JPH08501721A - 極度に失活した改質触媒の再生法 - Google Patents

極度に失活した改質触媒の再生法

Info

Publication number
JPH08501721A
JPH08501721A JP6507552A JP50755294A JPH08501721A JP H08501721 A JPH08501721 A JP H08501721A JP 6507552 A JP6507552 A JP 6507552A JP 50755294 A JP50755294 A JP 50755294A JP H08501721 A JPH08501721 A JP H08501721A
Authority
JP
Japan
Prior art keywords
catalyst
psia
partial pressure
kpaa
paa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6507552A
Other languages
English (en)
Other versions
JP3553935B2 (ja
Inventor
ファン、シュン・チョン
ハン、ヤオ‐ジー・ロバート
ウォルシュ、ジョン・フランシス
モビッカー、ゲーリー・ブライス
クレム、ケニス・レイ
Original Assignee
エクソン・リサーチ・アンド・エンジニアリング・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクソン・リサーチ・アンド・エンジニアリング・カンパニー filed Critical エクソン・リサーチ・アンド・エンジニアリング・カンパニー
Publication of JPH08501721A publication Critical patent/JPH08501721A/ja
Application granted granted Critical
Publication of JP3553935B2 publication Critical patent/JP3553935B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/62Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/42Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using halogen-containing material
    • B01J38/44Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using halogen-containing material and adding simultaneously or subsequently free oxygen; using oxyhalogen compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/26After treatment, characterised by the effect to be obtained to stabilize the total catalyst structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 ゼオライトに担持された1種類以上の第VIII族触媒金属を含んでなる極度に失活した改質触媒を再生する方法にして、(a)上記金属粒子をゼオライトミクロ孔の外部に移動させることによって金属粒子の利用性を高めるための、過酷な条件下でのコーク燃焼工程、(b)元素状塩素と酸素での湿式オキシ塩素化による金属分散工程、(c)残留塩素をできるだけ多く除去するための、酸素と水を含んだ気流による低圧でのストリッピング工程、及び(d)水素による低圧での触媒金属の還元工程を含んでなる方法。

Description

【発明の詳細な説明】極度に失活した改質触媒の再生法 1.発明の分野 本発明は、ゼオライト中に分散した触媒金属を含んでなる失活炭化水素処理触 媒の再生法に関するものであり、特に大孔径ゼオライトに担持された1種類以上 の第VIII族金属を含んでなる改質触媒(ゼオライトL中に白金を担持したものな ど)の再生法に関する。本発明の方法は、例えばプロセスの不調や油再生処理操 作を何度も繰返すことなどにより、通常よりも失活の度合いの大きい触媒の再生 に特に有効である。このような触媒を本発明にしたがって再生すると従来法で再 生した場合に比べ、その活性及び選択性の回復度が高いことが判明した。本発明 の方法の一般原則には、コーク燃焼の条件の過酷さ及び時間を増すこと、触 媒金属(白金など)を再分散するためのオキシ塩素化工程において高い分圧の塩 素源を使用すること、湿式・高温後処理を低圧で実施することで塩素除去率を 高めること、並びに高温・低圧条件を用いて触媒金属の還元を増大させること が含まれる。 2.背景 接触改質法(catalytic reforming)は、ガソリン配合用のナフサ(C6〜C11 炭化水素)のオクタン価を高めるために用いられている主要な石油精製プロセス の一つである。接触改質法は、パラフィンやナフテンからの芳香族への転化を介 しての芳香族化学物質(ベンゼン、トルエン、キシレン類)の最大の供給源でも ある。 改質の際の主要な化学反応は、シクロヘキサンから芳香族類への脱水素、パラ フィン類から芳香族類への環化脱水素、アルキルシクロペンタン類から芳香族類 への異性化脱水素、n−パラフィンから枝分れパラフィンへの異性化、アルキル ベンゼンの脱アルキル化、並びにパラフィンから軽質炭化水素への水素化分解( hydrocracking)である。ただし、軽質炭化水素は価値が低いので、パラフィン から軽質炭化水素への水素化分解は望ましいことではなく、最低限に食い止める べきである。 改質は、一般に、供給原料に対して1〜10モル比の水素の存在下で、 426℃〜538℃(800°F〜1000°F)の温度、0.34〜20.7 MPa(50〜3000psi)の圧力、0.5〜3.0の重量時間空間速度(WHSV) で実施されている。改質プロセスのその他の特色は当技術分野で周知であり、こ の件についてのさらに詳しい内容は米国特許第4914068号を参照されたい 。 商業的改質装置に現在使われている触媒には、白金のような第VIII族金属又は 白金と第2触媒金属(レニウム、イリジウムなど)がアルミナ基体上に分散した 形で含まれている。塩素をアルミナに導入して酸性官能基を追加することが一般 的に行われている。アルミナ基体改質触媒はC8+パラフィンの芳香族化には適し ているが、C6〜C8パラフィンの芳香族化にはさほど有効ではなく、アルミナ基 体改質触媒ではこのような軽質パラフィンは芳香族に変換されることもよりも価 値の低い燃料ガスに水素化分解されることのほうが多い。 従前の改質触媒は二元機能触媒、すなわち、触媒中の触媒金属部位で脱水素 反応と環化反応を促進し、かつ金属部位とは別の強酸性部位で異性化反応を促 進する触媒である。望ましくない水素化分解反応も酸性部位で起こる。 この数年の間に改質触媒が開発され、これらの触媒がナフサ中のC6〜C8パラ フィン成分の芳香族化に特に有効であることが判明している。これらの触媒は、 触媒金属担持用の担体としてアルミナではなくゼオライトを用いて製造される。 これらは一元機能触媒であり、比較的少数の強酸性部位しか含んでいない。従来 の二元機能触媒の場合とは異なり、ゼオライト基体触媒では、脱水素反応と環化 反応だけでなく異性化反応も分散金属触媒部位で起こる。これらのゼオライト基 体触媒には強酸性部位がほとんど含まれていないので、望ましくない水素化分解 反応が抑制される。改質触媒として好適なゼオライトは大孔径ゼオライト、すな わち、孔径が6〜15Åのゼオライトである。本発明の目的に適う大孔径ゼオラ イトとしては、ゼオライトX、ゼオライトY及びゼオライトLが挙げられるが、 ゼオライトLが最も好ましい(特に触媒活性金属が白金の場合)改質触媒用の担 体である。 従来のアルミナ基体改質触媒が酸性・二元機能触媒であるのに対して、ゼオラ イトLのようなゼオライト基体触媒は非酸性・一元機能触媒であり、軽質ナフサ の改質において優れた結果をもたらす。 生産ライン規模での改質プロセスでは、ゼオライトを典型的には0.08〜0 .65cmの大きさの凝集粒子(押出成形体又はタブレットなど)へと造粒成形 するのが好ましい。ゼオライト粉体を充填した反応器では触媒層を通しての圧力 降下が許容できないほど大きく、しかも反応器オフガス中への飛散によって失わ れるゼオライト粉体の損失量が極めて大きいからである。ゼオライトの(凝集体 への)造粒成形には、アルミナやシリカのような酸化物をバインダ材として用い ることができる。 改質中、触媒にコーク付着物が堆積するとともに触媒中の微細分散触媒金属粒 子がもっと大きな粒子に凝集するために、触媒は徐々に活性を失なう。したがっ て、改質触媒を周期的に再生してそれらの活性を回復することが慣用的に行われ ている。ただし、意外なことに、上述のゼオライト基体改質触媒を再生するのは 、従来のアルミナ基体触媒を再生するよりも難しいことが判明している。白金担 持ゼオライトL改質触媒は、パラフィン系C6,C7及びC8炭化水素の芳香族化 に関して他に類をみない活性及び選択性を有している。触媒の活性は、触媒上で のコーク付着物の蓄積及び白金の凝集によって、油処理時間とともに徐々に低下 する。減少傾向にある活性を補うために反応器入口温度を周期的に上昇させるこ とが行われているが、触媒の当初の活性を回復するために触媒を周期的に再生す る必要がある。 かかる再生法には、一般に、1)酸素でコーク付着物を燃焼除去し、2)例え ばHCl,酸素,水などを用いたオキシハロゲン化法で活性な触媒金属を再分散 し、3)ストリッピングガスとして最初に水分を含んだ空気・次に乾燥空気を使 ったストリッピングで過剰のハロゲンを除去し、4)水素のような還元剤で分散 触媒金属を還元することが含まれる。 例えば、炎先端温度が430℃〜540℃の稀薄酸素存在下でこのような触媒 を加熱することによって、触媒からコーク付着物を除去できることが知られてい る。このような燃焼に先立って、窒素のような不活性ガスで残留炭化水素をフラ ッシュ除去してもよい。ただし、高温での脱コーク処理は、担持金属粒子の表面 積の減少並びにゼオライト孔路からの白金の除去をもたらし、結果的に触媒 活性の低下につながる。したがって、燃焼後の触媒は、触媒を酸素及び塩素又は 塩素化合物(CCl4など)と昇温下で接触させることからなるオキシ塩素化処 理に付されることが多い。 大孔径ゼオライト基体触媒の再生に際して経験される諸問題を解決するために 、様々な方法が開発されてきた。 米国特許第4851380号には、イオウで汚染された改質触媒(ゼオライト 及び第VIII族金属からなる)を再生する方法にして、第VIII族金属を大きな凝集 体へと意図的に凝集させ、次いでハロゲン酸で触媒を処理してイオウ不純物を除 去することからなる方法が教示されている。 米国特許第4194068号には、脱コークゼオライト触媒のオキシ塩素化に ついての有益な議論が展開されている。ただし、この米国特許に教示された塩素 濃度は、規定された全圧では、著しく低い塩素分圧又はHCl分圧に相当し、本 発明の有益な効果をもたらさない。さらに、米国特許第4194068号では、 塩素化又はオキシ塩素化工程の温度よりも低い温度で還元工程を実施することが 必要とされており、還元前に酸素存在下で触媒を冷却することの有益さが開示さ れている。 米国特許第4925819号には、ゼオライトの細孔又は孔路全体に触媒金属 を分散させることよって、失活したL型ゼオライト基体触媒の活性及び選択性を 向上させる方法が教示されている。このような方法は、普通に失活した触媒の活 性を適度に回復する。しかし、このような方法を用いても、再生触媒の選択性は 一般に新品触媒の約5%〜約10%程低いことが判明した。たとえ入念に作業を 行ったとしても、改質装置が不調な状態に陥って、触媒が極度に失活してしまう ことがある。このような不調状態の具体例としては、水素流の損失や、過度の分 解反応による温度暴走などが挙げられる。米国特許第4925819号記載の方 法の有効性にもかかわらず、これらの方法では極度に失活した触媒の活性を十分 に回復することができない。しかし、今回、上述した通りの幾つかの重要な修正 を加えることによって、本発明の方法で、極度に失活した触媒を再生できるとと もに、予期し得ないことに、通常の失活触媒よりも優れた選択性が得られること が判明した。発明の概要 本発明によれば、第VIII族触媒金属とゼオライトを含んでなる失活触媒を再生 する方法が提供されるが、当該方法は下記の工程: (a)失活触媒を、酸素と不活性ガスと水を含んでなる気流に、400℃〜6 00℃の温度からなる酸化条件下で、上記失活触媒からコークを燃焼除去しかつ 金属を後段の処理工程(b)での塩素含有ガスの接触可能な凝集粒子に変換する のに有効な時間、接触させて、実質的に脱コークされた触媒を得る工程; (b)この実質的に脱コークされた触媒を、水と塩素源と酸素と不活性ガスを 含んでなる気流に、450℃〜550℃の温度及び207Paa(0.03psia) を超える塩素(上記塩素源から発生)の分圧からなるオキシ塩素化条件下で、上 記金属が塩素化及び分散されるように塩化水素及び/又は塩素が触媒を通過して 138Paa(0.02psia)を超える(HCl+Cl2)分圧となるのに有効な時 間、接触させて、実質的に完全に分散した塩素錯化金属を含んでなる塩素化触媒 を得る工程; (c)上記塩素化触媒を、水と酸素と不活性ガスを含んでなる気流に、450 ℃〜550℃の温度及び低い全圧からなる塩素除去条件下で、金属に錯化した塩 素の少なくとも一部を上記塩素化触媒から除去するのに有効な時間、接触させて 、触媒に接触させた後の気流に含まれる塩化水素の分圧が27.6Paa(0.0 04psia)未満となるようにする工程;及び (d)工程(c)で得られた塩素化触媒を、不活性ガスと水素(と任意成分とし て水)を含んでなる気流に、低い全圧及び350℃〜550℃の温度からなる還 元条件下で、触媒中の塩素錯化金属の少なくとも一部を金属状態まで還元するの に有効な時間、接触させて、分散金属とゼオライトを含んでなる再生触媒を得る 工程、 を含んでなる。 従前の再生法にはみられない、本発明の再生法の革新的な改良点としては、 コーク燃焼の条件の過酷さ及び時間が増していること、すなわち、コーク燃焼を 格段に過酷な条件下で一段と長時間実施すること、金属(好ましくは Pt)のオキシ塩素化及び再分散のために、207Paa(0.03psia)を超え る分圧の塩素を生じるような塩素源、例えば元素状塩素(すなわち、Cl2)、 HClその他の含塩素剤など、を使用すること、オキシ塩素化処理後の塩素除 去率が高温及び低圧での作業により高まること、すなわち、オキシ塩素化後の後 処理を高温で実施してより多量の残留塩素を除去すること、並びに金属(白金 など)を原子価0の状態まで完全に還元するために、高い還元温度で作業すると ともに低圧で還元することにより、金属(白金など)の還元率が増大すること、 が挙げられる。さらに、脱コーク触媒を工程(b)に付す前に水素で還元しても よいが、その場合、水素還元した後、工程(b)のオキシ塩素化処理を行う前に 不活性ガスによるパージ工程が必要となる。本発明の改良再生法は部分真空〜2 .07MPaa(300psia)の圧力で実施し得るが、工程(c)と工程(d)は触媒 からの塩素のストリッピングが適切に為されるように低い分圧の下で実施される 。使用する気体の濃度は作業圧力に依存するので、それに応じてその気体成分の 分圧、すなわち(気体Aの分圧)=(Aの濃度)×(全圧)、が所望範囲内に収 まるように気体濃度を調節する。 ある特定の理論に束縛されることを望むわけではないが、従来技術の再生法を 実施した場合、オキシ塩素化工程の反応性ガスがすべての触媒金属(例えば、極 度に失活した触媒のゼオライト孔路内に存在するPt粒子など)と接触できるわ けではないと思料される。本発明の工程(a)で要求されるように、コーク燃焼 工程の条件の過酷さを増すと、ゼオライトのミクロ孔内部から金属(白金など) が追い出されることにより、第VIII族触媒金属が後段の塩素含有ガスと接触しや すくなると考えられる。この工程は、同時に、耐火性(除去困難な)コークのよ うな外来物質をミクロ孔から駆逐する。このような外来物質は除去しておかない と改質反応を阻害してしまう。金属(白金など)はゼオライトの外側で粒子状に 凝集するが、この粒子は従来法によるものよりも大きいことが判明した。粒度2 00Åを超える粒子状の金属がかなりの割合(例えば80又は90重量%以上) で存在することが、金属がミクロ孔から一掃されて工程(b)の塩素ガスの接触 可能な状態になったことの指標となることが判明した。したがって、本発明では 、ゼオライトは第VIII族金属の粒子が入り込んだ孔路を有していて、工程(a) の酸化 条件の温度及び時間は上記金属粒子の大部分をゼオライトの孔路の内部から外部 へと移動させる(好ましくは孔路外の金属が粒度約200Å以上の凝集粒子状に なるまで)のに十分なものである。触媒金属は好ましくは白金であり、本明細書 ではこれ以降白金を例に取って説明するが、その説明は他の第VIII族金属に対し ても同様に適用し得ることに留意すべきである。 工程(b)では、このような大きな金属(白金など)粒子を分解して再分散す るために、高濃度の塩素が必要とされる。一段と過激な塩素化を行うので、残留 塩素の適切な除去及び触媒金属の完全な還元が確実に起きるように後処理工程( c)及び白金還元工程(d)を促進することが必要とされる。 必須工程(a)、(b)、(c)及び(d)に加えて、所望に応じてその他の処理 工程を用いてもよい。例えば、本発明のある具体的態様では、工程(a)と工程 (b)の中間に中間還元工程(a′)を実施するが、この工程(a′)は、実質的 に脱コークされた触媒を、不活性ガスと水素とを含んでなる気流に、還元条件下 で触媒の金属成分を金属状態まで還元するのに有効な時間接触させることからな る。 本発明の別の具体的態様では、工程(c)と工程(d)の中間にパージ工程(c ′)を実施するが、この工程(c′)は、工程(c)で得られた塩素化触媒を、工 程(d)の実施に先立って、置換用の無酸素気流と、塩素化触媒から酸素をパー ジするのに十分な時間接触させることからなる。好ましい具体的態様についての詳細な説明 本発明の改良再生法は、(a)コーク燃焼工程、(b)オキシ塩素化工程、(c )ストリッピング工程及び(c)水素還元工程の4つの別個の工程をもつ。 (a)コーク燃焼工程 工程(a)は、好ましくは、510℃を超える温度及び/又は69kPaa(10p sia)以下の酸素分圧及び/又は10.3kPaa(1.5psia)以下の水の分圧及 び/又は部分真空〜2.07MPaa(300psia)の全圧で実施される。温度は好 ましくは520℃〜600℃、さらに好ましくは530〜550℃であるが、5 30〜540℃が最も好ましい。コーク燃焼工程は、理想的には約6時間を超え る期間、例えば10〜100時間、さらに好ましくは36〜80時間実施すべき であるが、48〜75時間が一段と好ましく、60〜75時間が最も好ましい。 この工程において、水の分圧は好ましくは5.2kPaa(0.75psia)以下、さ らに好ましくは1.38〜5.2kPaa(0.2〜0.75psia)、最も好ましく は1.38〜3.45kPaa(0.2〜0.5psia)である。 好ましくは、工程(a)は、触媒と接触した後の気流に含まれる二酸化炭素の 分圧が69Paa(0.01psia)未満、さらに好ましくは27.6Paa(0.00 4psia)未満になるまで実施される。好ましい具体的態様では、工程(a)は第 1段階(a1)と第2段階(a2)で実施され、段階(a1)は段階(a2)よりも低い 温度で実施される(例えば、段階(a1)が400〜500℃、段階(a2)が52 0〜600℃)。 (b)オキシ塩素化工程 この工程では、実質的に脱コークされた触媒を塩素源由来の塩素を含んだ第2 の湿性オキシ塩素化用気流で処理するが、この塩素源は高い分圧、好ましくは2 07Paa〜20.7kPaa(0.03〜3psia)、さらに好ましくは348Paa〜6 .9kPaa(0.05〜1psia)、最も好ましくは690Paa〜3.45kPaa(0 .1〜0.5psia)の分圧の塩素を発生する。 好ましい具体的態様では、工程(b)は、480〜550℃の温度並びに/或 いは69kPaa(10psia)以下の酸素分圧並びに/或いは10.3kPaa(1.5 psia)以下の水の分圧並びに/或いは部分真空〜2.07MPaa(300psia)の 全圧並びに/或いはHCl及び/又はCl2ブレークスルー後2時間以上の期間 で実施される。 (c)オキシ塩素化後の湿式ストリッピング工程 この工程では、水分を含む第3の気流を用いて塩素化触媒から過剰の塩素を除 去するが、この工程は、480℃〜520℃の温度及び/又は10.3kPaa(1 .5psia)以下、さらに好ましくは348Paa〜2.76kPaa(0.05〜0. 4psia)の水の分圧及び/又は31kPaa(4.5psia)未満、さらに好ましくは 4.83〜20.7kPaa(0.7〜3psia)の酸素分圧で実施するのが好ましい 。工程(c)の全圧は低いことが要求され、好ましくは690kPaa(100psia )未満、例えば部分真空〜448kPaa(65psia)、さらに好ましくはほぼ1気 圧である。この工程は、好ましくは、塩素化触媒からのオフガス中の塩化物濃度 が1気圧で約200vppm未満(分圧にして約20.7Paa(0.003psia)に 相当)と なるのに十分な時間実施されるが、さらに好ましくはオフガス中のHCl濃度が 10.3Paa(0.0015psia)未満になるのに十分な時間実施される。 (d)還元工程 この段階では、過剰の塩素が除去された塩素化触媒を水分を含んだ第4の気流 に曝露して還元する。好ましくは、工程(d)は、103Paa(0.0015psia )を超える水素分圧、例えば103Paa〜34.5kPaa(0.0015〜5psia )の水素分圧、及び/又は10.3kPaa(1.5psia)以下、例えば348Paa 〜2.76kPaa(0.05〜0.4psia)の水の分圧、及び/又は450℃〜5 20℃、さらに好ましくは480℃〜520℃の温度で実施される。工程(d) の全圧は低いことが要求され、好ましくは690kPaa(100psia)未満、さら に好ましくは部分真空〜448kPaa(65psia)、最も好ましくはほぼ1気圧で ある。好ましい具体的態様では、工程(d)は、触媒と接触させた後の気流に含 まれる塩化水素の分圧が51.7Paa(0.0075psia)未満となるような条 件下で実施される。 上記の工程の他に、所望に応じて或いは安全性及び技術的見地から必要と認め られる場合には、上記の諸工程の任意の工程間にパージ工程を行ってもよい。こ の点で、還元に先立って、爆発性混合ガスが生じる危険性を避けるため、理想的 には不活性ガス(窒素)パージ工程を用いて反応器から酸素を除去すべきである 。また、工程(a)の後、工程(b)の前に、任意工程としての水素還元工程(a ′)を採用してもよいが、その場合、水素による還元の前と後(工程(b)の前 )に窒素などの不活性ガスによるパージを行うのが理想的である。 工程(a)〜(d)及び任意追加工程の各々において、再生法の手順及び効果を 制御するために所要範囲内で変化させることのできる幾つかのパラメーター(例 えば、温度、圧力、分圧、終点、濃度など)が存在する。本発明の理解を図るた めに、表1にこれらのパラメーターを「諸条件の範囲」として列挙した。この表 において、各処理工程の各パラメーターについて記載された条件の範囲は、それ 以外のパラメーターについて記載された範囲とは無関係に読まれるべきものであ る。「好適範囲」として記載された範囲は本発明の実施に際して採用することの できる例示的な範囲を示すもので、本発明の技術的範囲を画定するものではない 。本 発明の方法を実施するための好ましい手段についてこれ以降さらに詳細に説明す るが、それらの説明は表1の「諸条件の範囲」を参照して読まれたい。 (a)コーク燃焼: コーク燃焼工程の目的は、炭化水素処理時に触媒上に堆積した炭素系物質を酸 化して触媒から除去することである。コーク燃焼は、第1段コーク燃焼(a1)と その後の第2段コーク燃焼(a2)の二段階で実施するのがベストである。第1段 コーク燃焼は第2段コーク燃焼よりも温和な条件(低い温度及び低い入口酸素濃 度)の下で実施される。これは、大量のコークが沈積した失活触媒を過酷なコー ク燃焼条件に直接曝露すると、温度暴走を起こして過度の高温に至る可能性があ るからである。 実地上の問題としては、失活触媒を再生する前に、水素化処理を終えた時点で 反応器に残ったままの残留炭化水素を除去するために反応器をパージする。これ は、反応器に水素を流し、かかる水素の流通を炭化水素が水素で置換されるまで 続けることによって達成される。次に、窒素のような不活性ガスの流れを触媒層 に通して、水素がパージされるまでこの流れを維持する。パージ及びコーク燃焼 のみならず、この再生法における後段のすべての工程において、気体の線速度は 約15.2cm/sec(0.5FPS)以上に維持する。コーク燃焼工程の第1段階(a 1)の間反応器の入口に流す不活性ガスは供給原料予熱炉を用いて所定温度に加 熱する。第1段コーク燃焼においては低濃度の酸素(表1)と不活性ガスを含ん でなる気流を使用して、断熱的コーク燃焼条件により、過度の高温になるのを避 ける。断熱的コーク燃焼条件の下では、炎先端の温度の上昇は全圧とは無関係に 酸素濃度のみに依存する。コークの燃焼を断熱条件下で行わない場合(例えば、 反応器に対する外部冷却装置が利用できたり、窒素以外の熱容量の高い不活性ガ スを使用する場合など)には、さらに高濃度の酸素を第1段コーク燃焼で使用す ることもできる。第1段コーク燃焼工程(a1)は、好ましくは、反応器出口のガ ス中の二酸化炭素/酸素のモル比が約3:1を下回るまで続ける。第1段コーク 燃焼段階を完了するまでの時間は、触媒上のコークの濃度、反応器入口に送入す るガスの空間速度及び酸素濃度に応じて変わるが、5〜50時間かかる可能性が ある。本発明のプロセスのこの段階における第1気流は実質的に乾燥していても よいし、 或いは表1に示す分圧の水を含んでいてもよい。 次に、不活性ガスの温度を510℃以上に上げると同時に入口での酸素濃度を 表1に示す酸素分圧が得られるように上昇させることによって、第2段コーク燃 焼工程(a2)を開始する。水の分圧が表1に示す分圧になるように、反応器入口 に送入される気流に水を導入する。これに関して、第1段コーク燃焼を第2段コ ーク燃焼よりも低い水の分圧で実施する場合、温度を上昇させる前に、第2段コ ーク燃焼で用いる高い分圧の水で触媒を飽和しておくのが好ましい。好ましい温 度、時間、終点及び圧力は表1に記載されている。気体濃度を気体成分の分圧が 等しくなるように調節する場合、これより低い全圧を用いることもできるし、こ れより高い全圧を用いることもできる。ここで、(気体Aの分圧)=(Aの濃度 )×(全圧)である。 触媒から基本的にすべてのコークを除去することに加え、コーク燃焼工程の第 二の重要な目的は、ゼオライトのミクロ孔の中にある触媒金属を触媒の外表面に 追い出して、結果的に触媒金属を典型的には200Åを超える大きさの粒子状に 凝集させることである。第2段コーク燃焼段階を水の存在下510℃を超える温 度で少なくとも6時間実施すれば、ゼオライト孔路内からの触媒金属の実質的な 除去を確実に達成することができる。ある特定の理論に束縛されることを望むわ けではないが、過酷な凝集条件が、ゼオライトミクロ孔内から耐火性コークのよ うな沈積物を一掃するとともに後段の再分散処理を触媒金属が受け易くなるもの と思料される。 コーク燃焼時には流出ガス(すなわち、触媒の入った容器の出口から排気され る気流)をリサイクルしてもよい。流出ガスをリサイクルする場合、系から燃焼 生成物を除去するために流出ガスの一部を新鮮な不活性ガスでパージして置換す る必要がある。パージの割合は典型的にはリサイクルガスの5%〜30%である 。 (b)オキシ塩素化: オキシ塩素化工程の目的は、触媒金属をその塩化物に変換することによって、 触媒金属を再びゼオライトミクロ孔の中に再分散することである。金属の塩化物 は移動性に富み、ゼオライト表面上で容易に分散する。 本発明の方法においては、再分散は、塩素源由来の塩素と酸素と水を含んでな る気流で脱コーク触媒を処理することによって達成される。好ましくは、塩素源 には、有機塩素化合物、元素状塩素及びHClが包含される。好ましい有機塩素 化合物には、四塩化炭素、クロロホルム、塩化メチル、塩化メチレン、ジクロロ エタン、トリクロロエタン及びジクロロエチレン、並びにこれらの混合物が包含 される。好ましくは塩素源はCl2、HCl、CCl4であり、最も好ましくはC l2である。オキシ塩素化工程は、表1に示す通り、1気圧以上の全圧で都合よ く実施される。反応器入口に送入される酸素、水及び含塩素化合物の濃度は、反 応器の全圧に応じて、反応器入口でそれぞれ表1に示す分圧が得られるように調 節される。ここで、(気体Aの分圧)=(Aの濃度)×(全圧)である。 オキシ塩素化は、少なくとも、反応器出口の気流中に138Paa(0.02psi a)を超える分圧の塩素及び/又はHClが出現する(これを、本明細書中では HCl及び/又は塩素の「ブレークスルー」と呼ぶ)まで続ける。すべての触媒 が完全にオキシ塩素化されるようにするため、ブレークスルー後もオキシ塩素化 を2〜6時間継続するのが好ましい。 (c)ストリッピング: ストリッピングの目的は、触媒から過剰の塩素を除去することである。後段の 水素還元工程時に塩素がHClとして発生し、HCl分圧に比例して触媒金属粒 子の凝集を誘発する。したがって、還元前に、ストリッピングでできるだけ多く の塩素を触媒から除去しておけば、それだけ再生触媒の活性が高くなる。 塩素の除去率を高めるために、ストリッピングは低圧、例えば約1気圧で実施 する。全圧及び各成分の分圧は表1に記載された通りである。ストリッピングは 、反応器オフガス中のHCl分圧が表1に示すレベルを下回るまで続ける。これ には通常約1〜30時間かかる。前述の通り、反応器への酸素の流れを止め、水 分を含んだ不活性ガスを流し続けて、H2の導入前に系から酸素を徹底的にパー ジしておく。 塩素発生の効率を増進するために、ストリッピング工程を実施可能な限り低圧 で行うことが重要である。ほとんどの場合、ストリッピングはほぼ1気圧で実施 されるが、反応器を真空に引くことによってストリッピングを増進させることが できる。また、温度を約450℃以上、好ましくは表1に示す範囲内に維持する ことが重要である。ストリッピングをもっと高い反応器圧でストリッピング効率 を下げて実施してもよいが、その場合、長時間のストリッピングを要する。 流出ガス(すなわち、触媒の入った容器の出口から排気される気流)をリサイ クルすることもできる。流出ガスをリサイクルする場合、流出ガスの一部を新鮮 な不活性ガスでパージして置換する必要がある。パージの割合は典型的にはリサ イクルガスの5%〜30%である。ただし、この工程は単流(once through)操 作で実施するのが理想的である。 (d)還元: 最終工程は、この時点までに触媒のゼオライト表面に塩化物として均一に分散 している触媒金属(白金など)を原子価0の小さな金属クラスターに還元するこ とである。 これは、ストリッピングされた触媒を、約450℃を超える温度、好ましくは 表1に示す範囲内の水素に曝露することによって達成される。ストリッピング工 程の残留酸素を、水素導入前に、窒素のような不活性ガスでパージして爆発限界 未満まで下げておく。還元は、水素分圧が103Paa(0.0015psia)以上 、好ましくは表1に示す範囲内の水素を含有する気流を用いて達成される。水素 還元工程のための気流は反応器入口で表1に示す分圧の水を含んでいてもよく、 還元は好ましくは1〜2時間実施される。用いる正確な還元条件は変えることが できるが、還元を450℃を超える温度で実施すると再生触媒活性の高いものが 得られる。水素供給速度は、反応器オフガス中のHCl分圧が51.7Paa(0 .0075psia)を超えないように調節する。好ましくは、還元工程(d)は1 気圧〜448Paa(65psia)、好ましくは約1気圧の反応器全圧で実施する。 ただし、この還元工程では、448Paa(65psia)よりも高い反応器圧を用い ることもできる。作業の容易さに鑑みれば、この還元工程を前段のストリッピン グ工程と同じ圧力で操作するのが好ましい。 この水素還元工程では、水素及び不活性ガスを10〜30%パージして反応器 入口にリサイクルしてもよい。ただし、この還元工程はリサイクルせずに行うの が好ましい。このような具体的態様では、工程(d)の湿式還元の後、炭化水素 原料を反応器に供給する前に、例えば窒素又は水素からなる乾燥用ガスを用いて 、水の分圧が好ましくは27.6Paa(0.004psia)未満、さらに好ましく は20.7Paa(0.003psia)未満、最も好ましくは10.3Paa(0.00 15psia)未満となるまで、触媒を乾燥しておく必要がある。したがって、この ような乾燥工程は、乾燥用ガスの導入によって触媒の収容容器の入口に送入され る気流の中の水の分圧を下げて、出口のガス中に含まれる水の分圧を減少させる ことによって達成される。例えば、出口のガスは実質的に水を含まない。 前述の通り、工程(a)の後、工程(b)の前に任意工程としての水素還元を挿 入してもよい。 前述の通り、水素を導入する前に、水素と酸素の可燃性混合物が生じる危険性 を避けるためにコーク燃焼後の反応器中の残留酸素を反応器からパージしておく 必要がある。この段階での酸素パージは好ましくは酸素の流れを止めて窒素を反 応器に流し続けることによって達成される。 本発明の目的からすれば、酸素濃度を安全なレベルまで下げるには窒素を約5 10℃の温度及び約1気圧〜2.07MPaa(300psia)の範囲内の圧力で約3 0分〜約2時間(1時間が最も好ましい)供給するのが適しており、触媒層の中 の窒素の線速度は適切な気体分布及び気体/固体間の接触が達成されるように約 15.2cm/sec(0.5FPS)以上に維持する。 水素還元工程(a′)は、反応器に送入されている窒素の中に水素を流し始め ることによって開始される。水素還元工程の条件は、表1に示す通り、広い範囲 で変化させることができる。 水素還元が完了したら、水素をパージするために、水素の流れを止めて不活性 ガスを流し続け、次の工程で必要とされる酸素が安全に供給できるようにする。 パージは広範な条件下で行うことができ、例えば、約1気圧〜約2.07MPaa( 300psia)の圧力及び約450℃〜約550℃(好ましくは約450℃〜約5 30℃)の温度、15.2cm/sec(0.5FPS)を超える気体流速で約30分間 不活性ガスを触媒に流せば、水素は十分に除去される。 本発明の再生法は、公知の方法では十分に再生されない極度に失活した触媒の 再生に特に有効である。また、本発明の再生法は、通常の失活触媒を公知の方法 よりも高い活性及び選択性のものに再生する。 流出ガス(すなわち、触媒を収容する容器の出口から排気される気流)はリサ イクルしてもよい。流出ガスをリサイクルする場合、流出ガスの一部を新鮮な不 活性ガスでパージして置換する必要がある。パージの割合は典型的にはリサイク ルガスの5%〜30%である。 本発明の目的からすると、好ましい触媒は、バインダで結着した大孔径ゼオラ イト結晶を基体とする一元機能・非酸性触媒であり、バインダは好ましくはカオ リン、シリカ又はアルミナであり、最も好ましくはアルミナである。大孔径ゼオ ライトは好ましくはゼオライトLであり、さらに好ましくは交換性カチオンを含 んでおり、その交換性カチオンの少なくとも一部はリチウム、ナトリウム、カリ ウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バ リウム又はこれらのいずれか2種類以上の混合物から選択される。さらに好まし くは交換性カチオンはカリウム又はバリウムであり、最も好ましくはカリウムで ある。 第VIII族触媒金属は、好ましくは、白金、パラジウム、ロジウム、イリジウム 、ルテニウム及びオスミウムのような貴金属であり、最も好ましくは白金である 。第VIII族触媒金属の存在量は好ましくは0.05重量%〜6重量%である。 触媒金属は、レニウムのような第VIIB族金属をさらに含んでいてもよい。本 明細書中で言及する元素の族番号は、ケミカル・ラバー社(Chemical Rubber Co mpany)から発行されたハンドブック・オブ・ケミストリー・アンド・フィジク ス(Handbook of Chemistry & Physics)第48版に掲載された周期表に典拠し ている。 好ましい具体的態様においては、触媒の基体はおよそ70重量%のゼオライト Lと30重量%のアルミナであり、0.16cmの押出成形体に造粒される。ただ し、本発明の目的からすれば、シリカ、カオリン及びクレーのようなアルミナ以 外のバインダを使用することもできるし、球状、タブレット状、ペレット状及び 押出成形体のように押出成形体以外の形状に造粒成形されたものを使用すること もできる。造粒触媒に好ましくは白金をイオン交換法によって金属担持量が好ま しくは0.6〜0.9重量%となるように担持する。触媒標品、特性及び製造法 の詳細の開示された代表的な刊行物としては、ゼオライトLについて記載された 米国特許第3216789号;ゼオライトLに白金を担持するためのイオン交換 法について記載された米国特許第4104320号、同第4416806号及び 同第4568656号;並びに白金が微細分散されている白金担持ゼオライトL からなる好ましい改質触媒について記載された米国特許第4595668号、同 第4595669号及び同第4595670号が挙げられる。 触媒の活性は、触媒が原料を生成物に転化する能力の尺度である。触媒が高い 活性を有していたとしても、生じた生成物が必ずしも所望の生成物であるとは限 らない。「選択性」という用語は、触媒が原料を所望の生成物に転化する能力の 尺度である。活性維持とは、触媒が転化条件において経時的に活性を維持する能 力に関する。 転化条件において触媒活性が低下するのは、第一に貴金属粒子がほぼゼオライ ト孔路の大きさ(約12Å)まで結晶成長又は凝集するためであり、第二に触媒 の内表面及び外表面上でコークが生成するためであると考えられる。貴金属の担 持量が同じとき、上記の粒度よりも粒度の大きい貴金属の粒子又は結晶を含んだ 触媒は小さな粒子を含んだ触媒よりも活性及び選択性が低い。さらに、凝集金属 粒子はゼオライト孔路を塞いでしまう。おそらく複雑な縮合及び脱水素反応によ ると考えられるコークの生成は、反応混合物から貴金属を遮蔽し、そのため反応 の促進に利用できる触媒部位が限られてしまう結果をもたらす。 凝集とコークの生成によって触媒活性が低下するにつれて、所望生成物の収率 が減少するようになり、作業の経済性に応じて、触媒を用いるプロセスを中断し て触媒活性をその当初の値まで回復する必要が生じる。一般に、温度を上げれば 触媒活性を維持することができるものの、それ以上温度を上げることのできない 限界というものがあり、例えば、ゼオライトの性状を変えてしまったり、望まし くない副反応をもたらしたり、或いは反応器の材質の限界を超えてしまうような 温度が存在する。特にゼオライト基体触媒では538℃又は594℃(1000 °F又は1100゜F)よりも高い温度は避けたほうが好ましい。 触媒活性の経時的な低下は、作業条件の過酷さが増すとよりいっそう速くなる 。過酷さを増す因子には、温度の上昇、水素/油モル比の低下、水素分圧の低下 、全圧及び温度の低下、触媒体積当りの供給速度(空間速度)の上昇、及び供給 原料中の炭化水素の種類の増加が含まれる。 活性維持の測定では、すべての変数を一定にして触媒だけを相違させる。した がって、供給原料、水素/油の比率、圧力等を一定にして、ある触媒の所定時間 幅での活性を、別の触媒の同じ時間幅で得られた活性と直接比較すればよい。 本出願で利用した一つの活性試験は、約40重量%のn−ヘキサンと60%の イソヘキサンからなる供給原料流を、510℃;1.0の重量時間空間速度(WH SV);839kPaa(121.7psia);4.25のH2/油モル比の条件下で触 媒に通すというものである。46時間後のベンゼン収率(供給原料の重量%とし て表される)は触媒活性の優れた尺度である。 本明細書に記載された再生法は、どの程度に失活した失活触媒であっても適用 し得るが、この方法は極度に失活した失活触媒に対して特に適している。実施例 以下の実施例により本発明を例示する。すべての例において、特記しない限り 、固体及び液体についての割合及び百分率は重量を基準にしたものであり、気体 組成物についての割合及び百分率は体積を基準にしたものであり、温度は摂氏温 度で表す。例1から例18までは1気圧の全圧で実施した。すべての例において 、ストリッピング工程(c)後の流出ガス及び還元工程(d)後の流出ガス中のH Clレベルは、測定又は計算の結果、27.6Paa(0.004psia)未満の分 圧であり、ほとんどの場合2.76Paa(0.0004psia)未満の分圧であっ た。例1 0.64重量%のptを担持したKL型ゼオライトの押出造粒触媒を用いて軽 質ナフサ原料の芳香族化を行った。反応器への水素の流れを止めて、触媒を改質 条件下で純炭化水素原料に約5時間曝露した。触媒はこのようにして失活した。 すなわち、この触媒は、通常の失活触媒に含まれるコークが通例約1重量%であ るのに対して、約15重量%のコークが沈積していたことから分かるように、極 度にコーク沈積したものであった。 この極度に失活した触媒2gを、次の標準的なHCl+O2再分散法によって 再生した。 最初に、(a1)20体積%のO2を含む500cc/minのヘリウム気流により4 50℃で30分間燃焼してコーク沈積物を除去した。次に(a2)温度を510℃ に上げて2.2体積%の水を追加し、これらの条件(a2)に触媒を2時間付した 。次に、上記の気流にHClを追加して0.16体積%とし、同時に酸素濃度を 10体積%に下げて、ほぼ0に近い低Cl2分圧とした。気体全体の流速は50 0cc/minに維持した。オキシ塩素化処理(b)は、16.6kPaa(2.4psia) のブレークスルー(HCl+Cl2)分圧で2.5時間実施した。上記のオキシ 塩素化処理の後、触媒を(c)2.2体積%の水と10体積%のO2と87.8体 積%のヘリウムからなる気流で1時間処理した。約2体積%の水を含んだ湿性ヘ リウムを約10分間用いて酸素をパージした。水素還元(d)は、10体積%の H2と2.2体積%のH2Oと87.8体積%のヘリウムからなる流速500cm/m inの気流により510℃で1.5時間実施した。このように再生した触媒を触媒 Aと名付けた。例2 例1で使用したコーク沈積触媒を、例1に記載された再生法を用いて再生した 。ただし、コーク燃焼処理の第2段階(a2)の際に温度を約530℃に上げて( この温度をそれ以降も用いた)、処理時間を約6時間に延長した点;また、オキ シ塩素化の際に、HClの代わりに0.82体積%のCl2を使用した点で例1 記載の方法と異なる(Cl2分圧とブレークスルー(HCl+Cl2)分圧はそれ ぞれ約834Paa(0.121psia)であった)。本発明の方法で再生したこの 再生触媒を触媒Bと名付けた。例3 3−メチルペンタンを原料として用いて上記2種類の触媒を評価した。反応は 、510℃、20w/w/hrの空間速度、H2/油比6(H2と油とのモル比が6)及 び724Paa(105psia)で実施した。表2に触媒Aと触媒Bの触媒性能を示 す。本発明の方法で再生した触媒Bは触媒Aよりも高いベンゼン収率及び活性を 示した。 例4 0.85重量%のPtを担持したKL型ゼオライト触媒を、軽質ナフサ原料の 芳香族化の間に失活させた。この触媒1gを、例1記載の方法で再生した。ただ し、第2段コーク燃焼処理の後、(HCl+Cl2)オキシ塩素化処理の前に、 20体積%H2と2.2体積%水を含む気流により510℃で1時間触媒を還元 (a′)した。HCl濃度は0.32体積%であった(ブレークスルー分圧は約 324Paa(0.047psia)であり、Cl2分圧はほぼ0であった)。この再生 触媒を触媒Cと名付けた。例5 例4のコーク沈積触媒1gを、例2と同じ方法で再生した。ただし、第2段コ ーク燃焼処理において燃焼時間を22時間に延ばし、(HCl+Cl2)オキシ 塩素化処理の前に湿式水素還元処理を行った点で異なる(Cl2分圧とブレーク スルー分圧は例2記載の通りであった)。この再生触媒を触媒Dと名付けた。例6 3−メチルペンタンを原料として用いて上記2種類の触媒を評価した。反応は 、510℃、20w/w/hrの空間速度、H2/油比6及び724Paa(105psia) で実施した。表3に触媒Cと触媒Dの触媒性能を示す。本発明の方法で再生した 触媒Dは触媒Cよりも優れた触媒性能を示した。 例7 油処理と触媒処理装置(Catalyst Treating Unit)での再生操作を6回繰返し て、触媒を失活させた。この触媒1gを例1記載の方法と全く同じ方法で再生し た(Cl2分圧とブレークスルー分圧は例1記載の通りであった)。この触媒を 触媒Eと名付けた。例8 例7で使用した失活触媒をこの例でも使用した。この触媒4gを、コーク燃焼 工程を69時間に延長したこと以外は例1記載の方法と全く同じ方法で再生した (Cl2分圧とブレークスルー分圧は例2記載の通りであった)。この触媒を触 媒Fと名付けた。例9 3−メチルペンタンを原料として用いて上記2種類の触媒を評価した。反応は 、510℃、20w/w/hrの空間速度、H2/油比6及び724Paa(105psia) で実施した。表4に触媒Eと触媒Fの触媒性能を示す。本発明の方法で再生した 触媒Fは触媒Eよりも優れた触媒性能を示した。 pt担持KL型ゼオライトの再生における本発明の諸利点には、高温でのコー ク燃焼の際にpt粒子がゼオライト結晶の外表面に出てきて、その結果、オキシ 塩素化工程におけるpt再分散のためのゼオライト孔路が開放されることが含ま れる。約200Åを超える大きさの大Pt粒子を再分散させるには、移動性のp t塩化物種の生成を容易にするための高濃度の塩素を必要とする。ある特定の理 論に束縛されることを望むわけではないが、外部ptがこのようにゼオライト孔 路中に再分散すると、ptクラスターの分散性が高まり孔路の入口付近に存在す るようになって、触媒性能を向上させる結果をもたらすと考えられる。 以下の実施例では、新品触媒を使用して上述の解釈を裏付ける。例10 0.85重量%Pt/KLゼオライト触媒約3gの試料を、20体積%のO2 と2.2体積%のH2Oと77.8体積%のヘリウムからなる流速500cc/min の気流により、510℃で2時間焼成した。生成したPt粒子のうち粒度が約2 00Åを超えるものは10%に満たなかった。かなりの量のptが大粒子及び小 粒子としてゼオライト孔路の内部に止まっていた。この触媒を触媒Gと名付けた 。例11 例11で用いた新品触媒10gを、20体積%のO2と2.2体積%のH2Oと 77.8体積%のヘリウムからなる流速500cc/minの気流により、530℃で 64時間焼成した。実質的にすべてのptがゼオライト孔路からゼオライト結晶 の外表面に200Åを超える粒度の粒子として移動した。この触媒を触媒Hと名 付けた。例12 各10gの触媒Gと触媒Hを、オキシ塩素化工程で高HCl濃度(0.58体 積%)を用いた点を除いては、例1記載の方法と同じ方法を用いて再生した(ブ レークスルー分圧は約586Paa(0.085psia)であり、Cl2分圧はほぼ0 であった)。再生した触媒はそれぞれ触媒I及び触媒Jと名付けた。例13 各2gの触媒Gと触媒Hを、オキシ塩素化工程でのHCl濃度を1.08体積 %に上げた点を除いては、例12記載の方法と同じ方法を用いて再生した(ブレ ークスルー分圧は約1.1kPaa(0.159psia)であり、Cl2分圧はほぼ0 であった)。再生した触媒はそれぞれ触媒K及び触媒Lと名付けた。触媒I、触 媒J、触媒K及び触媒Lを、例3記載の3−メチルペンタンの芳香族化及び水素 化学吸着で評価した。その結果を表5に示す。高濃度のHClを用いると、次の ディーコン(Deacon)反応を介して高濃度のCl2が生成する。 4HCl + O2 = 2Cl2 + H2 表5は、(HCl+O2)オキシ塩素化でのHCl濃度を高くすると、白金の 分散度が、510℃で焼成した触媒(触媒I及び触媒K)では0.59から0. 71に、530℃で焼成した触媒(触媒J及び触媒L)では0.37から0.5 9に、高まることを示している。触媒性能も影響を受け、特に触媒Jと触媒Lの 場合に顕著である。例14 各2gの触媒Gと触媒Hを、オキシ塩素化を0.82体積%Cl2で行った例 2と同じ再生法を用いて再生した(ブレークスルー分圧及びCl2分圧は例2と 同じ)。再生した触媒はそれぞれ触媒M及び触媒Nと名付けた。触媒M及び触媒 Nを、3−メチルペンタンの芳香族化及び水素化学吸着(例3記載の通りの方法 )で評価した。その結果を表6に示す。 表6は、高いCl2濃度が、530℃での焼成時に生成した200ÅのPt粒 子を完全に再分散させることを示している。さらに、530℃で焼成した触媒( N)は、(Cl2+O2)オキシ塩素化後に、新品触媒及び510℃で焼成した 触媒(M)よりも格段に高い活性を示す。ある特定の理論に束縛されることを望 むわけではないが、この結果は、大きなPt粒子がゼオライト結晶の外表面に再 分散すると(530℃で焼成した触媒N)、ゼオライト孔路に高度に分散したp tクラスターをもたらすが、ゼオライト孔路内部で凝集pt粒子が再分散する場 合(510℃で焼成した触媒M)に比べると、前者のPtクラスターは孔路入口 近くに存在することを示唆している。例15 0.84重量%のPtを担持したKL型ゼオライトの押出造粒触媒を用いて軽 質ナフサ原料の芳香族化を行った。この触媒は極度に失活していて大量のコーク が沈積していた。この触媒は黒い色をしていた。この触媒3gを次のHCl+O2 再分散法によって再生した。最初に、10体積%のO2を含んだ1000cc/min のヘリウム気流により450℃で1時間燃焼して、コーク沈積物を除去した。次 に、温度を510℃に上げて510℃に12時間維持した。次に、上記気流に水 及びHClを水濃度3.3体積%及びHCl濃度0.33体積%となるように追 加すると同時に、酸素濃度を依然10体積%に維持した。気体全体の流速は10 00cc/minに維持した。オキシ塩素化処理(b)は6時間実施した(ブレークス ルー分圧は338Paa(0.049psia)であり、Cl2分圧はほぼ0であった) 。次に、実質的に同一の気体雰囲気下で触媒を345℃まで冷却し、3.3体積 %の水と10体積%のO2と87.8体積%の窒素からなる気流で1時間処理し た。窒素を約10分間用いて酸素をパージした。水素還元は、10体積%のH2 と90体積%のヘリウムからなる流速1000cm/minの気流を用いて345℃で 1時間実施した。再生した触媒を触媒Oと名付けた。例16 例15で使用したコーク沈積触媒を本発明の再生法で再生した。最初に、コー ク沈積物を、(a1)10体積%の酸素を含んだ窒素気流を用いて445℃で1時 間燃焼して除去した。20%O2と2.2%H2と残りのヘリウムからなる気流下 で温度を530℃に上げた。触媒温度を(a2)530℃に69時間維持した後、 510℃に下げた。オキシ塩素化工程(b)では、触媒を、2.2%H2と20% O2と1.5%Cl2と残部のHeからなる混合ガスにより510℃で2.5時間 処理 した(Cl2分圧及びブレークスルー分圧=15.2kPaa(0.221psia)) 。オキシ塩素化処理の後、(c)2.2体積%の水と10体積%のO2と87.8 体積%のヘリウムからなる気流により触媒を510℃で1時間処理した。水分を 含んだヘリウムを約10分間用いて酸素をパージした。水素還元(d)は、20 体積%のH2と2.2体積%のH2Oと87.8体積%のヘリウムからなる流速5 00cm/minの気流を用いて510℃で1.5時間実施した。この再生触媒を触媒 Pと名付けた。例17 60重量%の3−メチルペンタンと40重量%のn−ヘキサンの混合原料によ る芳香族化反応によって、触媒O、触媒P及び新品触媒を評価した。反応は、5 10℃、8w/w/hrの空間速度、H2/油比2.5及び724Paa(107psia)で 実施した。表7に、新品触媒と触媒Oと触媒Pの触媒性能を示す。本発明の方法 で再生した触媒Pは触媒O及び新品触媒よりも優れた触媒性能を示した。 例18 0.85重量%のPtを担持したKL型ゼオライト触媒を用いて軽質ナフサ原 料の芳香族化を行った。この触媒は通常の失活度にあり、沈積コーク量は約1〜 2%であった。例15に記載の従来法で再生した。この触媒を触媒Qと名付けた 。 平行して、上記触媒3gを例16記載の本発明の再生法で再生した。この触媒 を触媒Rと名付けた。例17記載の芳香族化試験条件の下で、触媒Q及び触媒R を評価した。表8は、通常の失活触媒の再生に使用した場合も、本発明の再生法 のほうが従来法よりも高い活性及び選択性を与えることを示している。 例19 0.85重量%のptを担持した成形KL型ゼオライト触媒を用いて軽質ナフ サ原料の芳香族化を行った。この触媒は通常の失活度にあり、沈積コーク量は約 1〜2%であった。この触媒を、次の手順で再生した。 最初に、(a1)0.2体積%の酸素を含んだ全圧1.28MPaa(185psia) 及び線速度15.2cm/sec(0.5FPS)の窒素気流により450℃で10時間 のコーク燃焼して、コークを除去した。さらに、コーク燃焼(a2)を、3.5体 積%のO2により510℃で16時間実施した。酸素をパージした後、(a′)5 0%水素により510℃で1時間触媒を還元した。水素をパージした後、0.8 9体積%の酸素と0.87体積%の水蒸気を含む全圧1.17MPaa(170psia )の気流により510℃で触媒のオキシ塩素化用プレコンディショニングを行っ た。この気流にHClを0.15体積%濃度で4.5時間追加した(ブレークス ルー分圧=889Paa(0.129psia);Cl2分圧=69Paa(0.010psi a))。同じ気体雰囲気下で触媒を345℃まで冷却した。触媒を、次に、5体 積%の酸素と0.84体積%の水蒸気を含んだ1気圧の気流により345℃で8 時間処理した。上記気流から水蒸気を除き、触媒を345℃でさらに2時間処理 した。系から酸素をパージした後、触媒を7体積%の水素により345℃で6時 間還元した。この触媒を触媒Sと名付けた。 同じく通常の失活度にある0.85重量%Pt/KL型ゼオライト触媒のバッ チを、本発明の再生法で再生した。コーク燃焼(a1)を0.2体積%の酸素を含 んだ全圧1.17MPaa(185psia)及び線速度15.2cm/sec(0.5FPS) の窒素気流により450℃で10時間行って、コークを除去した。さらに、コー ク燃焼(a2)を、1.6体積%の酸素及び0.2体積%の水蒸気を含む気流によ り530℃で69時間実施した。触媒のオキシ塩素化(b)を、1.7体積%の 酸素と0.12 体積%のCl2と0.2体積%のH2Oを含んだ全圧1.17MPaa(185psia) の気流により510℃で2.5時間行った(ブレークスルー分圧=2.04kPaa (0.296psia);Cl2分圧=1.53kPaa(0.222psia))。触媒を 、次に、(c)10.5体積%のO2と2.2体積%の水蒸気を含んだ1気圧の気 流により510℃で10時間処理して、HCl分圧を45.5Paa(0.006 6psia)とした。系から酸素をパージした後、(d)5.8体積%の水素と2. 2体積%の水蒸気を含んだ1気圧の気流により触媒を510℃で1.5時間還元 して、HCl分圧を15.2Paa(0.0022psia)とした。この触媒を触媒 Tと名付けた。 下記の条件下での軽質ナフサの芳香族化における触媒S及び触媒Tの活性を求 めた。 本発明にしたがって再生した通常の失活触媒は、HCl法で再生した触媒より も高い活性及び選択性を有する。 本発明の方法で再生した触媒は改質触媒として、当業者に周知の改質条件を用 いて使用することができる。 結論として、本発明の提供する方法は、極度に失活した改質触媒(好ましくは 白金を担持したカリウム交換形ゼオライトLの押出造粒体)を再生して、触媒活 性及び活性維持を実質的に回復させるのに特に有効である。ただし、本発明の再 生法は通常の失活度の改質触媒の再生にも有効である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI C07C 15/04 9546−4H C10G 35/095 6958−4H // C07B 61/00 300 (72)発明者 ハン、ヤオ‐ジー・ロバート アメリカ合衆国、テキサス州 77062、ヒ ューストン、グレイウッド・グローブ・レ ーン 14634 (72)発明者 ウォルシュ、ジョン・フランシス アメリカ合衆国、テキサス州 77005、ヒ ューストン、パーデュ 3225 (72)発明者 モビッカー、ゲーリー・ブライス アメリカ合衆国、ニュー・ジャージー州 07830、カリフォン、ノース・メイン・ス トリート、ピー・オー・ボックス 427 (72)発明者 クレム、ケニス・レイ アメリカ合衆国、テキサス州 77346、ハ ンブル、パイン・グリーン・レーン 7407

Claims (1)

  1. 【特許請求の範囲】 1.第VIII族触媒金属とゼオライトを含んでなる失活触媒を再生する方法にして 、当該方法が下記工程: (a)失活触媒を、酸素と不活性ガスと水を含んでなる気流に、400℃〜6 00℃の温度からなる酸化条件下で、上記失活触媒からコークを燃焼除去しかつ 金属を後段の処理工程(b)での塩素含有ガスの接触可能な凝集粒子に変換する のに有効な時間、接触させて、実質的に脱コークされた触媒を得る工程; (b)上記の実質的に脱コークされた触媒を、水と塩素源と酸素と不活性ガス を含んでなる気流に、450℃〜550℃の温度及び207Paa(0.03psia )を超える塩素(上記塩素源から発生)の分圧からなるオキシ塩素化条件下で、 上記金属が塩素化及び分散されるように塩化水素及び/又は塩素が触媒を通過し て138Paa(0.02psia)を超える(HCl+Cl2)分圧となるのに有効な 時間、接触させて、実質的に完全に分散した塩素錯化金属を含んでなる塩素化触 媒を得る工程; (c)上記塩素化触媒を、水と酸素と不活性ガスを含んでなる気流に、450 ℃〜550℃の温度及び低い全圧からなる塩素除去条件下で、金属に錯化した塩 素の少なくとも一部を上記塩素化触媒から除去するのに有効な時間、接触させて 、触媒に接触させた後の気流に含まれる塩化水素の分圧が27.6Paa(0.0 04psia)未満となるようにする工程;及び (d)工程(c)で得られた塩素化触媒を、不活性ガスと水素を含んでなる気流 に、低い全圧及び350℃〜550℃の温度からなる還元条件下で、触媒中の塩 素錯化金属の少なくとも一部を金属状態まで還元するのに有効な時間、接触させ て、分散金属とゼオライトを含んでなる再生触媒を得る工程、 を含んでなることを特徴とする方法。 2.請求項1記載の方法において、工程(a)が、520℃〜600℃の温度及 び/又は69kPaa(10psia)以下の酸素分圧及び/又は10.3kPaa(1.5 psia)以下の水の分圧及び/又は部分真空〜2.07MPaa (300psia)の全圧及び/又は48〜75時間の期間で実施されることを特徴 とする方法。 3.請求項1又は請求項2記載の方法において、工程(a)が、触媒と接触した 後の気流に含まれる二酸化炭素の分圧が69Paa(0.01psia)未満、好まし くは27.6Paa(0.004psia)未満になるまで実施されることを特徴とす る方法。 4.請求項1乃至請求項3のいずれか1項記載の方法において、工程(a)が第 1段階(a1)と第2段階(a2)で実施され、段階(a1)は段階(a2)よりも低い 温度で実施されることを特徴とする方法。 5.請求項4記載の方法において、(a1)が400℃〜500℃の温度で実施さ れ、かつ(a2)が520℃〜600℃の温度で実施されることを特徴とする方法 。 6.請求項1乃至請求項5のいずれか1項記載の方法において、工程(a)の酸 化が、上記金属が粒度200Åを超える粒子に凝集し、その大部分がゼオライト 孔路の外部に存在するまで実施されることを特徴とする方法。 7.請求項1乃至請求項6のいずれか1項記載の方法において、工程(b)が、 480℃〜550℃の温度並びに/或いは69kPaa(10psia)以下の酸素分圧 並びに/或いは10.3kPaa(1.5psia)以下の水の分圧並びに/或いは部分 真空〜2.07MPaa(300psia)の全圧並びに/或いはHCl及び/又はCl2 ブレークスルーの後2時間以上の期間で実施されることを特徴とする方法。 8.請求項7記載の方法において、工程(b)が、13.8〜27.6kPaa(2 〜4psia)の酸素分圧及び/又は1.38〜5.17kPaa(0.2〜0.75ps ia)の水の分圧及び/又は345kPaa〜1.38MPaa(50〜200psia)の全 圧で実施されることを特徴とする方法。 9.請求項1乃至請求項8のいずれか1項記載の方法において、工程(b)が、 207Paa〜20.7kPaa(0.03〜3psia)、好ましくは345Paa〜6.9 kPaa(0.05〜1psia)の塩素分圧で実施されることを特徴とする方法。 10.請求項1乃至請求項9のいずれか1項記載の方法において、工程(c)が 、480℃〜520℃の温度及び/又は10.3kPaa(1.5psia)以下の水の 分圧及び/又は31kPaa(4.5psia)未満の酸素分圧で実施されることを特徴 とする方法。 11.請求項1乃至請求項10のいずれか1項記載の方法において、工程(c) が、345Paa〜2.76kPaa(0.05〜0.4psia)の水の分圧及び/又は 4.82Paa〜20.7kPaa(0.7〜3psia)の酸素分圧で実施されることを 特徴とする方法。 12.請求項1乃至請求項11のいずれか1項記載の方法において、工程(c) が、部分真空〜448kPaa(65psia)、好ましくは約1気圧の全圧の下で実施 されることを特徴とする方法。 13.請求項1乃至請求項12のいずれか1項記載の方法において、工程(c) が、触媒と接触させた後の気流に含まれる塩化水素の分圧が10.3Paa(0. 0015psia)未満となるまで実施されることを特徴とする方法。 14.請求項1乃至請求項13のいずれか1項記載の方法において、工程(d) が、103Paa(0.0015psia)を超える水素分圧及び/又は480℃〜5 20℃の温度及び/又は水の存在下、好ましくは10.3kPaa(1.5psia)以 下の分圧の水の存在下で実施されることを特徴とする方法。 15.請求項14記載の方法において、工程(d)が、1.03kPaa〜34.5k Paa(0.15〜5psia)の水素分圧及び/又は345Paa〜2.76kPaa(0. 05〜0.4psia)の水の分圧で実施されることを特徴とする方法。 16.請求項1乃至請求項15のいずれか1項記載の方法において、工程(d) が、部分真空〜448kPaa(65psia)、好ましくは約1気圧の全圧で実施され ることを特徴とする方法。 17.請求項1乃至請求項16のいずれか1項記載の方法において、工程(d) が、触媒と接触させた後の気流に含まれる塩化水素の分圧が51.7Paa(0. 0075psia)未満となるような条件下で実施されることを特徴とする方法。 18.請求項1乃至請求項17のいずれか1項記載の方法において、工程(a) と 工程(b)の中間に、実質的に脱コークされた触媒を、不活性ガスと水素を含ん でなる気流に、還元条件下で触媒の金属成分を金属状態まで還元するのに有効な 時間接触させることからなる中間還元工程(a′)を実施することを特徴とする 方法。 19.請求項1乃至請求項18のいずれか1項記載の方法において、工程(c) と工程(d)の中間に、工程(c)で得られた塩素化触媒を、工程(d)の実施に 先立って、置換用の無酸素気流に、塩素化触媒から酸素をパージするのに十分な 時間接触させることからなるパージ工程(c′)を実施することを特徴とする方 法。 20.請求項1乃至請求項19のいずれか1項記載の方法において、上記触媒が カリウム又はバリウム任意成分の交換性カチオンとして含有するL型ゼオライト を含んでなること及び/又は上記第VIII族金属が白金を含んでなること及び/又 は上記第VIII族金属が触媒の0.05〜6重量%存在すること、並びに上記触媒 が任意成分としてバインダを含んでなることを特徴とする方法。 21.請求項1乃至請求項20のいずれか1項記載の方法において、工程(d) で得られた再生触媒が、本明細書中の例3に規定するヘキサンからベンゼンへの その芳香族化活性が本発明の方法による再生前の低活性触媒の活性よりも、ベン ゼンの重量%収率で測定した場合に、1.5重量%以上大きいことを特徴とする 方法。 22.請求項1乃至請求項21のいずれか1項記載の方法で再生された触媒に水 素及びナフサを接触させて芳香族炭化水素を生成させることを含んでなる、炭化 水素の改質方法。
JP50755294A 1992-09-09 1993-09-09 極度に失活した改質触媒の再生法 Expired - Fee Related JP3553935B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/942,694 US5776849A (en) 1983-11-10 1992-09-09 Regeneration of severely deactivated reforming catalysts
US07/942,694 1992-09-09
PCT/US1993/008555 WO1994005419A1 (en) 1992-09-09 1993-09-09 Regeneration of severely deactivated reforming catalysts

Publications (2)

Publication Number Publication Date
JPH08501721A true JPH08501721A (ja) 1996-02-27
JP3553935B2 JP3553935B2 (ja) 2004-08-11

Family

ID=25478465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50755294A Expired - Fee Related JP3553935B2 (ja) 1992-09-09 1993-09-09 極度に失活した改質触媒の再生法

Country Status (9)

Country Link
US (1) US5776849A (ja)
EP (1) EP0659105B1 (ja)
JP (1) JP3553935B2 (ja)
KR (1) KR100296807B1 (ja)
CA (1) CA2144182C (ja)
DE (1) DE69312722T2 (ja)
ES (1) ES2105321T3 (ja)
SG (1) SG48442A1 (ja)
WO (1) WO1994005419A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033670A (ja) * 2001-07-26 2003-02-04 Asahi Kasei Corp 担持金属の微粒子化方法
JP2010531727A (ja) * 2007-07-03 2010-09-30 ズード−ケミー アクチェンゲゼルシャフト 塩化水素含有排ガス用排ガス触媒
JP2018167263A (ja) * 2012-03-05 2018-11-01 シェブロン フィリップス ケミカル カンパニー エルピー 芳香族化触媒を再生する方法
JP2020081991A (ja) * 2018-11-28 2020-06-04 東ソー株式会社 金属イオン担持ゼオライト触媒の再生方法
JP2020082004A (ja) * 2018-11-29 2020-06-04 東ソー株式会社 銀イオン担持ゼオライト触媒の再生方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712214A (en) * 1983-11-10 1998-01-27 Exxon Research & Engineering Company Regeneration of aromatization catalysts
US6040264A (en) * 1996-04-04 2000-03-21 Exxon Chemical Patents Inc. Use of alkaline earth metal containing small pore non-zeolitic molecular sieve catalysts in oxygenate conversion
US5980731A (en) * 1997-11-07 1999-11-09 Exxon Chemical Patents Inc. Naphtha reforming catalyst and process
CN1089641C (zh) * 1999-05-19 2002-08-28 中国石油化工集团公司 一种烃转化催化剂的再生工艺
CN1089640C (zh) * 1999-05-19 2002-08-28 中国石油化工集团公司 一种烃转化催化剂的再生方法
US6294492B1 (en) * 1999-06-30 2001-09-25 Philips Petroleum Company Catalytic reforming catalyst activation
CN1102455C (zh) * 2000-04-18 2003-03-05 中国石油化工集团公司 一种催化剂连续再生方法
WO2003000415A1 (en) 2001-06-22 2003-01-03 Phillips Petroleum Company Catalytic reforming catalyst activation
US6440894B1 (en) 2001-06-25 2002-08-27 Exxonmobil Chemical Patents, Inc. Methods of removing halogen from non-zeolitic molecular sieve catalysts
US20100160702A1 (en) * 2008-12-23 2010-06-24 Chevron Phillips Chemical Company Lp Methods of Preparing an Aromatization Catalyst
US9085736B2 (en) 2011-10-26 2015-07-21 Chevron Phillips Chemical Company Lp System and method for on stream catalyst replacement
US8716161B2 (en) 2012-03-05 2014-05-06 Chevron Phillips Chemical Company Methods of regenerating aromatization catalysts
US9387467B2 (en) 2012-09-26 2016-07-12 Chevron Phillips Chemical Company Lp Aromatization catalysts with high surface area and pore volume
WO2015193189A1 (de) * 2014-06-17 2015-12-23 Basf Se Verfahren zur regenerierung einer katalytisch aktiven beschichtung auf der innenoberfläche eines spaltrohres
US10821427B2 (en) * 2017-05-03 2020-11-03 Exxonmobil Chemical Patents Inc. Processes for regenerating catalysts
WO2018204000A1 (en) * 2017-05-03 2018-11-08 Exxonmobil Chemical Patents Inc. Processes for regenerating catalysts
US10436762B2 (en) 2017-11-07 2019-10-08 Chevron Phillips Chemical Company Lp System and method for monitoring a reforming catalyst
US10633603B2 (en) 2018-01-04 2020-04-28 Chevron Phillips Chemical Company Lp Optimized reactor configuration for optimal performance of the aromax catalyst for aromatics synthesis
US10537867B2 (en) 2018-01-04 2020-01-21 Chevron Phillips Chemical Company Lp Optimized reactor configuration for optimal performance of the aromax catalyst for aromatics synthesis
FR3115475A1 (fr) 2020-10-23 2022-04-29 IFP Energies Nouvelles Procede de preparation d’un catalyseur a base d’izm-2 par un traitement thermique specifique et utilisation dudit catalyseur pour l’isomerisation de charges paraffiniques en distillats moyens

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1436622A (en) * 1973-06-21 1976-05-19 British Petroleum Co Regeneration of zeolite catalysts
GB1565313A (en) * 1977-05-04 1980-04-16 British Petroleum Co Activation of platinum group metal catalysts
FR2395069A1 (fr) * 1977-06-20 1979-01-19 Inst Francais Du Petrole Procede de recyclage des reactifs gazeux utilises pour la regeneration d'un catalyseur d'hydroconversion d'hydrocarbures
ES8606023A1 (es) * 1983-11-10 1986-04-16 Exxon Research Engineering Co Un procedimiento para reactivar un catalizador de zeolita tipo l que contiene coque
US4925819A (en) * 1983-11-10 1990-05-15 Exxon Research & Engineering Company Method of regenerating a deactivated catalyst
US4855269A (en) * 1986-12-19 1989-08-08 Chevron Research Company Process for regenerating a monofunctional large-pore zeolite catalyst having high selectivity for paraffin dehydrocyclization
US4914068A (en) * 1988-03-21 1990-04-03 Exxon Chemical Patents Inc. Process for the dispersion of Group VIII metals in large pore zeolite catalysts
US5256612A (en) * 1990-07-12 1993-10-26 Exxon Research And Engineering Company Method for treating a catalyst
US5106798A (en) * 1990-07-12 1992-04-21 Exxon Research And Engineering Company Method for regenerating a Group VIII noble metal deactivated catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033670A (ja) * 2001-07-26 2003-02-04 Asahi Kasei Corp 担持金属の微粒子化方法
JP4666829B2 (ja) * 2001-07-26 2011-04-06 旭化成ケミカルズ株式会社 担持金属の微粒子化方法
JP2010531727A (ja) * 2007-07-03 2010-09-30 ズード−ケミー アクチェンゲゼルシャフト 塩化水素含有排ガス用排ガス触媒
JP2018167263A (ja) * 2012-03-05 2018-11-01 シェブロン フィリップス ケミカル カンパニー エルピー 芳香族化触媒を再生する方法
JP2020081991A (ja) * 2018-11-28 2020-06-04 東ソー株式会社 金属イオン担持ゼオライト触媒の再生方法
JP2020082004A (ja) * 2018-11-29 2020-06-04 東ソー株式会社 銀イオン担持ゼオライト触媒の再生方法

Also Published As

Publication number Publication date
CA2144182A1 (en) 1994-03-17
US5776849A (en) 1998-07-07
SG48442A1 (en) 1998-04-17
ES2105321T3 (es) 1997-10-16
EP0659105A1 (en) 1995-06-28
JP3553935B2 (ja) 2004-08-11
CA2144182C (en) 2000-03-21
EP0659105B1 (en) 1997-07-30
DE69312722T2 (de) 1997-12-04
DE69312722D1 (de) 1997-09-04
WO1994005419A1 (en) 1994-03-17
KR950703404A (ko) 1995-09-20
KR100296807B1 (ko) 2001-10-22

Similar Documents

Publication Publication Date Title
JP3553935B2 (ja) 極度に失活した改質触媒の再生法
US4914068A (en) Process for the dispersion of Group VIII metals in large pore zeolite catalysts
EP0142352B1 (en) Method of regenerating a deactivated catalyst
US4657874A (en) Redispersion of agglomerated noble metals on zeolite catalysts
FI66424B (fi) Foerfarande foer katalytisk konversion av kolvaeten
JP3553934B2 (ja) 失活触媒を再生するための改良法
EP0294477A1 (en) PROCESS FOR THE REGENERATION OF REFORMATION CATALYSTS CONTAMINATED BY SULFUR.
JPH0224585B2 (ja)
US5106798A (en) Method for regenerating a Group VIII noble metal deactivated catalyst
JPS5837019B2 (ja) ジユウリヨクリユウノシヨクバイリユウシノサイセイホウ
US5256612A (en) Method for treating a catalyst
USRE34250E (en) Process for regenerating sulfur contaminated reforming catalysts
US5712214A (en) Regeneration of aromatization catalysts
US4444897A (en) Reactivating iridium-containing catalysts with hydrogen halide and oxygen
US4444896A (en) Reactivation of iridium-containing catalysts by halide pretreat and oxygen redispersion
EP0548421B1 (en) Method for regenerating a deactivated catalyst
US7312173B1 (en) Regeneration method with efficient oxygen utilization
US4491635A (en) Reactivating iridium and selenium containing catalysts with hydrogen halide and oxygen
JP2001501861A (ja) 高温処理ゼオライト触媒の再生方法
CA2057598C (en) Method for regenerating a group viii nobel metal deactivated catalyst
JP3454521B2 (ja) Viii族貴金属含有触媒の処理方法
EP0523097A1 (en) DEVICE AND METHOD FOR REGENERATING DEACTIVATED ZEOLITE CATALYST.
JP2664230B2 (ja) パラフインの脱水素環化に高選択性を有する単官能大孔ゼオライト触媒の再生方法
JPH06206B2 (ja) イリジウム及び白金含有触媒の再活性化方法
JPS6261644A (ja) 貴金属含有ゼオライト触媒の再生方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees