JPH0833826A - 石炭火力発電プラントのボイラ燃焼排ガス処理法と装置 - Google Patents

石炭火力発電プラントのボイラ燃焼排ガス処理法と装置

Info

Publication number
JPH0833826A
JPH0833826A JP6172757A JP17275794A JPH0833826A JP H0833826 A JPH0833826 A JP H0833826A JP 6172757 A JP6172757 A JP 6172757A JP 17275794 A JP17275794 A JP 17275794A JP H0833826 A JPH0833826 A JP H0833826A
Authority
JP
Japan
Prior art keywords
exhaust gas
boiler
combustion exhaust
water
water scrubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6172757A
Other languages
English (en)
Inventor
Takeo Komuro
武勇 小室
Takeyoshi Yokosuka
丈由 横須賀
Norio Arashi
紀夫 嵐
Akira Kato
加藤  明
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6172757A priority Critical patent/JPH0833826A/ja
Publication of JPH0833826A publication Critical patent/JPH0833826A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 微粒石灰石をボイラ火炉内に供給して行う火
炉内脱硫と煙道内で水を噴霧して行う煙道内脱硫を組み
合わせた脱硫方式をより効率的に運用すること。 【構成】 ボイラ1の火炉内に脱硫剤4を噴霧する領域
は第一脱硫反応器としての機能を有し、水スクラバー2
は第二脱硫反応器として機能する。水スクラバー2には
タンク8から石炭灰とCaSO4、未反応CaO、Ca
CO3を含むスラリを噴霧して、排ガス24の脱硫反応
と集塵機能を両立させることにより、従来プロセスで必
要であった電気集塵器を省略し、高い脱硫性能と集塵機
能を持たせるようにした。さらに水スクラバー2への補
給水には海水も使用できるようにした。海水を補給水と
して使用していると水スクラバー2で塩素化合物が濃縮
してくるが、タンク8から抜き出すスラリ中の固形物と
共に回収し、石炭灰硬化物20として塩素化合物を取り
込むことができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は燃焼装置から排出する燃
焼排ガス中の硫黄酸化物、塩素化合物、フッ素化合物お
よび媒塵を同時除去する簡易排ガス処理方法と装置に関
し、特に、ボイラ火炉と水スクラバーの脱硫反応器を組
み合わせた石炭火力発電プラントの燃焼排ガス処理方法
と装置に関する。
【0002】
【従来の技術】石炭火力発電プラントの燃焼排ガス中の
硫黄酸化物を除去する脱硫装置としては湿式石灰石−石
膏法と呼ばれている脱硫装置が主流である。この脱硫装
置は脱硫性能も高く、ボイラの負荷変化に対しても安定
した性能が維持できるので信頼性の面からも優れている
が、建設コストが高くなる。このため建設コストが著し
く安くできる微粉石灰石を噴霧させて行うボイラ火炉内
を脱硫反応器とするボイラ火炉内脱硫法が検討されてき
た。しかし、このボイラ火炉内脱硫法は、石炭中の硫黄
含量に対する微粉石灰石の供給量を両者モル数比(以下
Ca/Sとする)が約2〜3になるような量で供給した
場合、脱硫率は20〜35%と低いのが課題である。こ
のボイラ火炉内脱硫における未反応石灰石は生石灰であ
り、燃焼排ガスに同伴されて石炭灰と共に電気集塵器で
回収される。この未反応生石灰の反応性を煙道ラインで
高める目的で、電気集塵器に至る燃焼排ガス前段側の煙
道ラインに水を噴霧することで生石灰の脱硫反応性を高
める工夫が行われている。これを煙道内脱硫と呼ぶこと
がある。
【0003】ボイラ火炉内脱硫と煙道内脱硫を組み合わ
せた際の両者の脱硫性能はCa/S=2〜3であると
き、脱硫率75〜80%と高くすることができる。この
ため簡易脱硫法としてこのボイラ火炉内脱硫と煙道内脱
硫を組み合わせる方式が注目を集めている。ボイラ火炉
内脱硫ではボイラに噴霧した微粉石灰石が熱分解して生
石灰となり、石炭中の硫黄化合物が燃焼して生成するS
2と反応し、硫酸カルシウムとして固定される。一
方、煙道ラインに水を噴霧して行う煙道内脱硫では、排
ガス中のSO2は脱硫反応により亜硫酸カルシウムとし
て固定される。したがって、ボイラ火炉内脱硫と煙道内
脱硫を組み合わせた脱硫方式において最終的に電気集塵
器で捕集される燃焼排ガス中の媒塵は石炭灰、硫酸カル
シウム、亜硫酸カルシウムと、煙道内脱硫で反応し得な
かった生石灰、消石灰などを含む混合物である。
【0004】また、煙道内での脱硫性能は水の噴霧量に
より大きく支配される。燃焼排ガス中にもともと10%
程度の水分が含まれるが、さらに水を噴霧することで煙
道内脱硫の脱硫性能を高くできる。しかし、水の噴霧量
を多くすると燃焼排ガス自体が露点に達し、電気集塵器
内の電極部などで露結して著しく集塵効率を低下させる
のと同時に腐食の問題が生じてくる。従って、燃焼排ガ
スの煙道ラインに噴霧する供給水の厳密な調整が必要で
ある。更にボイラの負荷変化などに対しても頻繁に前記
供給水を調整する必要がある。また、煙道内の燃焼排ガ
スに供給する水分は全て煙突から排出されてなくなるの
で、常に補給水が必要になる。そして、この補給水に海
水を使用すると、海水中の塩化カルシウムなどが電気集
塵器の電極などに付着し、集塵効率を低下させる原因と
なる問題がある。
【0005】
【発明が解決しようとする課題】このように従来法で
は、煙道に噴霧する水を厳密に調整する必要があり、し
かも、その噴霧水用に多量の水を補給する必要がある
が、補給水として海水を使用することができないので工
業用水の確保が必要なことが改善すべき問題点としてあ
る。また、この脱硫方式は水の噴霧量に脱硫性能が依存
することから脱硫率の向上には限界がある。さらに、燃
焼排ガスに同伴する石炭灰と共に硫酸カルシウム、亜硫
酸カルシウム、生石灰、消石灰、未反応石灰石などを電
気集塵器で捕集していたが、電気集塵器で回収された不
安定な物質である亜硫酸カルシウムもそのまま廃棄して
いた。しかし、亜硫酸カルシウムは硫酸カルシウムなど
への安定化処理して投棄する必要があるなどの課題があ
る。本発明の目的は微粒石灰石をボイラ火炉内に供給し
て行う火炉内脱硫と煙道内で水を噴霧して行う煙道内脱
硫を組み合わせた脱硫方式をより効率的に運用すること
にある。
【0006】
【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、微粒石灰石をボイ
ラ火炉内に噴霧し、ボイラから排出する燃焼排ガスの一
部を冷却した後に水スクラバーに導入し、該水スクラバ
ー内で燃焼排ガスに液溜めタンクから循環供給される水
スラリを噴霧して脱硫と脱塵を同時に行い、水スラリは
液溜めタンクに回収し、該水スクラバー出口の処理ガス
にボイラからの高温燃焼排ガスの一部を混合した後に煙
突から大気に放出するようにした石炭火力発電プラント
のボイラ燃焼排ガス処理法、または、微粒石灰石をボイ
ラ火炉内に噴霧し、ボイラから排出する燃焼排ガスの一
部をボイラから排出する燃焼排ガスの一部を冷却するの
に水スクラバー出口ガスと熱交換して冷却した後に水ス
クラバーに導入し、該水スクラバー内で燃焼排ガスに液
溜めタンクから循環供給される水スラリを噴霧して脱硫
と脱塵を同時に行い、水スラリは液溜めタンクに回収
し、該水スクラバー出口の処理ガスはボイラからの高温
燃焼排ガスの一部を混合した後に煙突から大気に放出す
るようにした石炭火力発電プラントのボイラ燃焼排ガス
処理法である。
【0007】本発明の上記目的は次の構成によっても達
成される。すなわち、前記いずれかの石炭火力発電プラ
ントのボイラ燃焼排ガス処理法に、さらに、液溜めタン
ク内の該スラリに空気をバブリングさせた後にその一部
を沈降槽に導き上澄液と沈降物に分離し、上澄液は沈降
槽から液溜めタンクに戻し、沈降物は沈降槽から抜き出
し脱水器に導き脱水して固化物を石炭灰硬化物とする石
炭火力発電プラントのボイラ燃焼排ガス処理法である。
上記いずれの石炭火力発電プラントのボイラ燃焼排ガス
処理法においても、水スクラバー内で噴霧される水スラ
リに海水を補給しても良い。また、沈降槽の沈殿物を固
化するのに必要な液溜めタンク内スラリに添加される消
石灰含有量の調整をボイラ火炉内に供給する微粉石灰石
の供給量の調整により行うこともできる。
【0008】本発明の上記目的は次の構成によっても達
成される。すなわち、ボイラ火炉内に設けられた微粒石
灰石噴霧部と、ボイラから排出する燃焼排ガスの煙道に
接続された水スクラバーと、該水スクラバー内に設けら
れたスプレノズルに水スラリを循環供給する配管を備え
た液溜めタンクと、該水スクラバー出口の処理ガス煙道
に接続されたボイラからの高温燃焼排ガスの一部を混合
するための水スクラバーを迂回した煙道を設けた石炭火
力発電プラントのボイラ燃焼排ガス処理装置、または、
ボイラ火炉内に設けられた微粒石灰石噴霧部と、ボイラ
から排出する燃焼排ガスの煙道に接続された水スクラバ
ーと、該水スクラバー内に設けられたスプレノズルに水
スラリを循環供給する配管を備えた液溜めタンクと、該
水スクラバー出口の処理ガス煙道に設けられたボイラか
らの高温燃焼排ガスの一部と前記処理ガスとの熱交換機
を設けた石炭火力発電プラントのボイラ燃焼排ガス処理
装置である。上記いずれかの石炭火力発電プラントのボ
イラ燃焼排ガス処理装置に、さらに、液溜めタンクにバ
ブリング用空気を導入する導入管を設け、液溜めタンク
内のスラリの一部を導入する沈降槽と、沈降槽内の上澄
液を液溜めタンクに導く戻し管と、沈降槽内の沈降物の
抜き出し管と、該抜き出し管に接続された脱水器とを設
けた構成を採用することもできる。
【0009】本発明では、ボイラ火炉内に脱硫剤を噴霧
する領域は第一脱硫反応器としての機能を有し、水スク
ラバーは第二脱硫反応器として機能する。そして、本発
明はこれら第一脱硫反応器と第二脱硫反応器による組み
合わせ方式の脱硫プロセスである。この水スクラバー
(第二脱硫反応器)では、脱硫反応と集塵機能を両立さ
せることにより、従来プロセスで必要であった電気集塵
器を省略し、高い脱硫性能と集塵機能を持たせるように
した。 さらに水スクラバー(第二脱硫反応器)への補
給水には工業水以外にも海水も使用できるようにした。
海水を補給水として使用していると水スクラバー(第二
脱硫反応器)内に塩素化合物が濃縮してくるが、液溜め
タンクから抜き出すスラリ中の固形物と共に回収し、石
炭灰硬化物として回収することにより、石炭灰硬化物を
形成するカルシウムを主成分とする複塩中に塩素化合物
を取り込むことができる。このために水スクラバー(第
二脱硫反応器)内の塩素化合物濃度は一定に保持でき
る。この石炭灰硬化物は石炭灰、石膏、消石灰が共存す
るスラリ状態で水分を蒸発あるいは除去することにより
ハンドリングしやすい硬度が得られる。特に石炭灰硬化
物の硬度は消石灰、石膏の添加量に影響してくる。その
消石灰、石膏の添加量調整はボイラ火炉脱硫で噴霧する
微粒石灰石の供給量を調整することにより可能である。
また石炭灰硬化物には水スクラバー(第二脱硫反応器)
内での循環水中に濃縮してくる重金属や前述した塩素化
合物、フッ素化合物などが固定できる。従って、水スク
ラバーの循環水の一部は沈降槽で固形物と上澄液に分離
し、上澄液は排水処理を行うことなく海洋に放流でき
る。
【0010】
【作用】微粉石炭を燃焼させるボイラ火炉内の温度分布
は200℃〜1500℃の広範囲であるが、微粉石灰石
をボイラ火炉内に噴霧する脱硫では脱硫反応を高めるの
に最適な温度条件がある。通常、微粒石灰石は平均粒径
5〜15μmが使用されるが、微粒石灰石を噴霧する温
度領域は1000℃近傍が脱硫反応性の面から最適であ
る。ボイラ火炉内に供給した微粉石灰石(CaCO3
は(1)式のような生石灰(CaO)の生成反応が起こ
り、生石灰は(2)式の脱硫反応により燃焼排ガス中の
硫黄酸化物を無水石膏(CaSO4)に固定化する。 CaCO3→CaO+CO2 (1) CaO+SO2+1/2O2→CaSO4 (2) (2)式の脱硫反応は燃焼排ガス中のSO2ガスとの反
応性を高めるために、SO2の化学当量以上の石灰石を
供給して行われる。通常はSO2量(モル単位)に対し
て約1〜3倍の微粉石灰石が供給される。
【0011】ここで、未反応CaOは燃焼排ガスに同伴
し、ボイラの後流に搬送されるが、その一部は燃焼排ガ
ス中のCO2ガスと反応しCaCO3を生成する。従っ
て、燃焼排ガスには石炭の燃え殻である石炭灰とCaS
4、CaO、CaCO3などが主に固形物として含まれ
る。このCaOはボイラに連結した煙道内での燃焼排ガ
ス温度が400℃以下である領域ではSO2とはほとん
ど反応しない。火炉内脱硫と煙道内で行う煙道内脱硫を
組み合わせる従来法の脱硫方式では、この未反応CaO
の反応性を高めるために、煙道内の燃焼排ガスに水を噴
霧して水蒸気とし、見かけ上(4)の脱硫反応を行わ
せ、SO2をCaSO3に固定化する方法が採用されてい
る。 CaO+H2O→CaO・H2O (3) CaO・H2O+SO2→CaSO3+H2O (4) CaSO3は不安定な物質であり、好ましくは酸化して
CaSO4として安定化する必要がある。また、
(3)、(4)式の反応を行わせるためには、煙道に噴
霧する水分が多いほどCaSO3の反応性は高まり脱硫
性能を高めることができる。しかし、煙道内の燃焼排ガ
スに所要水分量以上を噴霧すると燃焼排ガスが露点に達
し、後流側の煙道にある電気集塵器内で燃焼排ガスが露
結し、電極を腐食させるなどの現象が発生する。このた
め煙道内への水分の供給量を厳密に調整し、燃焼排ガス
温度が露点以上に維持できるように運用しなければなら
ない。煙道内では通常燃焼排ガス温度は65℃以上であ
り、好ましくは68℃以上が選定される。この電気集塵
器で捕集される媒塵は石炭灰以外にCaSO4、CaC
3、CaSO3、Ca(OH)2などの混合物として捕
集される。
【0012】本発明ではボイラ火炉からの燃焼排ガスを
一旦冷却し、これを水スクラバーの第二脱硫反応器に導
入する。第二脱硫反応器では石炭灰、CaSO4、Ca
CO3、CaSO3、CaOなどが捕集されると同時に脱
硫反応が起こる。まず、燃焼排ガス中の石炭灰、CaS
4、CaCO3、CaSO3、CaOなどの媒塵は水ス
クラバーの第二脱硫反応器で噴霧スラリ液滴と衝突させ
ることによって集塵され、この捕集されたCaOあるい
はCaCO3によって次のような脱硫反応が起こる。 CaO+H2O→Ca(OH)2 (5) SO2+H2O→H2SO3 (6) Ca(OH)2+H2SO3→CaSO3+2H2O (7) 脱硫反応は水に一旦SO2ガスを吸収させ、それをCa
(OH)2で中和する脱硫反応が主反応である。また、
CaOはボイラから燃焼排ガスに同伴してくる過程で燃
焼排ガス中のCO2ガスと反応してCaCO3を生成し、
このCaCO3も脱硫反応に寄与する。さらに、燃焼排
ガスに同伴してくる石炭灰自体もアルカリ物質であり、
脱硫反応に有効に作用する。例えば、石炭灰中にはCa
O、Na2O、K2O、MgOなどが含まれ、いずれも水
に捕集されて水酸化物となり、水酸化物は(6)式で生
成する亜硫酸と反応し、亜硫酸塩あるいは硫酸塩を形成
し、SO2を固定化する。
【0013】燃焼排ガス中のSO2ガスは水スクラバー
(第二脱硫反応器)で捕集されるが、捕集成分の大部分
は亜硫酸塩である。この亜硫酸塩を安定な硫酸塩に酸化
するには水スクラバー(第二脱硫反応器)に直結する液
溜めタンクのスラリに酸素ガスをバブリングすることに
より行うことができる。通常、酸素ガスは空気を用いる
ことにより行う。燃焼排ガスと水スクラバー(第二脱硫
反応器)に直結する液溜めタンク内のスラリを燃焼排ガ
スと気液接触させるには、一般にはスラリをスプレによ
り微細液滴にする方式がより効率的であるが、多孔板、
充填物などの気液接触装置で行うことも可能である。
【0014】本発明では水スクラバー(第二脱硫反応
器)内で確実に脱硫反応が起こり、脱硫性能も従来法に
比べ高くできる。しかし、水スクラバー(第二脱硫反応
器)の出口の燃焼排ガスは約55℃の露点状態に達して
おり、このまま大気に解放すると水蒸気の白煙が発生す
るので通常は加熱して大気に解放する必要がある。この
加熱は水スクラバーに導入する高温燃焼ガスと熱交換す
ることで達成できる。また、前記加熱は水スクラバーに
導入する高温燃焼排ガスの一部をバイパスして水スクラ
バー出口の処理した燃焼排ガスと混合させることによっ
ても行うことができる。この高温燃焼排ガスの一部をバ
イパスする場合のバイパス量は発生する高温燃焼排ガス
総量の約10%程度とすることで、燃焼排ガス温度をそ
の露点温度以上に高めることができる。脱硫処理後の燃
焼排ガスは水スクラバー(第二脱硫反応器)に導入する
高温燃焼排ガスと熱交換する場合に比べ、水スクラバー
(第二脱硫反応器)に導入する高温燃焼排ガスと混合す
る場合は、全体の燃焼排ガスの脱硫率は若干低下するが
熱交換器が不要となる利点がある。
【0015】水スクラバーに直結する液溜めタンクに
は、石炭灰に混じってCaSO4および未反応Ca(O
H)2がスラリ状態で存在する。このスラリの一部を水
スクラバーから抜き出し、沈降させ、脱水することによ
りケーキ状固形物とすることにより石炭灰を主成分とす
る硬化物が形成される。脱水した排水は水スクラバーに
戻して循環使用する。また、石炭灰と消石灰は得られる
硬化物をハンドリングしやすい強度のあるものにするの
に有効に作用する。したがって、硬化物中の消石灰量を
調整するには新たに消石灰を添加することも可能である
が、本発明ではボイラ内に噴霧する安価な微粉石灰石を
利用することができる。すなわち、硬化物の消石灰量を
調整するには、ボイラ火炉内に供給する微粉石灰石の供
給量を調整することでできる。また、硬化物中の消石灰
量を増やすには、ボイラ火炉に供給する微粉石灰石を増
やすことにより調整ができ、この反応は(1)、(5)
式から容易に推定できる。また、ボイラ火炉内に供給す
る微粉石灰石を増やすことは、ボイラ火炉内での(2)
式の脱硫反応を高めることができると同時に、水スクラ
バー内での脱硫反応にも有効に作用する。
【0016】この石炭灰硬化物の固化反応による強度の
発現は以下のようなカルシウム複塩が生成するためであ
る。 3CaO・Al23・3CaSO4・32H2O (8) 3CaO・Al23・CaSO4・12H2O (9) 3CaO・Al23・CaCl2・10H2O (10) 3CaO・Al23・SiO2・CaSO4・XH2O (11) 3Fe23・Al23・3CaSO4・32H2O (12) 3Fe23・Al23・CaSO4・12H2O (13) その他にも(11)、(12)、(13)式に示すSi
2、Fe23などを含む化合物との複塩の生成が確認
されている。この複塩の生成反応は、常温で長時間放置
していても進行するが、高温燃焼排ガスを利用して加熱
することにより短時間で石炭灰硬化物が得られ、硬化物
の強度の発現が起こる。従って、これらの複塩を生成さ
せるには石炭灰が不可欠であり、石炭灰はAl23、S
iO2、Fe23などの供給物質となっている。また、
石炭灰硬化物を生成するのに必要なCaSO4を得る反
応は燃焼排ガスの脱硫反応となっている。また、CaS
4は燃焼排ガスの脱硫反応によって生成する亜硫酸塩
を酸化することにより補給できる。従来の微粒石灰石を
ボイラ内に供給して行う火炉内脱硫と煙道内で行う煙道
内脱硫を組み合わせた脱硫方式では、補給水に工業用水
を使用するが、本発明の水スクラバー方式を併設する火
炉内脱硫と煙道内で行う煙道内脱硫を組み合わせた脱硫
方式方法では、一部あるいは全体の補給水に海水が使用
できる。これは、海水中の塩素イオンは(10)式に示
すように硬化物に取り込まれて海水から抜き出されるこ
と、また、水スクラバー内のスラリを一部抜き出し、沈
降槽で固形物を回収した上澄液の一部を海洋に直接放流
できることによる。
【0017】
【実施例】
実施例1 本発明の代表的な実施例を図1に示す。全体の脱硫プロ
セスの主要機器はボイラ1と水スクラバー2からなる。
ボイラ1には石炭3と加熱空気5が導入される。微粉石
灰石4はボイラ1内の1000℃近傍の温度領域に噴霧
される。ボイラ1の燃焼排ガス6は熱交換器7を通り、
大部分は水スクラバー2に導入される。液溜めタンク8
のスラリ9がポンプ10を利用して水スクラバー2のス
プレ部11に供給される。スプレ部11ではスラリ9が
微粒化した状態で噴霧され、燃焼排ガス6と接触する。
この水スクラバー2内で燃焼排ガス6の除塵と脱硫が同
時に行われる。スラリ9は液溜めタンク8とスプレ部1
1を循環する。液溜めタンク8には補給水12が供給さ
れるが、液溜めタンク8内のスラリの一部は液溜めタン
ク8から抜き出された流れ13となり、沈降槽14に導
かれ、沈殿物15と上澄み液16に沈降分離される。プ
レコート脱水機19で沈降槽14から抜き出された沈降
物15の脱水が行なわれ、ケーキ状の固形物20を得
る。この固形物20は自然放置あるいは加熱することに
より硬化物となる。脱水機19の分離液18と沈降槽1
4の上澄み液16は合流液21となり、その一部は液溜
めタンク8に戻す。また合流液21の一部は流れ22か
ら海洋に放流する。ここで、液溜めタンク8の補給水1
2の一部は海水を使用することができる。また、水スク
ラバー2の出口ガス23は水スクラバー2を迂回する脱
硫処理されていない高温燃焼排ガス24の一部と合流し
て加熱された流れ25として煙突26から大気に放出で
きる。
【0018】実施例2 図2は図1に表す前記実施例1と比較して図1の水スク
ラバー2の出口燃焼ガス23をボイラ1の出口高温燃焼
排ガス6と熱交換させる熱交換器27を新たに設けた点
が相違する。すなわち本実施例は図1の水スクラバー2
の出口燃焼ガス23をボイラ1の出口高温燃焼排ガス6
と熱交換器27により加熱し、流れ25として煙突26
から放出する脱硫プロセス方式の実施例である。
【0019】以上実施例1、2で説明した脱硫方式での
燃焼排ガス処理量4000m3N/hの水スクラバー2
(スプレ吸収塔)を用いて検討した消石灰と石灰石の含
有率に対する脱硫率の関係を図3に示す。模擬燃焼排ガ
ス中のSO2濃度は650ppmで、単位処理ガス量に
対して吸収液は17リットル/m3Nの割合で気液接触
させた。吸収液中の消石灰と石灰石の含有率が高くなる
につれて、脱硫率を高くでき同じ含有率(mmol/リ
ットル)であれば消石灰の方が石灰石より脱硫率を高く
できる。
【0020】この消石灰スラリにFe:1.99、A
l:14.94、Mn:0.013、V:0.011、
Cu:0.009、Na:0.17、Mg:0.29、
Zn:0.038、K:0.41、Si:25.93、
Ca:0.64、Ni:0.012、Co:0.008
%を含む石炭灰を15%添加し脱硫実験を行った。脱硫
率は同じ消石灰濃度であれば石炭灰を添加したスラリの
ほうが高くできる。すなちわ、20mmol/リットル
の消石灰を単独でスラリに含む場合の脱硫率93%であ
ったが、これに石炭灰を添加したスラリでは脱硫率は9
5.2%と高くなった。また、海水をスラリの補給水と
したときには吸収液中の塩素イオン濃度が高くなるの
で、塩素イオン濃度と脱硫率の関係を調べた。液中の塩
素イオン濃度が25,000ppm以上になるとスラリ
液中の石灰石濃度を高めないと脱硫性能は低下する傾向
を示したが、スラリ液中の石灰石に代えて消石灰を用い
る場合は液中の塩素イオン濃度は30,000ppm程
度になるまで高い脱硫率を維持することができた。
【0021】次にスラリのスプレ気液接触装置での脱塵
性能について検討した。水スクラバー2に導入される燃
焼排ガスには約20g/m3Nの石炭灰を主成分とする
媒塵が含まれるが、その媒塵のスラリスプレ噴霧による
捕集効率を調べた。スプレ段は4段で行い、一段のスプ
レから5リットル/m3Nのスラリを噴霧させた。大部
分は最下部のスプレ段で92%近い脱塵率を示した。水
スクラバー2の出口の燃焼排ガスからは50〜70mg
/m3Nに除塵されていた。脱塵率はスラリの噴霧量に
影響され、一段のスプレの気液流量比が7リットル/m
3Nの場合は水スクラバー2出口の燃焼排ガス中には3
5mg/m3Nの媒塵量になるまで除塵された。
【0022】実施例1、2の固形物20を自然放置し、
15時間後の固化物の表面のX線回折を行ったところ、
トリサルフェート型の3CaO・Al23・3CaSO
4・32H2O結晶、モノサルフェート型の3CaO・A
23・CaSO4・12H2O結晶、3CaO・Al2
3・CaCl2・10H2O複塩が同量される。図5は
硬化物のX線回折結果の一例であるが、図5中の○印が
3CaO・Al23・CaCl2・10H2Oである。実
施例1、2の固形物20を100℃の水蒸気雰囲気で5
時間加熱したところモノサルフェート型の結晶は消滅し
た。また、100℃の水蒸気雰囲気で15時間加熱した
ところモノサルフェート型の結晶が同量された。得られ
た複塩の溶出試験の結果、3CaO・Al23・CaC
2・10H2Oからは容易に塩素イオンが溶けだすが、
その他の有害物質は排出基準以下であることを確認でき
た。また、燃焼排ガスに含まれるフッ素などもスラリに
吸収されフッ素を含む複塩を形成し固定できることが明
らかになった。この結果、硬化物は通常の石炭灰と同様
な取り扱いができる。
【0023】図1、2の実施例に示した硬化物20を固
める条件は塩素イオン濃度、乾燥温度に影響される。表
1は石炭灰と石膏、石炭灰、消石灰、石膏の混合比およ
び乾燥温度の影響を調べた結果である。
【表1】 固化が進行したもの(○)、固化するが脆いもの
(△)、固化しにくい条件(×)で比較すると、乾燥温
度が約200℃になると消石灰、石膏の含有率が高くな
っても固化しにくいことが分かる。また、消石灰、石膏
の含有率が高くなると固化が進行しやすいことが判明し
た。また、得られた硬化物の強度を相対硬度で比較した
例を図6に示すが、低温で長時間乾燥するほど、硬化物
の硬度は高くできることが分かる。
【0024】石灰石をボイラ火炉に噴霧する模擬試験を
行い、(1)、(2)式の反応を確認した例を図4に示
す。石灰石として天然のものと結晶性の石灰石について
それぞれ600℃から1500℃で焼成したCaOを調
整した。それぞれの焼成温度の異なるCaOについて、
SO21000ppm、NO500ppm、O26%、C
210%、H2O10%を含む模擬燃焼排ガスと接触さ
せその時のCaSO4、生成量から蓄積硫黄量を定量し
た。蓄積硫黄量は石灰石を900℃から1000℃で焼
成したCaOが最も高くできた。
【0025】
【発明の効果】本発明はボイラ火炉と水スクラバーを組
み合わせて行う脱塵、脱硫プロセスであるから、従来微
粒石灰石をボイラ内に供給して行う火炉内脱硫と煙道内
で行う煙道内脱硫を組み合わせた脱硫方式に比べ脱硫性
能が高くでき、水スクラバーにおいて脱塵と脱硫機能を
兼ねるので電気集塵器が不要となる。また塩素やフッ素
などが硬化物に固定できるので排水処理が不要になる。
【図面の簡単な説明】
【図1】 本発明の一実施例の代表的な脱硫プロセスを
示す図である。
【図2】 本発明の一実施例の代表的な脱硫プロセスを
示す図である。
【図3】 本発明の一実施例の消石灰と石灰石の焼成温
度とSO2との反応性を示す図である。
【図4】 本発明の一実施例のボイラ火炉内を想定した
石灰石の焼成温度とSO2との反応性を示す図である。
【図5】 本発明の一実施例の石炭灰硬化物のX線回折
結果を示す図である。
【図6】 本発明の一実施例の石炭灰硬化物の硬度を示
す図である。
【符号の説明】
1…ボイラ(ボイラ火炉第一脱硫反応器)、2…水スク
ラバー(第二脱硫反応器)、4…微粉石灰石、6…燃焼
排ガス、7、27…熱交換器、8…液溜めタンク、9…
スラリ、10…循環ポンプ、11…スプレ部、12…補
給水(海水)、14…沈降槽、19…脱水機、20…固
形物、硬化物、23…水スクラバーの第二脱硫反応器の
出口ガス、26…煙突
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/77 B01D 53/34 125 K (72)発明者 加藤 明 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 宮寺 博 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 微粒石灰石をボイラ火炉内に噴霧し、ボ
    イラから排出する燃焼排ガスの一部を冷却した後に水ス
    クラバーに導入し、該水スクラバー内で燃焼排ガスに液
    溜めタンクから循環供給される水スラリを噴霧して脱硫
    と脱塵を同時に行い、水スラリは液溜めタンクに回収
    し、該水スクラバー出口の処理ガスにボイラからの高温
    燃焼排ガスの一部を混合した後に煙突から大気に放出す
    るようにしたことを特徴とする石炭火力発電プラントの
    ボイラ燃焼排ガス処理法。
  2. 【請求項2】 微粒石灰石をボイラ火炉内に噴霧し、ボ
    イラから排出する燃焼排ガスの一部をボイラから排出す
    る燃焼排ガスの一部を冷却するのに水スクラバー出口ガ
    スと熱交換して冷却した後に水スクラバーに導入し、該
    水スクラバー内で燃焼排ガスに液溜めタンクから循環供
    給される水スラリを噴霧して脱硫と脱塵を同時に行い、
    水スラリは液溜めタンクに回収し、該水スクラバー出口
    の処理ガスはボイラからの高温燃焼排ガスの一部を混合
    した後に煙突から大気に放出するようにしたことを特徴
    とする石炭火力発電プラントのボイラ燃焼排ガス処理
    法。
  3. 【請求項3】 請求項1または請求項2記載の石炭火力
    発電プラントのボイラ燃焼排ガス処理法に、さらに、液
    溜めタンク内の該スラリに空気をバブリングさせた後に
    その一部を沈降槽に導き上澄液と沈降物に分離し、上澄
    液は沈降槽から液溜めタンクに戻し、沈降物は沈降槽か
    ら抜き出し脱水器に導き脱水して固化物を石炭灰硬化物
    とすることを特徴とする石炭火力発電プラントのボイラ
    燃焼排ガス処理法。
  4. 【請求項4】 水スクラバー内で噴霧される水スラリに
    海水を補給することを特徴とする請求項1ないし3記載
    のいずれかの石炭火力発電プラントのボイラ燃焼排ガス
    処理法。
  5. 【請求項5】 沈降槽の沈殿物を固化するのに必要な液
    溜めタンク内スラリに添加される消石灰含有量の調整を
    ボイラ火炉内に供給する微粉石灰石の供給量の調整によ
    り行うことを特徴とする請求項3記載の石炭火力発電プ
    ラントのボイラ燃焼排ガス処理法。
  6. 【請求項6】 ボイラ火炉内に設けられた微粒石灰石噴
    霧部と、ボイラから排出する燃焼排ガスの煙道に接続さ
    れた水スクラバーと、該水スクラバー内に設けられたス
    プレノズルに水スラリを循環供給する配管を備えた液溜
    めタンクと、該水スクラバー出口の処理ガス煙道に接続
    されたボイラからの高温燃焼排ガスの一部を混合するた
    めの水スクラバーを迂回した煙道を設けたことを特徴と
    する石炭火力発電プラントのボイラ燃焼排ガス処理装
    置。
  7. 【請求項7】 ボイラ火炉内に設けられた微粒石灰石噴
    霧部と、ボイラから排出する燃焼排ガスの煙道に接続さ
    れた水スクラバーと、該水スクラバー内に設けられたス
    プレノズルに水スラリを循環供給する配管を備えた液溜
    めタンクと、該水スクラバー出口の処理ガス煙道に設け
    られたボイラからの高温燃焼排ガスの一部と前記処理ガ
    スとの熱交換機を設けたことを特徴とする石炭火力発電
    プラントのボイラ燃焼排ガス処理装置。
  8. 【請求項8】 請求項6または請求項7記載の石炭火力
    発電プラントのボイラ燃焼排ガス処理装置に、さらに、
    液溜めタンクにバブリング用空気を導入する導入管を設
    け、液溜めタンク内のスラリの一部を導入する沈降槽
    と、沈降槽内の上澄液を液溜めタンクに導く戻し管と、
    沈降槽内の沈降物の抜き出し管と、該抜き出し管に接続
    された脱水器とを設けたことを特徴とする石炭火力発電
    プラントのボイラ燃焼排ガス処理装置。
JP6172757A 1994-07-25 1994-07-25 石炭火力発電プラントのボイラ燃焼排ガス処理法と装置 Pending JPH0833826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6172757A JPH0833826A (ja) 1994-07-25 1994-07-25 石炭火力発電プラントのボイラ燃焼排ガス処理法と装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6172757A JPH0833826A (ja) 1994-07-25 1994-07-25 石炭火力発電プラントのボイラ燃焼排ガス処理法と装置

Publications (1)

Publication Number Publication Date
JPH0833826A true JPH0833826A (ja) 1996-02-06

Family

ID=15947769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6172757A Pending JPH0833826A (ja) 1994-07-25 1994-07-25 石炭火力発電プラントのボイラ燃焼排ガス処理法と装置

Country Status (1)

Country Link
JP (1) JPH0833826A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354732A (ja) * 1999-06-14 2000-12-26 Ishikawajima Harima Heavy Ind Co Ltd 海水法排煙脱硫装置
JP2002142591A (ja) * 2000-11-08 2002-05-21 Asahi Kogyosha Co Ltd 実験動物飼育施設などの脱臭換気装置
DE112007000341T5 (de) 2006-04-13 2009-02-12 Matsushita Electric Industrial Co., Ltd., Kadoma-shi System zum Montieren von elektronischen Bauelementen, Platzierungszustands-Prüfvorrichtung und Verfahren zum Montieren von elektronischen Bauelementen
CN102120128A (zh) * 2011-02-23 2011-07-13 山西格瑞环保设备有限公司 小型采暖或短周期运行锅炉烟气脱硫工艺
JP2013202432A (ja) * 2012-03-27 2013-10-07 Taiheiyo Cement Corp 流動床式ボイラー灰の処理方法及び処理装置
CN107837635A (zh) * 2017-11-02 2018-03-27 龙伍洋 双源废气环保处理系统
WO2018142538A1 (ja) * 2017-02-02 2018-08-09 北海道電力株式会社 脱硫システムの運転方法
CN108654373A (zh) * 2018-07-24 2018-10-16 宁波国电龙高科环境工程技术有限公司 适用于中小型锅炉的节能型烟气脱白装置
CN109141066A (zh) * 2017-06-15 2019-01-04 广州新致晟环保科技有限公司 用于污泥处理的尾气净化和热回收系统及方法
CN109205909A (zh) * 2018-11-15 2019-01-15 国电科学技术研究院有限公司 燃煤电站锅炉烟气脱硫废水的处理系统及方法
CN109621673A (zh) * 2018-12-21 2019-04-16 张辰星 一种工业废气高效环保处理工艺
CN113908675A (zh) * 2021-11-01 2022-01-11 大连理工大学 一种湿法烟气脱氯提升石膏品质的方法
CN113932216A (zh) * 2021-10-20 2022-01-14 北京航天迈未科技有限公司 一种基于煤粉锅炉改造的碳中和的系统及其使用方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354732A (ja) * 1999-06-14 2000-12-26 Ishikawajima Harima Heavy Ind Co Ltd 海水法排煙脱硫装置
JP2002142591A (ja) * 2000-11-08 2002-05-21 Asahi Kogyosha Co Ltd 実験動物飼育施設などの脱臭換気装置
DE112007000341T5 (de) 2006-04-13 2009-02-12 Matsushita Electric Industrial Co., Ltd., Kadoma-shi System zum Montieren von elektronischen Bauelementen, Platzierungszustands-Prüfvorrichtung und Verfahren zum Montieren von elektronischen Bauelementen
CN102120128A (zh) * 2011-02-23 2011-07-13 山西格瑞环保设备有限公司 小型采暖或短周期运行锅炉烟气脱硫工艺
JP2013202432A (ja) * 2012-03-27 2013-10-07 Taiheiyo Cement Corp 流動床式ボイラー灰の処理方法及び処理装置
WO2018142538A1 (ja) * 2017-02-02 2018-08-09 北海道電力株式会社 脱硫システムの運転方法
CN109141066A (zh) * 2017-06-15 2019-01-04 广州新致晟环保科技有限公司 用于污泥处理的尾气净化和热回收系统及方法
CN107837635A (zh) * 2017-11-02 2018-03-27 龙伍洋 双源废气环保处理系统
CN108654373A (zh) * 2018-07-24 2018-10-16 宁波国电龙高科环境工程技术有限公司 适用于中小型锅炉的节能型烟气脱白装置
CN109205909A (zh) * 2018-11-15 2019-01-15 国电科学技术研究院有限公司 燃煤电站锅炉烟气脱硫废水的处理系统及方法
CN109205909B (zh) * 2018-11-15 2023-08-29 国家能源集团科学技术研究院有限公司 燃煤电站锅炉烟气脱硫废水的处理系统及方法
CN109621673A (zh) * 2018-12-21 2019-04-16 张辰星 一种工业废气高效环保处理工艺
CN113932216A (zh) * 2021-10-20 2022-01-14 北京航天迈未科技有限公司 一种基于煤粉锅炉改造的碳中和的系统及其使用方法
CN113908675A (zh) * 2021-11-01 2022-01-11 大连理工大学 一种湿法烟气脱氯提升石膏品质的方法

Similar Documents

Publication Publication Date Title
US8367025B2 (en) Carbon dioxide sequestration materials and processes
KR890000512B1 (ko) 페가스로 부터 질소 산화물 및 황산화물을 제거하는 방법
EP0873777B1 (en) Flue gas treating process
JP2009507632A (ja) 排ガス気流から三酸化硫黄の除去
CN112808746B (zh) 一种焚烧炉渣及飞灰的资源化处置方法
CN104923044A (zh) 基于臭氧的烟气治理系统及方法
JPH0833826A (ja) 石炭火力発電プラントのボイラ燃焼排ガス処理法と装置
MX2008005635A (es) Proceso de desulfuracion de gas combustible utilizando peroxido de hidrogeno.
JP2012206016A (ja) 排ガス処理装置及び処理方法、石炭改質プロセス設備
JPH1157397A (ja) ガス精製方法
WO2021193476A1 (ja) 燃焼排ガス浄化処理に係る装置および方法
KR100266098B1 (ko) 배연처리방법및설비
JPS6363248B2 (ja)
JPH06126127A (ja) 脱塵脱硫同時処理方法および装置
Liu et al. Sodium ascorbate as additive in red mud slurry for simultaneous desulfurization and denitrification: Insights into the multiple influence factors and reaction mechanism
KR100225474B1 (ko) 연소 기체로부터 이산화황과 산화질소를 제거하기 위한 방법
JP3901986B2 (ja) ばいじんの処理方法及びばいじんの処理装置
CN214719281U (zh) 一种焚烧炉渣及飞灰的资源化处置系统
KR102556854B1 (ko) 자원순환 시스템
AU2012200916B2 (en) Carbon dioxide sequestration materials and processes
JPH0549853A (ja) 排煙脱硫方法および装置
JP3519555B2 (ja) 重質油燃料焚きボイラの排ガス処理方法
JP2002219331A (ja) 脱硫剤調製方法と装置及び乾式排煙脱硫方法
JP3025082B2 (ja) 乾式排ガス処理方法
JPH1057757A (ja) 乾式排ガス処理方法