず、構成元素が偏析している場合に
は、その水素吸蔵合金で製造した負極を電池に組込む
と、前記した偏析成分がアルカリ電解液に溶解する。そ
して、溶解した偏析成分のイオンは、充放電サイクルを
反復する過程で、例えば放電時に酸化されたりまたは溶
解度の関係で金属状態で例えばセパレータなどに析出す
ることがある。このような事態が発生すると、セパレー
タの電気絶縁性は破れて電池内で短絡現象が起こり、電
池の放電容量は急速に低下する。
In order to suppress the rise in the internal pressure of the battery during overcharge, the hydrogen storage alloy forming the negative electrode is made to contain a Co component as described above. Further, when the hydrogen storage alloy used for the negative electrode is not completely alloyed during its melting and the constituent elements are segregated, when the negative electrode manufactured by the hydrogen storage alloy is incorporated into a battery, the segregation The ingredients dissolve in the alkaline electrolyte. Then, the dissolved ions of the segregated component may be oxidized, for example, at the time of discharge in the process of repeating the charge / discharge cycle, or may be deposited in a metallic state on the separator or the like due to the solubility. When such a situation occurs, the electrical insulation of the separator is broken, a short circuit phenomenon occurs in the battery, and the discharge capacity of the battery decreases rapidly.

【0007】この偏析成分の存在に基づく上記した現象
は、高温下において顕著に発現する。それは、高温にな
ると、前記偏析成分のアルカリ電解液への溶解速度,溶
解量が増大するからであると考えられる。このような問
題に対しては、特開昭61−176063号公報におい
て、溶製した水素吸蔵合金を粉砕したのち、その粉末を
40〜80℃のアルカリ溶液で洗浄することにより、偏
析成分を溶出除去する方法が開示されている。
The above-mentioned phenomenon due to the presence of the segregation component is remarkably exhibited at high temperature. It is considered that this is because the dissolution rate and the amount of the segregated component dissolved in the alkaline electrolyte increase at high temperatures. To solve such a problem, in JP-A-61-176063, a segregated component is eluted by crushing a melted hydrogen storage alloy and then washing the powder with an alkaline solution at 40 to 80 ° C. A method of removal is disclosed.

【0008】しかしながら、この方法を、例えばCo成
分が含有されている水素吸蔵合金の粉末に適用すると、
過充電時の電池内圧の上昇を抑制するCo成分もまたそ
の多くが溶出除去されてしまい、結果として、電池内圧
の上昇を引き起こすことがある。また、ニッケル・水素
二次電池の場合、その電池を放電状態にして高温下に放
置しておくと、電池容量がゼロになってからでも電池電
圧はオープン電圧まで下がり続けるという特異な挙動を
示す。そして、電池電圧がオープン電圧にまで低下した
電池に対して、再び過充電を行っても電池容量は元の状
態に回復しないという問題がある。
However, when this method is applied to the powder of the hydrogen storage alloy containing the Co component, for example,
Most of the Co component that suppresses the increase in battery internal pressure during overcharging is also eluted and removed, which may result in an increase in battery internal pressure. In addition, in the case of nickel-hydrogen secondary battery, if the battery is left in a discharged state and left at high temperature, it exhibits a peculiar behavior that the battery voltage continues to drop to the open voltage even after the battery capacity becomes zero. . Then, there is a problem that the battery capacity does not return to the original state even if the battery whose battery voltage has dropped to the open voltage is overcharged again.

【0009】前記した特開昭61−176063号公報
で開示する方法で処理した水素吸蔵合金で構成した負極
を用いても、それを組込んだニッケル・水素二次電池
は、上記した高温放電下における電池電圧の低下に対す
る抑制効果は不充分であり、また容量回復率はそれほど
高くならないという問題がある。
Even when a negative electrode composed of a hydrogen storage alloy treated by the method disclosed in the above-mentioned Japanese Patent Laid-Open No. 61-176063 is used, the nickel-hydrogen secondary battery incorporating the negative electrode is not affected by the above high-temperature discharge. There is a problem in that the effect of suppressing the decrease in battery voltage is insufficient and the capacity recovery rate is not so high.

【0010】[0010]

【発明が解決しようとする課題】本発明は、特開昭61
−176063号公報が開示する方法を改良することに
より、偏析成分が存在する水素吸蔵合金における上記し
た問題を解決し、負極の構成材料としたときに、その電
池では、過充電時の電池内圧の上昇が抑制され、高温下
における放電放置時の電池電圧の低下が抑制され、また
電圧低下後における容量回復率の向上が達成できる、水
素吸蔵合金粉末の処理方法の提供を目的とする。とりわ
け、Co成分を含有する水素吸蔵合金粉末に適用して有
効な処理方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention is disclosed in Japanese Patent Laid-Open No. Sho 61-61.
By improving the method disclosed in Japanese Patent Publication No. 176063, the above-mentioned problems in a hydrogen storage alloy having segregation components are solved, and when used as a constituent material of a negative electrode, in the battery, the internal pressure of the battery during overcharge is reduced. It is an object of the present invention to provide a method for treating a hydrogen storage alloy powder, which can suppress an increase in temperature, suppress a decrease in battery voltage when left to discharge at high temperature, and achieve an improvement in capacity recovery rate after voltage decrease. In particular, it is intended to provide an effective treatment method when applied to a hydrogen storage alloy powder containing a Co component.

【0011】[0011]

【課題を解決するための手段・作用】上記した目的を達
成するために、本発明においては、熱アルカリ溶液中で
水素吸蔵合金の粉末をカソード分極することを特徴とす
る水素吸蔵合金粉末の処理方法が提供され、とくに、前
記水素吸蔵合金はCo成分を含有し、前記カソード分極
はHg/HgO単極電位に対し−0.8Vより卑な電位で
行われる処理方法が提供される。
In order to achieve the above-mentioned object, in the present invention, the hydrogen storage alloy powder is treated by cathodic polarization in a hot alkaline solution. There is provided a method, in particular, a treatment method in which the hydrogen storage alloy contains a Co component, and the cathodic polarization is performed at a base potential lower than -0.8 V with respect to a Hg / HgO single electrode potential.

【0012】以下に、本発明の処理方法を図面に則して
詳細に説明する。図1において、処理槽1の中に、処理
すべき水素吸蔵合金の粉末2がアルカリ溶液3と一緒に
収容される。そして、水素吸蔵合金粉末2の中に例えば
発泡ニッケル板のような電極4を埋設し、また、アルカ
リ溶液3の中には前記合金粉末2と接触しないようにし
て例えばニッケル板のような電極5を配置し、これら電
極4,5を電源6のマイナス極とプラス極にそれぞれ接
続して、電極4をカソード,電極5をアノードに設定す
る。
The processing method of the present invention will be described below in detail with reference to the drawings. In FIG. 1, a hydrogen storage alloy powder 2 to be treated is stored in a treatment tank 1 together with an alkaline solution 3. Then, an electrode 4 such as a foamed nickel plate is embedded in the hydrogen storage alloy powder 2, and an electrode 5 such as a nickel plate is embedded in the alkaline solution 3 so as not to come into contact with the alloy powder 2. And the electrodes 4 and 5 are connected to the negative and positive poles of the power source 6, respectively, and the electrode 4 is set as the cathode and the electrode 5 is set as the anode.

【0013】ついで、例えばバーナや電熱ヒータなどの
加熱手段7で処理槽1を加熱して、アルカリ溶液3を所
定温度の熱アルカリ溶液にして電極4,5に通電する。
ここで、アルカリ溶液3としては格別限定されるもので
はなく、例えば水酸化カリウム水溶液,水酸化ナトリウ
ム水溶液などをあげることができる。とくに、組立てる
べき電池で使用するアルカリ電解液と種類も濃度も同じ
ものを用いることが好ましい。
Then, the treatment tank 1 is heated by a heating means 7 such as a burner or an electric heater to turn the alkaline solution 3 into a hot alkaline solution having a predetermined temperature, and the electrodes 4 and 5 are energized.
Here, the alkaline solution 3 is not particularly limited, and examples thereof include potassium hydroxide aqueous solution and sodium hydroxide aqueous solution. In particular, it is preferable to use the same type and concentration as the alkaline electrolyte used in the battery to be assembled.

【0014】アルカリ溶液3の温度は、通常、30〜1
00℃に設定することが好ましい。温度を30℃よりも
低くくすると、偏析成分の溶出が速やかに進行せず処理
時間が長大になるからでしる。また、温度を100℃よ
り高くすると、アルカリ溶液の蒸発が激しく進んでしま
うからである。しかも、反応が急速に進んでその制御が
困難になる。
The temperature of the alkaline solution 3 is usually 30 to 1
It is preferably set to 00 ° C. This is because when the temperature is lower than 30 ° C., the elution of the segregated components does not proceed promptly and the processing time becomes long. Further, if the temperature is higher than 100 ° C., the evaporation of the alkaline solution will proceed rapidly. In addition, the reaction progresses rapidly and its control becomes difficult.

【0015】電極4,5の間を所定の電位に保持して通
電することにより、合金粉末2は全体としてカソードと
なってそのカソード分極が進む。その結果、合金粉末2
に含有されている偏析成分は、熱アルカリ溶液による溶
出作用に加えて、イオン化を強制されるので、確実かつ
迅速に合金粉末2から溶出していく。このとき、電極
4,5に印加する電圧は、溶出させる偏析成分の分極電
位との関係で設定されるが、偏析成分の分極電位よりも
貴な電位に設定して当該偏析成分の溶出を促進させるこ
とが好適である。
By maintaining a predetermined potential between the electrodes 4 and 5 and conducting electricity, the alloy powder 2 becomes a cathode as a whole and its cathode polarization proceeds. As a result, alloy powder 2
The segregation component contained in (1) is forced to be ionized in addition to the elution action by the hot alkaline solution, so that it is surely and quickly eluted from the alloy powder 2. At this time, the voltage applied to the electrodes 4 and 5 is set in relation to the polarization potential of the segregated component to be eluted, but it is set to a potential nobler than the polarization potential of the segregated component to promote the elution of the segregated component. It is preferable that

【0016】本発明において、水素吸蔵合金としてCo
成分を含有するものを処理する場合には、電池内圧の上
昇に対する抑制効果を有するCo成分を溶出させないた
めに、Coの分極電位、すなわち、Hg/HgO単極電
位に対し−0.8Vより卑な電位で処理することが好まし
い。−0.8Vより貴な電位で処理すると、有用なCo成
分が溶出してしまうからである。
In the present invention, Co is used as the hydrogen storage alloy.
When treating a material containing a component, in order to prevent the elution of the Co component, which has an inhibitory effect on the rise in the internal pressure of the battery, the polarization potential of Co, that is, -0.8 V with respect to the Hg / HgO unipolar potential is lower than It is preferable to treat at a different potential. This is because a useful Co component will be eluted if treated with a potential nobler than -0.8V.

【0017】しかし、その電位を−0.95Vよりも卑に
すると、処理系には水素ガスが発生するようになるとと
もに、他の偏析成分の溶出が妨害されるという事態が引
き起こされるので、Co成分を含有する合金粉末の処理
においては、−0.8〜−0.95V(Hg/HgO単極電
位に対する値)の範囲内でカソード分極を進めることが
好ましい。
However, if the potential is made lower than -0.95 V, hydrogen gas will be generated in the processing system and the elution of other segregated components will be disturbed. In the treatment of the alloy powder containing the components, it is preferable to advance the cathode polarization within the range of -0.8 to -0.95 V (value for Hg / HgO single electrode potential).

【0018】[0018]

【発明の実施例】Examples of the invention

実施例1〜9,比較例1〜10 アーク溶解法で、組成:MmNi3.4 Co1.0 Mn0.4
Al0.3 で示される水素吸蔵合金を製造したのち、これ
を粉砕して150メッシュ(タイラー篩)下の粉末とし
た。
In Examples 1-9, Comparative Examples 1 to 10 arc melting method, composition: MmNi 3.4 Co 1.0 Mn 0.4
After producing a hydrogen storage alloy represented by Al 0.3 , this was pulverized into a powder under 150 mesh (Tyler sieve).

【0019】ついで、図1で示したように、この粉末を
水酸化カリウムと水酸化リチウムの混合アルカリ水溶液
(比重1.37)に挿入し、表1に示した温度で表示の時
間、Hg/HgO単極電位に対し−0.85Vでカソード
分極を行った。この過程で、アルカリ水溶液の状態を観
察した。得られた処理粉末を用いて、水素吸蔵合金電極
を製造し、アルカリ電解液としては上記したときと同じ
混合アルカリ水溶液を用いてAAサイズで定格1100
mAh のニッケル・水素二次電池を組立てた。
Then, as shown in FIG. 1, this powder was inserted into a mixed alkaline aqueous solution of potassium hydroxide and lithium hydroxide (specific gravity: 1.37), and Hg / Hg / Cathodic polarization was performed at -0.85 V with respect to the HgO single electrode potential. During this process, the state of the alkaline aqueous solution was observed. A hydrogen storage alloy electrode is manufactured using the obtained treated powder, and the same mixed alkaline aqueous solution as that described above is used as the alkaline electrolyte, and the rated AA size is 1100.
A mAh nickel-hydrogen secondary battery was assembled.

【0020】これらの各電池につき、温度20℃におい
て、1Cで450%の過充電を行い、このときの電池内
圧を測定した。その結果を表1に示した。また、各電池
を放電状態にして温度80℃の恒温槽の中に放置して電
池電圧が1.0Vに低下するまでの時間を測定した。その
結果を表1に示した。更に、各電池の放置放電を続けて
オープン電圧を0.6Vにまで低下させたのち、それら電
池に前記した条件の過充電を行って電池容量を測定し、
その値に基づいて容量回復率を算出した。その結果を表
1に示した。
Each of these batteries was subjected to 450% overcharge at 1 C at a temperature of 20 ° C., and the internal pressure of the battery at this time was measured. The results are shown in Table 1. Further, each battery was placed in a discharged state and left in a constant temperature bath at a temperature of 80 ° C., and the time until the battery voltage dropped to 1.0 V was measured. The results are shown in Table 1. Furthermore, after continuing to discharge each battery and lowering the open voltage to 0.6V, the batteries are overcharged under the above conditions and the battery capacity is measured.
The capacity recovery rate was calculated based on the value. The results are shown in Table 1.

【0021】比較のために、粉砕直後の粉末(比較例
1)を用いて実施例と同様の電池を組立て、実施例と同
様にしてその特性を調べた。また、実施例1〜9におい
て、カソード分極を行わず、表示の温度で表示の時間、
熱アルカリ溶液で処理しただけの合金粉末についても、
実施例と同じ電池を組立てその電池特性を調べた。な
お、このとき、アルカリ水溶液の状態を観察した。その
結果を表1に示した。
For comparison, a battery similar to that of the example was assembled using the powder immediately after crushing (comparative example 1), and its characteristics were examined in the same manner as the example. Further, in Examples 1 to 9, without performing cathodic polarization, at the temperature shown, the time shown,
For alloy powder that has just been treated with a hot alkaline solution,
The same battery as the example was assembled and the battery characteristics were examined. At this time, the state of the alkaline aqueous solution was observed. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から以下のことが明らかとなる。 (1) 熱アルカリ溶液中でカソード分極処理を行った本発
明の合金粉末(実施例1〜9)とカソード分極は行わず
に熱アルカリ処理のみを行った比較例の合金粉末(比較
例2〜10)とは、いずれも、粉砕直後の合金粉末(比
較例1)に比べて、過充電時における電池内圧の抑制,
温度80℃で放電放置したときの電池電圧の低下の抑
制,容量回復率の向上にとって有効な働きを発揮してい
る。
The following is clear from Table 1. (1) Alloy powders of the present invention that were subjected to cathodic polarization treatment in a hot alkaline solution (Examples 1 to 9) and alloy powders of comparative examples that were not subjected to cathodic polarization and were only subjected to hot alkaline treatment (Comparative Examples 2 to 2). 10) means that in comparison with the alloy powder immediately after crushing (Comparative Example 1), suppression of battery internal pressure during overcharge,
It is effective in suppressing the drop in battery voltage and improving the capacity recovery rate when it is left to discharge at a temperature of 80 ° C.

【0024】(2) 実施例1〜9の合金粉末と比較例2〜
10の合金粉末を比べると、カソード分極処理を施した
実施例の合金粉末の方が超かに有効な働きを示してい
る。これは、比較例2〜10の場合はアルカリ溶液の色
が青変してCo成分の溶出が認められるが、本発明の場
合には、アルカリ溶液の色の変化はなくCo成分の溶出
は認められないことからも明らかなように、カソード分
極処理がCo成分の溶出を防止しているからであり、カ
ソード分極処理の有用性を立証するものである。
(2) Alloy powders of Examples 1 to 9 and Comparative Example 2
Comparing the alloy powders of No. 10 with each other, the alloy powders of the examples subjected to the cathodic polarization treatment have an extremely effective effect. This is because in Comparative Examples 2 to 10, the color of the alkaline solution turned blue and the elution of the Co component was observed, but in the case of the present invention, the color of the alkaline solution did not change and the elution of the Co component was observed. This is because the cathode polarization treatment prevents the elution of the Co component, which proves the usefulness of the cathode polarization treatment.

【0025】(3) 実施例1〜9の合金粉末と比較例2〜
10の合金粉末のいずれにおいても、処理時間が2時間
を超えると、発揮する効果はほぼ飽和状態に達してい
る。したがって、経済的な問題を考えると処理時間は2
〜3時間程度であればよい。
(3) Alloy powders of Examples 1 to 9 and Comparative Example 2
With all of the 10 alloy powders, when the treatment time exceeds 2 hours, the effect exhibited is almost saturated. Therefore, considering economic problems, the processing time is 2
It may be about 3 hours.

【0026】[0026]

【発明の効果】以上の説明で明らかなように、水素吸蔵
合金の粉末に本発明の処理方法を適用すると、合金中の
偏析成分を極めて有効に溶出除去することができる。そ
して得られた処理粉末を用いて水素吸蔵合金電極を製造
し、それを組込んでアルカリ二次電池を組立てたとき、
その電池の過充電時における電池内圧の上昇は抑制さ
れ、また高温下で放電放置したときの電池電圧の低下が
抑制され、更には放電放置後の電池を過充電したときの
容量回復率も向上する。
As is apparent from the above description, when the treatment method of the present invention is applied to the powder of hydrogen storage alloy, the segregation component in the alloy can be eluted and removed very effectively. When a hydrogen storage alloy electrode is manufactured using the obtained treated powder, and an alkaline secondary battery is assembled by incorporating the electrode,
The increase in the battery internal pressure during overcharging of the battery is suppressed, the decrease in the battery voltage when left to discharge at high temperature is suppressed, and the capacity recovery rate when the battery is overcharged after being discharged is also improved. To do.

【0027】とくに、請求項2の方法の場合は、処理対
象が、電池内圧の上昇に対する抑制効果を発揮するCo
成分が含有されている水素吸蔵合金粉末の場合、カソー
ド分極をHg/HgO単極電位に対し−0.8Vより低い
電位で実施することにより、熱アルカリ溶液だけの処理
では溶出除去されてしまう上記Co成分の溶出を選択的
に抑制し、他の偏析成分の溶出除去を進めることができ
るので有効である。
Particularly, in the case of the method of claim 2, the object to be treated is Co which exhibits an effect of suppressing an increase in the internal pressure of the battery.
In the case of the hydrogen storage alloy powder containing the components, the cathodic polarization is carried out at a potential lower than −0.8 V with respect to the Hg / HgO single electrode potential, so that it is eluted and removed by the treatment only with the hot alkaline solution. This is effective because the elution of the Co component can be selectively suppressed and the elution and removal of other segregated components can be promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する時の処理系を示す概略図
である。
FIG. 1 is a schematic diagram showing a processing system when carrying out the method of the present invention.

【符号の説明】 1 処理槽 2 水素吸蔵合金の粉末 3 熱アルカリ溶液 4 カソード板 5 アノード板 6 電源 7 加熱手段[Explanation of Codes] 1 treatment tank 2 hydrogen storage alloy powder 3 hot alkaline solution 4 cathode plate 5 anode plate 6 power supply 7 heating means

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月10日[Submission date] August 10, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱アルカリ溶液中で水素吸蔵合金の粉末
をカソード分極することを特徴とする水素吸蔵合金粉末
の処理方法。
1. A method for treating a hydrogen storage alloy powder, which comprises subjecting the hydrogen storage alloy powder to cathodic polarization in a hot alkaline solution.
【請求項2】 前記水素吸蔵合金はCo成分を含有し、
前記カソード分極はHg/HgO単極電位に対し−0.8
Vより卑な電位で行われる、請求項1の水素吸蔵合金粉
末の処理方法。
2. The hydrogen storage alloy contains a Co component,
The cathode polarization is -0.8 with respect to the Hg / HgO single electrode potential.
The method for treating a hydrogen storage alloy powder according to claim 1, which is carried out at a potential lower than V.
JP6217677A 1994-09-12 1994-09-12 Processing method for hydrogen storage alloy powder Pending JPH0883615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6217677A JPH0883615A (en) 1994-09-12 1994-09-12 Processing method for hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6217677A JPH0883615A (en) 1994-09-12 1994-09-12 Processing method for hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH0883615A true JPH0883615A (en) 1996-03-26

Family

ID=16707997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6217677A Pending JPH0883615A (en) 1994-09-12 1994-09-12 Processing method for hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH0883615A (en)

Similar Documents

Publication Publication Date Title
US5518509A (en) Method for producing a hydrogen absorbing alloy electrode
WO2009144873A1 (en) Hyrogen occluding alloy powder and method for surface treatment of same, negative pole for an alkali storage battery, and alkali storage battery
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JP2003007293A (en) Hydrogen storage alloy electrode
JPH0479474B2 (en)
JPH0883615A (en) Processing method for hydrogen storage alloy powder
JP3432870B2 (en) Method for producing metal hydride electrode
JPH05195007A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery and the same battery provided with the surface-treated alloy as electrode
JPH0349154A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH05195008A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery and the same battery provided with the treated alloy as electrode
JP2823301B2 (en) Hydrogen storage alloy electrode
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH04328252A (en) Hydrogen storage alloy electrode
JPH05225974A (en) Hydrogen storage alloy electrode
JP2966492B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPH04318106A (en) Production of hydrogen storage alloy powder
JP2679441B2 (en) Nickel-metal hydride battery
JPS62223971A (en) Metal oxide-hydrogen battery