JPH0831419B2 - Method for producing compound semiconductor single crystal on single crystal silicon substrate - Google Patents

Method for producing compound semiconductor single crystal on single crystal silicon substrate

Info

Publication number
JPH0831419B2
JPH0831419B2 JP41800390A JP41800390A JPH0831419B2 JP H0831419 B2 JPH0831419 B2 JP H0831419B2 JP 41800390 A JP41800390 A JP 41800390A JP 41800390 A JP41800390 A JP 41800390A JP H0831419 B2 JPH0831419 B2 JP H0831419B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon substrate
crystal silicon
sic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP41800390A
Other languages
Japanese (ja)
Other versions
JPH04223330A (en
Inventor
勇 赤崎
浩 天野
Original Assignee
名古屋大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 名古屋大学長 filed Critical 名古屋大学長
Priority to JP41800390A priority Critical patent/JPH0831419B2/en
Publication of JPH04223330A publication Critical patent/JPH04223330A/en
Publication of JPH0831419B2 publication Critical patent/JPH0831419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4918Disposition being disposed on at least two different sides of the body, e.g. dual array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶珪素基板上に化
合物半導体(Ga1-x Alx ) 1-y Iny N (0≦x≦1、0
≦y≦1)単結晶層を作製する方法に関するものであ
る。
The present invention relates to a compound semiconductor (Ga 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1,0) on a single crystal silicon substrate.
≦ y ≦ 1) The present invention relates to a method for producing a single crystal layer.

【0002】[0002]

【従来の技術】(Ga1-x Alx ) 1-y Iny N (0≦x≦
1、0≦y≦1)結晶は、室温でのエネルギーバンドギ
ャップに対応する光の波長が200 〜700nm 帯にある直接
遷移型半導体であり、特に可視短波長及び紫外領域の発
光及び受光素子用材料として期待されている。(Ga1-x
Alx ) 1-y Iny N 結晶は成長温度付近で、構成元素であ
る窒素(N)の平衡蒸気圧が極めて高いため、バルク結
晶の作製は容易でない。従って現在、単結晶作製は異種
結晶を基板として用いたヘテロエピタキシャル成長によ
り行っている。
2. Description of the Related Art (Ga 1-x Al x ) 1-y In y N (0 ≦ x ≦
1, 0 ≤ y ≤ 1) Crystal is a direct transition type semiconductor with a light wavelength corresponding to the energy band gap at room temperature in the 200 to 700 nm band, especially for light emitting and receiving elements in the visible short wavelength and ultraviolet region. Expected as a material. (Ga 1-x
Since the equilibrium vapor pressure of nitrogen (N), which is a constituent element, of Al x ) 1-y In y N crystal is extremely high near the growth temperature, it is not easy to prepare a bulk crystal. Therefore, at present, single crystal production is performed by heteroepitaxial growth using a heterogeneous crystal as a substrate.

【0003】(Ga1-x Alx ) 1-y Iny N 結晶作製用基板
として必要な条件は、(1)融点が高いこと(少なくと
も1000℃以上) 、(2)化学的に安定であること、
(3)結晶品質がすぐれていること、であり、(4)格
子定数差が小さく、(5)入手が容易であり、(6)基
板が大型であることが望ましい。また電気的に動作する
素子を作製する場合、(7)電気的特性の制御が容易で
あること、特に低抵抗であること、が望ましい。これら
すべての条件を満足する結晶はない。現在最もよく用い
られている基板は(1)(2)(3)(5)(6)を満
足するサファイアである。サファイアと(Ga1-x Alx )
1-y Iny N は格子定数差が11%以上であり、(4)の条
件からは望ましくないが、本発明者らは(Ga1-x Alx )
1-y InyN 成長直前に低温(〜600 ℃) で薄膜AlN(〜50n
m) を堆積し緩衝層とすることにより、高品質(Ga1-x A
lx ) 1-y Iny N 結晶の作製が可能であることを見出し
ており(特願昭60-256806 号) 、この技術を用いて高性
能青色、紫外光LED の作製にも成功している。しかしな
がらサファイアは絶縁体であり、かつ堅固であるため素
子形成、特に電極形成が容易でないという問題点があ
り、大電流注入により動作する素子の作製には不向きで
あった。
The conditions required for a (Ga 1-x Al x ) 1-y In y N crystal production substrate are (1) a high melting point (at least 1000 ° C. or higher), and (2) chemical stability. thing,
It is desirable that (3) the crystal quality is excellent, (4) the difference in lattice constant is small, (5) easy to obtain, and (6) the substrate is large. Further, in the case of manufacturing an element that operates electrically, it is desirable that (7) the electric characteristics be easily controlled, particularly that the resistance be low. No crystals satisfy all of these conditions. The most widely used substrate at present is sapphire satisfying (1) (2) (3) (5) (6). Sapphire and (Ga 1-x Al x )
1-y In y N has a lattice constant difference of 11% or more, which is not desirable from the condition of (4), but the present inventors have (Ga 1-x Al x ).
1-y In y N Thin film AlN (~ 50n) at low temperature (~ 600 ° C) immediately before growth.
m) is deposited and used as a buffer layer to ensure high quality (Ga 1-x A
We have found that it is possible to produce l x ) 1-y In y N crystals (Japanese Patent Application No. 60-256806), and we have succeeded in producing high-performance blue and UV LEDs using this technology. There is. However, since sapphire is an insulator and is solid, it has a problem that it is not easy to form an element, particularly an electrode, and it is unsuitable for producing an element that operates by a large current injection.

【0004】[0004]

【発明が解決しようとする課題】この問題点を解決する
基板の候補の一つに珪素(Si) がある。Siは容易に低抵
抗基板が得られ、高融点であり、しかも大型完全結晶を
容易に得ることが出来る。すなわち(1)(2)(3)
(5)(6)(7)の条件を満足する。しかも、微細加
工が容易であるため、大電流注入により動作する素子を
作製し易い。
Silicon (Si) is one of the candidates for the substrate to solve this problem. Si can easily obtain a low resistance substrate, has a high melting point, and can easily obtain a large perfect crystal. That is, (1) (2) (3)
The conditions (5), (6) and (7) are satisfied. Moreover, since fine processing is easy, it is easy to fabricate an element that operates by high current injection.

【0005】こうした珪素基板上の(Ga1-x Alx ) 1-y
Iny N 結晶作製における最も大きな問題点は、例えばGa
N とSiに於いて17%程度という大きな格子定数差であ
り、この格子定数差に基づく結晶欠陥の発生を抑制する
技術の確立が望まれていた。
On such a silicon substrate, (Ga 1-x Al x ) 1-y
The biggest problem in making In y N crystals is, for example, Ga
There is a large lattice constant difference of about 17% between N and Si, and it has been desired to establish a technique for suppressing the generation of crystal defects based on this difference in lattice constant.

【0006】本発明の課題は、可視短波長及び紫外光発
光及び受光素子用材料として期待される(Ga1-x Alx )
1-y Iny N 結晶を、安価、高結晶品質で大面積化及び低
抵抗化が容易な単結晶珪素基板上に得る方法を提供する
ことである。
The object of the present invention is expected as a material for visible short wavelength and ultraviolet light emission and light receiving elements (Ga 1-x Al x ).
It is an object of the present invention to provide a method for obtaining a 1-y In y N crystal on a single crystal silicon substrate that is inexpensive, has high crystal quality, and can easily have a large area and low resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、単結晶珪素基
板を加熱した状態で少なくとも炭化水素ガスを含む雰囲
気内に保持し、前記単結晶珪素基板の表面に3C−Si
Cの薄層を緩衝層として形成し、この3C−SiCの薄
層の上に、化合物半導体(Ga1-x Alx ) 1-yIny N (0
≦x≦1、0≦y≦1)単結晶層を成長させる、単結晶
珪素基板上への化合物半導体単結晶の作製方法に関する
ものである。本発明の他の目的とする所は、単結晶珪素
基板を加熱状態で炭化水素ガスとキャリアガスとからな
る雰囲気内に保持し、次いで、珪素を含有する化合物と
炭化水素ガスとを少なくとも含む雰囲気内に前記単結晶
珪素基板を加熱状態で保持し、これにより単結晶珪素基
板の表面に前記3C−SiCの薄層を緩衝層として形成
することを特徴とする単結晶珪素基板上への化合物半導
体単結晶の作製方法を提供するにある。本発明の更に他
の目的とする所は、単結晶珪素基板を加熱した状態で少
くとも炭化水素ガスを含む雰囲気内に保持し前記単結晶
珪素基板の表面に3C−SiCの薄層を緩衝層として形
成した後、アルミニウムを含有する有機金属化合物と窒
素の水素化物とを少なくとも含む雰囲気内に前記単結晶
珪素基板を加熱状態で保持し、これにより前記3C−S
iCの薄層の上に窒化アルミニウム薄層を緩衝層として
形成し、次いでこの窒化アルミニウム薄層の表面に、化
合物半導体(Ga1-x Alx ) 1-y Iny N (0≦x≦1、0
≦y≦1)単結晶層を成長させることを特徴とする単結
晶珪素基板上への化合物半導体単結晶の作製方法を提供
するにある。
According to the present invention, a single crystal silicon substrate is heated and held in an atmosphere containing at least a hydrocarbon gas, and 3C-Si is formed on the surface of the single crystal silicon substrate.
A thin layer of C is formed as a buffer layer, and a compound semiconductor (Ga 1-x Al x ) 1-y In y N (0
≦ x ≦ 1, 0 ≦ y ≦ 1) The present invention relates to a method for producing a compound semiconductor single crystal on a single crystal silicon substrate by growing a single crystal layer. Another object of the present invention is to hold a single crystal silicon substrate in a heated state in an atmosphere composed of a hydrocarbon gas and a carrier gas, and then to hold an atmosphere containing at least a compound containing silicon and a hydrocarbon gas. A compound semiconductor on a single crystal silicon substrate, characterized in that the single crystal silicon substrate is held in a heated state, and thereby the thin layer of 3C-SiC is formed as a buffer layer on the surface of the single crystal silicon substrate. A method for producing a single crystal is provided. Still another object of the present invention is to hold a single crystal silicon substrate in a heated state in an atmosphere containing at least a hydrocarbon gas, and to form a thin layer of 3C-SiC on the surface of the single crystal silicon substrate as a buffer layer. And then, the single crystal silicon substrate is held in a heated state in an atmosphere containing at least an organometallic compound containing aluminum and a hydride of nitrogen, whereby the 3C-S
A thin aluminum nitride layer is formed as a buffer layer on the thin iC layer, and then a compound semiconductor (Ga 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1 is formed on the surface of the thin aluminum nitride layer. , 0
≦ y ≦ 1) A method for producing a compound semiconductor single crystal on a single crystal silicon substrate, which comprises growing a single crystal layer.

【0008】本発明によれば、(Ga1-x Alx ) 1-yIny N
単結晶を珪素基板に作製する場合に於いて、(Ga1-x A
lx ) 1-y Iny N 単結晶成長直前に、少なくとも炭化水
素ガス(CnHm:n,mは整数)を成長炉内に導入して珪
素基板表面にSiC 薄層を形成した後、CnHmを排気する。
好ましくは、次に少なくともAlを含む有機金属化合物及
び窒素の水素化物を成長炉内に導入してAlN 薄層を形成
することにより、SiC 及びAlN を(Ga1-x Alx ) 1-y In
y N 結晶と珪素基板の緩衝層とする。次にAlを含む有機
金属化合物の供給のみを一旦止め、必要とする混晶組成
に見合った分の、Alを含む有機金属化合物、Gaを含む有
機金属化合物、及びInを含む有機金属化合物を引続き供
給することにより、AlN 上に(Ga1-x Alx) 1-y Iny N
結晶を作製する。
According to the present invention, (Ga 1-x Al x ) 1-y In y N
In the case of producing a single crystal on a silicon substrate, (Ga 1-x A
l x ) 1-y In y N Immediately before the single crystal growth, at least a hydrocarbon gas (CnHm: n, m is an integer) was introduced into the growth furnace to form a thin SiC layer on the surface of the silicon substrate, and then CnHm was added. Exhaust.
Preferably, an organometallic compound containing at least Al and a hydride of nitrogen are then introduced into the growth reactor to form a thin layer of AlN, thereby removing SiC and AlN from (Ga 1-x Al x ) 1-y In.
It is used as a buffer layer of y N crystal and a silicon substrate. Then, only the supply of the organometallic compound containing Al is temporarily stopped, and the organometallic compound containing Al, the organometallic compound containing Ga, and the organometallic compound containing In corresponding to the required mixed crystal composition are continued. By supplying, (Ga 1-x Al x ) 1-y In y N on AlN
Make crystals.

【0009】本発明の実施例では、CnHmを成長炉内に導
入してSiC薄層を形成する場合に於ける珪素基板の温度
は、600 〜1300℃の範囲内であることが好ましい。また
珪素の水素化合物、ハロゲン化合物又はアルキル化合物
と、CnHmを成長炉内に導入してSiC を形成する場合の珪
素基板の温度も、600 〜1300℃の範囲内であることが好
ましい。更に、少なくともAlを含む有機金属化合物及び
窒素の水素化物を成長炉内に導入してAlN 薄層を形成す
る場合における基板の温度は、600 〜1300℃の範囲内で
あることが望ましい。尚、本発明は、上記(Ga1-x A
lx ) 1-y Iny N におけるxが0及び1を含み0から1
の範囲内、InN モル分率yが0及び1を含み0から1の
範囲内で有効である。
In the embodiment of the present invention, the temperature of the silicon substrate in the case of introducing CnHm into the growth furnace to form a thin SiC layer is preferably in the range of 600 to 1300 ° C. In addition, the temperature of the silicon substrate when forming a SiC by introducing a hydrogen compound, a halogen compound or an alkyl compound of silicon and CnHm into the growth furnace is also preferably in the range of 600 to 1300 ° C. Further, the temperature of the substrate is preferably in the range of 600 to 1300 ° C. when the organic metal compound containing at least Al and the hydride of nitrogen are introduced into the growth furnace to form the AlN thin layer. The present invention is based on the above (Ga 1-x A
l x ) 1-y In y N, x includes 0 and 1, and 0 to 1
Within the range, the InN mole fraction y is effective within the range of 0 to 1 inclusive of 0 and 1.

【0010】[0010]

【作用】本発明の発明者らは、電気的特性の制御が容易
であり、結晶学的に優れた特性を有する単結晶珪素基板
上に気相成長法、特に原料として有機金属化合物を用い
た有機金属化合物気相成長法により、高品質(Ga1-x Al
x ) 1-y Iny N (0≦x≦1、0≦y≦1)単結晶を得
るべく、珪素基板表面処理方法を種々検討した結果、上
記発明を完成した。
The inventors of the present invention used the vapor phase growth method, particularly the organometallic compound as a raw material, on a single crystal silicon substrate having excellent crystallographically excellent characteristics in which the electrical characteristics can be easily controlled. High-quality (Ga 1-x Al
x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) In order to obtain a single crystal, various methods for treating the surface of a silicon substrate were studied, and the above invention was completed.

【0011】珪素基板上への(Ga1-x Alx ) 1-y Iny N
の成長における最も大きな問題点は、例えばGaN とSiを
比較した場合、17%ものきわめて大きな格子定数差が存
在することであった。実際GaN を直接珪素基板上に成長
させても、多結晶化するか、或いは単結晶であっても六
角柱状の島状に成長し、平坦性のよい高品質単結晶の作
製は困難であった。また逆極性領域(Anti Phase Bounda
ry:APB) の存在も問題であった。そこで、本発明者らは
なんらかの緩衝層が必要であると考え、種々の結晶を検
討した結果、3C-SiCが最もよいことを確認した。第1表
を見ればわかるようにSiC と窒化物、特にAlN とは格子
定数差が0.94%と極めて小さい。しかも3C-SiCは(111)
面や(100) 面のように極性面を用い、更に基板表面の原
子ステップを制御することにより、APB の発生も制御で
きることが芝原により報告されている(京都大学博士論
文1987年) 。
(Ga 1-x Al x ) 1-y In y N on a silicon substrate
The biggest problem in the growth of Si was that there was an extremely large difference in lattice constant of 17% when comparing GaN and Si, for example. In fact, even if GaN was grown directly on a silicon substrate, it was polycrystallized, or even if it was a single crystal, it grew into a hexagonal columnar island shape, making it difficult to produce a high-quality single crystal with good flatness. . In addition, the reverse polarity region (Anti Phase Bounda
The existence of (ry: APB) was also a problem. Therefore, the present inventors considered that some kind of buffer layer is necessary, and examined various crystals, and confirmed that 3C-SiC was the best. As can be seen from Table 1, the difference in lattice constant between SiC and nitride, especially AlN, is extremely small at 0.94%. Moreover, 3C-SiC is (111)
Shibahara reported that the generation of APB can also be controlled by using polar planes such as (100) and (100) planes, and by controlling the atomic steps on the substrate surface (Kyoto University PhD thesis 1987).

【0012】第1表 Si、SiC 及び窒化物の格子定数及
び格子定数差
Table 1 Lattice constant and difference of lattice constants of Si, SiC and nitride

【0013】更にSiC 上の窒化物結晶の成長に関して
は、6H-SiC(0001)面を基板とした成長では既に実績があ
った(例えばD.K.Wickenden 等:Journal of Crystal Gr
owth9巻 1971 年 158頁) 。6H-SiCと3C-SiCは単結晶構
造が異なるが、6H-SiCの(0001)面と3C-SiCの(111) 面は
最表面の原子配列は全く同じであるため、3C-SiCでも(1
11) 面を用いれば6H-SiCの場合と同様、高品質(Ga1-x
Alx ) 1-y Iny N 単結晶を得ることが出来る。問題はSi
基板上にSiCを得る方法であるが、既に松波等によりSi
基板を高温、例えば1100℃程度に保持し、CnHmを供給す
ることにより表面に3C-SiCが形成され、更にそれを緩衝
層とすることにより高品質3C-SiCが得られることが報告
されている(例えばIEEE Transaction of Electron Dei
ces ED -28巻 1981 年 1235 頁) 。即ち、単結晶珪素基
板上に6H-SiCを得るのは困難であるが、3C-SiCを得るの
は比較的容易である。
Further, regarding the growth of nitride crystals on SiC, there has already been a track record in growth using a 6H-SiC (0001) plane as a substrate (eg DK Wickenden et al .: Journal of Crystal Gr.
owth 9: 1971, p. 158). Although 6H-SiC and 3C-SiC have different single crystal structures, the (0001) plane of 6H-SiC and the (111) plane of 3C-SiC have exactly the same atomic arrangement on the outermost surface, so 3C-SiC ( 1
11) High quality (Ga 1-x
An Al x ) 1-y In y N single crystal can be obtained. The problem is Si
Although it is a method of obtaining SiC on the substrate, it has already been
It has been reported that 3C-SiC is formed on the surface by keeping the substrate at a high temperature, for example, about 1100 ° C and supplying CnHm, and by using it as a buffer layer, high quality 3C-SiC can be obtained. (For example, IEEE Transaction of Electron Dei
ces ED -28, 1981, p. 1235). That is, it is difficult to obtain 6H-SiC on a single crystal silicon substrate, but it is relatively easy to obtain 3C-SiC.

【0014】本発明のように、3C-SiCを緩衝層として珪
素基板上に(Ga1-x Al x)1-yIn yN を成長させることに
より、直接成長させたものと比較して品質の優れた結晶
を得ることが出来る。更に、3C-SiCと(Ga1-x Al x)
1-yIn yN 結晶の間にAlN 薄膜を緩衝層として挿入する
ことにより、(Ga1-x Al x) 1-y In yN 結晶の結晶性及
び表面平坦性は極めて向上し、サファイア基板上に成長
させた場合と同等の品質を持つ(Ga1-x Al x) 1-y In y
N 結晶を得ることができる。本発明により(Ga1-x A
l x) 1-y In yN 結晶を安価に得られるようになる。ま
た、素子の微細加工が容易になり、また大電流注入動作
する素子、特に半導体レーザダイオード作製が容易にな
る。
As in the present invention, by growing (Ga 1-x Al x ) 1-y In y N on a silicon substrate using 3C-SiC as a buffer layer, the quality is improved as compared with that directly grown. It is possible to obtain excellent crystals of. Furthermore, 3C-SiC and (Ga 1-x Al x )
By inserting the AlN thin film as a buffer layer between the 1-y an In y N crystal, (Ga 1-x Al x ) 1-y In crystallinity and surface flatness of y N crystal is extremely improved, the sapphire substrate (Ga 1-x Al x ) 1-y In y with the same quality as when grown on top
N crystals can be obtained. According to the present invention (Ga 1-x A
l x ) 1-y In y N crystals can be obtained at low cost. In addition, the microfabrication of the device becomes easy, and the device that injects a large current, especially the semiconductor laser diode, can be easily manufactured.

【0015】[0015]

【実施例】以下、本発明によるSi基板上への(Ga1-x Al
x ) 1-y Iny N (0≦x≦1、0≦y≦1)単結晶の作
製方法の実施例を説明する。しかし、以下に説明する実
施例は、本発明の方法を例示するに過ぎず、本発明を限
定するものではない。SiC 、AlN 緩衝層作製及び(Ga
1-x Alx ) 1-y Iny N (0≦x≦1、0≦y≦1)単結
晶作製には、通常の横型化合物半導体成長装置を用い
た。成長手順を以下に示す。まず結晶成長用基板、即ち
単結晶珪素基板(実験では(111) 面を用いた) を有機洗
浄した後、弗酸系エッチャントにより表面の酸化物を取
り除き、結晶成長部に設置した。成長炉を真空排気後、
水素及び例えばアセチレン(C2H2)を供給し、例えば1200
℃程度まで昇温した。これにより珪素基板上に3C-SiCが
形成された。基板温度が600 ℃より低い場合には3C-SiC
の結晶性が悪く、その上に成長する(Ga1-x Alx ) 1-y
Iny N の結晶性が悪い。また本成長装置では成長炉に石
英を用いており、その軟化点は1300℃であるため、それ
以上の温度での実験は困難であった。
EXAMPLES Hereinafter, (Ga 1-x Al on a Si substrate according to the present invention will be described.
An example of a method for producing a x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) single crystal will be described. However, the examples described below merely illustrate the method of the present invention and do not limit the present invention. Fabrication of SiC, AlN buffer layer and (Ga
A 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) single crystal was prepared by using a normal lateral compound semiconductor growth apparatus. The growth procedure is shown below. First, a crystal growth substrate, that is, a single crystal silicon substrate ((111) plane was used in the experiment) was organically washed, and then a surface oxide was removed by a hydrofluoric acid-based etchant, and the crystal growth portion was set. After evacuation of the growth furnace,
Hydrogen and for example acetylene (C 2 H 2 ) are supplied, for example 1200
The temperature was raised to about ° C. As a result, 3C-SiC was formed on the silicon substrate. 3C-SiC when substrate temperature is below 600 ° C
Has poor crystallinity and grows on it (Ga 1-x Al x ) 1-y
In y N has poor crystallinity. In addition, since quartz is used for the growth furnace in this growth apparatus and its softening point is 1300 ° C, it was difficult to perform experiments at higher temperatures.

【0016】この後、シラン(SiH4)及びC2H2を導入して
更に3C-SiCを成長するか、或いは次のプロセスに進み、
成長炉内を一旦真空排気して余分なガスを取り除いた。
次に成長炉に水素を供給して、基板温度を例えば600 ℃
(600 〜1300℃の範囲内) とし、例えばトリメチルアル
ミニウム(TMA) 及びアンモニア(NH3) を成長装置内に導
入し、5nmから100nm 程度の膜厚を持つAlN 薄膜を3C-S
iC上に形成した。AlN 薄層形成時の基板温度が600 ℃よ
り低い場合、その上に成長する(Ga1-x Alx ) 1-y Iny
N が多結晶化した。また上記したような装置の都合上、
1300℃以上では実験できなかった。またAlN 緩衝層を用
いない場合、(Ga1-x Alx) 1-y Iny N の平坦性が悪か
った。なおAlN 緩衝層が100nm より厚くなると、素子を
作製した場合に絶縁層が形成され、電気的特性が悪くな
った。
Thereafter, silane (SiH 4 ) and C 2 H 2 are introduced to further grow 3C-SiC, or proceed to the next process,
The growth furnace was once evacuated to remove excess gas.
Next, hydrogen is supplied to the growth furnace to raise the substrate temperature to, for example, 600 ° C
(Within the range of 600 to 1300 ° C), for example, trimethylaluminum (TMA) and ammonia (NH 3 ) are introduced into the growth apparatus, and an AlN thin film with a thickness of 5 nm to 100 nm is applied to 3C-S.
Formed on iC. If the substrate temperature during AlN thin layer formation is lower than 600 ℃, it grows on it (Ga 1-x Al x ) 1-y In y
N 2 was polycrystallized. Also, for the convenience of the device as described above,
Experiments could not be performed above 1300 ° C. Moreover, the flatness of (Ga 1-x Al x ) 1-y In y N was poor when the AlN buffer layer was not used. If the AlN buffer layer was thicker than 100 nm, an insulating layer was formed when the device was manufactured, and the electrical characteristics deteriorated.

【0017】緩衝層作製プロセスは以上である。この後
は、サファイア上に作製した場合と同様、例えば基板温
度を1040℃として、トリメチルガリウム(TMG) 及びNH3
を供給してGaN の成長を行った。混晶を成長させる場合
には、混晶組成に見合うだけのTMG 、TMA 及びトリメチ
ルインジウム(TMI) を供給した。(Ga1-xAlx ) 1-y In
y N が所望の成長膜厚に達した後、TMG 、TMA 、TMI の
供給を止めて降温し、基板温度が600 ℃以下になったの
ち、アンモニアの供給を止め、温度が室温程度に下がっ
たとき成長装置より取り出した。
The buffer layer manufacturing process is as described above. After this, as in the case of forming on sapphire, for example, the substrate temperature was set to 1040 ° C., and trimethylgallium (TMG) and NH 3
Was supplied to grow GaN. When growing a mixed crystal, TMG, TMA and trimethylindium (TMI) were supplied in an amount corresponding to the composition of the mixed crystal. (Ga 1-x Al x ) 1-y In
After y N reached the desired growth film thickness, the supply of TMG, TMA, and TMI was stopped and the temperature was lowered. After the substrate temperature fell below 600 ° C, the supply of ammonia was stopped and the temperature dropped to about room temperature. When taken out from the growth device.

【0018】更に、本発明の方法を使用して発光素子を
作製した。本発明によれば、量産性及び膜厚制御性に優
れる有機金属化合物気相成長法を用いており、特に発光
素子の作製は容易である。図1に示すように、低抵抗n
型単結晶珪素(111) 面基板1上に、3C-SiC薄層2及びAl
N 薄層3を形成した後、アンドープまたはSiドープn型
GaN 層4を成長させた。引続き、MgドープGaN 層5を成
長したのち、成長炉より構造体を取り出し、低加速電子
線照射処理(特願平2-2614号参照) を行い、MgドープGa
N 層5を部分的にp型化してp型GaN 層6を形成した。
次に、珪素基板1の裏面及びp型化したMgドープGaN 層
6のそれぞれに金属電極7A, 7Bを蒸着し、それら各々に
リード線8A, 8Bを接続して発光ダイオードを形成した。
珪素基板側を負、Mgドープp型GaN 層側を正としてバイ
アスをかけることにより、室温において電圧3.5 V付近
から青色及び紫外光発光を確認できた。
Further, a light emitting device was manufactured by using the method of the present invention. According to the present invention, the organometallic compound vapor phase epitaxy method, which is excellent in mass productivity and film thickness controllability, is used, and in particular, a light emitting element is easily manufactured. As shown in FIG. 1, low resistance n
Type 3C-SiC thin layer 2 and Al
After forming the N thin layer 3, undoped or Si-doped n-type
The GaN layer 4 was grown. Subsequently, after growing the Mg-doped GaN layer 5, the structure is taken out of the growth furnace and subjected to low-acceleration electron beam irradiation treatment (see Japanese Patent Application No. 2-2614), and Mg-doped Ga
The N layer 5 was partially made p-type to form a p-type GaN layer 6.
Next, metal electrodes 7A and 7B were vapor-deposited on the back surface of the silicon substrate 1 and the p-type Mg-doped GaN layer 6, respectively, and lead wires 8A and 8B were connected to each of them to form a light emitting diode.
By applying bias with the silicon substrate side being negative and the Mg-doped p-type GaN layer side being positive, blue and ultraviolet light emission could be confirmed at room temperature from a voltage of about 3.5V.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、低
コストで微細加工が容易な単結晶珪素基板上に、結晶
性、表面平坦性の非常に優れた(Ga1-x Alx ) 1-y Iny
N 単結晶を作製することができる。従って、本発明は、
特に可視短波長発光素子及び近紫外発光素子の実用化に
とって必須の技術である。
As described above, according to the present invention, the crystallinity and the surface flatness are extremely excellent (Ga 1-x Al x ) 1-y In y
N 2 single crystal can be produced. Therefore, the present invention
In particular, it is an indispensable technology for practical application of visible short wavelength light emitting devices and near-ultraviolet light emitting devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を利用して作製した、単結晶珪素基板上
の(Ga1-x Alx ) 1-y Iny N(0≦x≦1、0≦y≦
1)発光ダイオードの概略構成図である。
FIG. 1 shows (Ga 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ produced on a single crystal silicon substrate by using the present invention.
1) A schematic configuration diagram of a light emitting diode.

【符号の説明】[Explanation of symbols]

1 n型Si(111) 面基板 2 3C-SiC緩衝層 3 AlN 緩衝層 4 アンドープまたはSiドープn型 (Ga1-x Alx ) 1-y Iny N 単結晶層 5 Mgドープ高抵抗(Ga1-x Alx ) 1-y Iny N 単結晶層 6 低加速電子線照射処理されたMgドープp型 (Ga1-x Alx ) 1-y Iny N 単結晶層 7A, 7B 金属電極 8A, 8B リード線1 n-type Si (111) plane substrate 2 3C-SiC buffer layer 3 AlN buffer layer 4 undoped or Si-doped n-type (Ga 1-x Al x ) 1-y In y N single crystal layer 5 Mg-doped high resistance (Ga 1-x Al x ) 1-y In y N single crystal layer 6 Mg-doped p-type (Ga 1-x Al x ) 1-y In y N single crystal layer 7A, 7B treated with low-energy electron beam 7A, 7B 8A, 8B lead wire

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 33/00 C Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 33/00 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単結晶珪素基板を加熱した状態で少なく
とも炭化水素ガスを含む雰囲気内に保持し、前記単結晶
珪素基板の表面に3C−SiCの薄層を緩衝層として形
成し、 この3C−SiCの薄層の上に、化合物半導体(Ga1-x
Alx ) 1-y Iny N (0≦x≦1、0≦y≦1)単結晶層
を成長させることを特徴とする単結晶珪素基板上への化
合物半導体単結晶の作製方法。
1. A single crystal silicon substrate is kept heated in an atmosphere containing at least a hydrocarbon gas, and a thin layer of 3C—SiC is formed as a buffer layer on the surface of the single crystal silicon substrate. On top of a thin layer of SiC, a compound semiconductor (Ga 1-x
Al x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) A method for producing a compound semiconductor single crystal on a single crystal silicon substrate, which comprises growing a single crystal layer.
【請求項2】 単結晶珪素基板を加熱状態で炭化水素ガ
スとキャリアガスとからなる雰囲気内に保持し、次い
で、珪素を含有する化合物と炭化水素ガスとを少なくと
も含む雰囲気内に前記単結晶珪素基板を加熱状態で保持
し、これにより単結晶珪素基板の表面に前記3C−Si
Cの薄層を緩衝層として形成することを特徴とする単結
晶珪素基板上への化合物半導体単結晶の作製方法。
2. A single crystal silicon substrate is held in a heated state in an atmosphere consisting of a hydrocarbon gas and a carrier gas, and then the single crystal silicon is placed in an atmosphere containing at least a compound containing silicon and a hydrocarbon gas. The substrate is held in a heated state, so that the 3C-Si is formed on the surface of the single crystal silicon substrate.
A method for producing a compound semiconductor single crystal on a single crystal silicon substrate, which comprises forming a thin layer of C as a buffer layer.
【請求項3】 単結晶珪素基板を加熱した状態で少くと
も炭化水素ガスを含む雰囲気内に保持し前記単結晶珪素
基板の表面に3C−SiCの薄層を緩衝層として形成し
た後、 アルミニウムを含有する有機金属化合物と窒素の水素化
物とを少なくとも含む雰囲気内に前記単結晶珪素基板を
加熱状態で保持し、これにより前記3C−SiCの薄層
の上に窒化アルミニウム薄層を緩衝層として形成し、 次いでこの窒化アルミニウム薄層の表面に、化合物半導
体(Ga1-x Alx ) 1-yIny N (0≦x≦1、0≦y≦
1)単結晶層を成長させることを特徴とする単結晶珪素
基板上への化合物半導体単結晶の作製方法。
3. A single crystal silicon substrate is heated and held in an atmosphere containing at least a hydrocarbon gas to form a thin layer of 3C—SiC as a buffer layer on the surface of the single crystal silicon substrate, and then aluminum is added. The single crystal silicon substrate is held in a heated state in an atmosphere containing at least an organometallic compound and a hydride of nitrogen contained therein, thereby forming an aluminum nitride thin layer as a buffer layer on the 3C-SiC thin layer. Then, the compound semiconductor (Ga 1-x Al x ) 1-y In y N (0 ≦ x ≦ 1, 0 ≦ y ≦
1) A method for producing a compound semiconductor single crystal on a single crystal silicon substrate, which comprises growing a single crystal layer.
JP41800390A 1990-12-25 1990-12-25 Method for producing compound semiconductor single crystal on single crystal silicon substrate Expired - Lifetime JPH0831419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41800390A JPH0831419B2 (en) 1990-12-25 1990-12-25 Method for producing compound semiconductor single crystal on single crystal silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41800390A JPH0831419B2 (en) 1990-12-25 1990-12-25 Method for producing compound semiconductor single crystal on single crystal silicon substrate

Publications (2)

Publication Number Publication Date
JPH04223330A JPH04223330A (en) 1992-08-13
JPH0831419B2 true JPH0831419B2 (en) 1996-03-27

Family

ID=18525978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41800390A Expired - Lifetime JPH0831419B2 (en) 1990-12-25 1990-12-25 Method for producing compound semiconductor single crystal on single crystal silicon substrate

Country Status (1)

Country Link
JP (1) JPH0831419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092689A1 (en) 2016-11-18 2018-05-24 エア・ウォーター株式会社 Compound semiconductor substrate manufacturing method and compound semiconductor substrate

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425185B2 (en) * 1993-03-26 2003-07-07 日本オプネクスト株式会社 Semiconductor element
US5937274A (en) 1995-01-31 1999-08-10 Hitachi, Ltd. Fabrication method for AlGaIn NPAsSb based devices
JPH0992882A (en) * 1995-09-25 1997-04-04 Mitsubishi Electric Corp Light emitting semiconductor device and manufacturing method thereof
US5900647A (en) * 1996-02-05 1999-05-04 Sharp Kabushiki Kaisha Semiconductor device with SiC and GaAlInN
JP3726252B2 (en) * 2000-02-23 2005-12-14 独立行政法人理化学研究所 Ultraviolet light emitting device and method for producing InAlGaN light emitting layer
CN1292494C (en) 2000-04-26 2006-12-27 奥斯兰姆奥普托半导体有限责任公司 Radiation-emitting semiconductor element and method for producing same
JP5523277B2 (en) * 2000-04-26 2014-06-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting semiconductor device and method for manufacturing light emitting semiconductor device
TWI289944B (en) 2000-05-26 2007-11-11 Osram Opto Semiconductors Gmbh Light-emitting-diode-element with a light-emitting-diode-chip
KR20050014345A (en) * 2003-07-30 2005-02-07 에피밸리 주식회사 The epitaxial growth of GaN related material, using new type SiC Buffer layer
KR20050037323A (en) * 2003-10-18 2005-04-21 에피밸리 주식회사 The method for inalgan epitaxial growth on silicon substrate.
JP2006179802A (en) * 2004-12-24 2006-07-06 Toshiba Ceramics Co Ltd Compound semiconductor
JP2006216576A (en) * 2005-02-01 2006-08-17 Toshiba Ceramics Co Ltd Compound semiconductor device
JP2006222402A (en) * 2005-02-14 2006-08-24 Toshiba Ceramics Co Ltd Gallium nitride system compound semiconductor and method for manufacturing the same
JP4913375B2 (en) 2005-08-08 2012-04-11 昭和電工株式会社 Manufacturing method of semiconductor device
WO2007034761A1 (en) * 2005-09-20 2007-03-29 Showa Denko K.K. Semiconductor device and method for fabrication thereof
JP2007087992A (en) * 2005-09-20 2007-04-05 Showa Denko Kk Semiconductor device and its fabrication process
US8299451B2 (en) 2005-11-07 2012-10-30 Showa Denko K.K. Semiconductor light-emitting diode
EP1842940A1 (en) * 2006-04-06 2007-10-10 Interuniversitair Microelektronica Centrum ( Imec) Method for forming a group III nitride material on a silicon substrate
JP4907476B2 (en) * 2007-03-13 2012-03-28 コバレントマテリアル株式会社 Nitride semiconductor single crystal
JP5817127B2 (en) * 2011-01-21 2015-11-18 株式会社Sumco Semiconductor substrate and manufacturing method thereof
JP5286396B2 (en) * 2011-09-14 2013-09-11 昭和電工株式会社 Semiconductor element
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
JP6405784B2 (en) * 2014-08-11 2018-10-17 富士通株式会社 Photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092689A1 (en) 2016-11-18 2018-05-24 エア・ウォーター株式会社 Compound semiconductor substrate manufacturing method and compound semiconductor substrate
US11476115B2 (en) 2016-11-18 2022-10-18 Air Water Inc. Compound semiconductor substrate comprising a SiC layer

Also Published As

Publication number Publication date
JPH04223330A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
JPH0831419B2 (en) Method for producing compound semiconductor single crystal on single crystal silicon substrate
JP3352712B2 (en) Gallium nitride based semiconductor device and method of manufacturing the same
JP4371202B2 (en) Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device
JP3968566B2 (en) Nitride semiconductor crystal manufacturing method, nitride semiconductor wafer, and nitride semiconductor device
JP5135501B2 (en) Manufacturing method of nitride single crystal substrate and manufacturing method of nitride semiconductor light emitting device using the same
JP4249184B2 (en) Nitride semiconductor growth substrate
JP4048191B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
JPH0415200B2 (en)
CN101388338B (en) Method for preparing substrate for growing gallium nitride and method for preparing gallium nitride substrate
JP4231189B2 (en) Method for producing group III nitride compound semiconductor substrate
CN105023829A (en) Method of growing nitride single crystal and method of manufacturing nitride semiconductor device
JPH08222812A (en) Method for crystal growth of gallium nitride based compound semiconductor
JPH11135832A (en) Gallium nitride group compound semiconductor and manufacture therefor
KR100691159B1 (en) Method For Manufacturing Gallium Nitride-Based Semiconductor Device
JP4734786B2 (en) Gallium nitride compound semiconductor substrate and manufacturing method thereof
JP3729065B2 (en) Nitride semiconductor epitaxial wafer manufacturing method and nitride semiconductor epitaxial wafer
CN112687525B (en) Epitaxial method for improving quality of ultrathin gallium nitride field effect transistor
JP2003178976A (en) Semiconductor device, and method for manufacturing it
KR19990016925A (en) Baline single crystal manufacturing method
JP4051311B2 (en) Nitride semiconductor crystal growth method
JP2012054427A (en) Method of manufacturing compound semiconductor
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
JPH1075018A (en) Manufacture of semiconductor and semiconductor light-emitting device
JP2002338396A (en) Nitride semiconductor substrate and method for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350