JPH08287932A - Power generation method with heat utilization system - Google Patents

Power generation method with heat utilization system

Info

Publication number
JPH08287932A
JPH08287932A JP7089001A JP8900195A JPH08287932A JP H08287932 A JPH08287932 A JP H08287932A JP 7089001 A JP7089001 A JP 7089001A JP 8900195 A JP8900195 A JP 8900195A JP H08287932 A JPH08287932 A JP H08287932A
Authority
JP
Japan
Prior art keywords
reformer
hydrogen
power generation
heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7089001A
Other languages
Japanese (ja)
Other versions
JP3297246B2 (en
Inventor
Kennosuke Kuroda
健之助 黒田
Masaki Iijima
正樹 飯島
Kazuto Kobayashi
一登 小林
Yoshiyuki Takeuchi
竹内  善幸
Yoshimasa Fujimoto
芳正 藤本
Hirokuni Oota
洋州 太田
Yoshinori Shirasaki
義則 白▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08900195A priority Critical patent/JP3297246B2/en
Publication of JPH08287932A publication Critical patent/JPH08287932A/en
Application granted granted Critical
Publication of JP3297246B2 publication Critical patent/JP3297246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To attain power generation having heat utilization system with excellent energy efficiency by a small and simple device by using high purity hydrogen obtained by reforming hydrocarbon by steam for power generation of a fuel cell, using offgas as fuel of a reformer, and also using exhaust gas heat. CONSTITUTION: Hydrocarbon is reformed by steam by a membrane reformer 5 having a hydrogen separable permeable film 4 by supplying natural gas 7 and steam 8. Electric power is generated by supplying high purity hydrogen 11 separated from generated reformed gas by the permeable film 4 to a fuel cell 12. On the other hand, offgas 6 of the reformer 5 is supplied to a combustor 3, and is burnt by air from a blower 2, and is used as a heat source of the reformer 5 and a steam generator 10. Combustion exhaust gas 13 of the reformer 5 is also used as a heating source of a heating heat source or a warm water supply device or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素の改質装置と燃
料電池とを用いた熱併給発電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined heat and power generation method using a hydrocarbon reformer and a fuel cell.

【0002】[0002]

【従来の技術】工場、オフィスあるいは家庭用の熱併給
発電(コジェネレーション)としては、原動機により電
力を発生し、電力の一部をまかなうと共に、原動機の排
熱は排気を利用して発生させた蒸気や温水などの熱を供
給し、総合熱効率の向上を図るものである。しかし、こ
れは蒸気タービン、ガスタービン、ディーゼルエンジン
やガスエンジンなどの原動機を使用するため装置も大が
かりであり、騒音や振動も発生し、また小型化も困難で
あった。
2. Description of the Related Art As a cogeneration system for factories, offices or households, electric power is generated by a prime mover and a part of the electric power is supplied, and exhaust heat of the prime mover is generated by using exhaust gas. It supplies heat such as steam and hot water to improve the overall thermal efficiency. However, since this uses a prime mover such as a steam turbine, a gas turbine, a diesel engine or a gas engine, the device is also large-scale, noise and vibration are generated, and miniaturization is difficult.

【0003】一方、発電効率が50%以上と極めて高
く、騒音や振動が小さく、かつ大気汚染の心配がない都
市型の電源として、燃料電池の実用化に向けて盛んに研
究開発がなされている。燃料電池としては150〜23
0℃で作動するりん酸型、100℃以下で作動する固体
高分子型、アルカリ型、作動温度600〜700℃の溶
融炭酸塩型などがある。これらのうち、特に100℃以
下で作動する固体高分子型では、電極の白金などの触媒
がCOにより被毒されるため、燃料電池に供給する水素
含有ガス中のCO濃度を10ppm以下にする必要があ
るとされている。このため、従来の炭化水素やアルコー
ルの水蒸気改質法により製造した水素を燃料電池用の燃
料ガスとするには、当該粗製水素をCO変成器や水素精
製器によりさらに精製し、CO含有量が10ppm以下
の高純度とする必要があり、そのための工程が複雑で、
かつ多量の高温熱エネルギを要し、コストの面から問題
となっていた。
On the other hand, research and development are being actively conducted toward the practical application of fuel cells as an urban power source that has extremely high power generation efficiency of 50% or more, low noise and vibration, and no fear of air pollution. . 150-23 for fuel cells
There are a phosphoric acid type that operates at 0 ° C., a solid polymer type that operates at 100 ° C. or lower, an alkaline type, and a molten carbonate type that operates at a temperature of 600 to 700 ° C. Among them, particularly in the solid polymer type which operates at 100 ° C. or lower, the catalyst such as platinum of the electrode is poisoned by CO, so that the CO concentration in the hydrogen-containing gas supplied to the fuel cell needs to be 10 ppm or lower. It is said that there is. Therefore, in order to use hydrogen produced by the conventional steam reforming method of hydrocarbons or alcohols as a fuel gas for a fuel cell, the crude hydrogen is further purified by a CO shift converter or a hydrogen purifier, and the CO content is It is necessary to have a high purity of 10 ppm or less, the process for that is complicated,
Moreover, a large amount of high-temperature heat energy is required, which is a problem in terms of cost.

【0004】ところで最近、前記水蒸気改質法による水
素の製造方法において、膜分離の併用技術が提案され、
例えば米国特許第5,229,102号明細書には、触
媒を充填したチューブ状の多孔質セラミック膜に炭化水
素を供給することにより、生成した水素を選択的に透過
させる改質器が記載されている。これにより、生成した
水素を系外に取去ることにより、改質反応の平衡が水素
生成系に傾く結果、従来の改質器において750〜88
0℃の高温が必要であったのに対し、300〜700℃
の比較的低温度で改質できる旨が記載されている。また
比較的低温度で改質できるので、ガスタービンやガスエ
ンジンの排出ガス程度の温度を改質熱源として利用でき
ることが記載されている。またこれとは別に、改質装置
にパラジウム系薄膜を併用し、改質により得られる水素
を薄膜を通して高純度水素とし、これを燃料電池に供給
する技術も知られている。
By the way, recently, in the method for producing hydrogen by the steam reforming method, a combined technique of membrane separation has been proposed,
For example, US Pat. No. 5,229,102 describes a reformer which selectively permeates generated hydrogen by supplying hydrocarbon to a tubular porous ceramic membrane filled with a catalyst. ing. As a result, by removing the generated hydrogen out of the system, the equilibrium of the reforming reaction leans toward the hydrogen generating system.
Whereas a high temperature of 0 ° C was required, 300-700 ° C
It is described that the reforming can be performed at a relatively low temperature. Further, since it is possible to perform reforming at a relatively low temperature, it is described that a temperature about the exhaust gas of a gas turbine or a gas engine can be used as a reforming heat source. Aside from this, there is also known a technique in which a palladium-based thin film is used in combination with a reforming device, hydrogen obtained by reforming is made into high-purity hydrogen through the thin film, and this is supplied to a fuel cell.

【0005】[0005]

【発明が解決しようとする課題】このように改質器によ
る高純度水素の製造、さらには燃料電池による発電など
個々の技術やそれらの一部の組合わせ技術については断
片的に試みられ、単位燃料当たりの発電効率や総合熱効
率を高める努力がなされているものの、より一層の向上
が求められていることは言うまでもない。また後者の改
質装置にパラジウム系薄膜を取付け、得られる高純度の
水素を燃料電池に供給する技術に関しても、改質装置の
オフガスの燃焼熱をその改質の加熱源とし、さらに前記
加熱後の燃焼ガスの排熱を暖房や温給水熱源として有効
利用する点については知られていない。
In this way, individual technologies such as the production of high-purity hydrogen by the reformer, power generation by the fuel cell, and some combinations of these technologies are tried in a fragmentary manner. Although efforts have been made to increase the power generation efficiency per fuel and the total thermal efficiency, it goes without saying that further improvement is required. Also, regarding the technology of attaching a palladium-based thin film to the latter reformer and supplying the obtained high-purity hydrogen to the fuel cell, the combustion heat of the offgas of the reformer is used as the heating source for the reforming, and after the above heating, It is not known that the exhaust heat of the combustion gas is effectively used as a heat source for heating or hot water supply.

【0006】[0006]

【課題を解決するための手段】このような技術の現状に
鑑み、本発明者らは水素分離透過膜を有する改質装置と
燃料電池を組合わせることにより、比較的簡単な装置で
騒音などもない優れた熱効率を有する熱併給発電が可能
であることに想到し、本発明を完成させることができ
た。
In view of the current state of the art, the present inventors have combined a reformer having a hydrogen permeable membrane with a fuel cell to make noise and the like relatively simple. The present invention has been completed on the idea that cogeneration power generation with excellent heat efficiency is possible.

【0007】すなわち本発明は (1)水素分離透過膜(以
下、メンブレンと称す)を有する改質装置により炭化水
素を水蒸気改質させて得られる高純度水素を燃料電池に
供給し発電すると共に、前記改質装置のオフガスの燃焼
熱により前記改質装置を加熱し、前記改質装置を加熱し
た後の燃焼ガス排熱を暖房熱源または温水供給装置の加
熱源として使用することを特徴とする熱併給発電方法、
(2) 水素分離透過膜が無機多孔体の表面にパラジウム含
有合金の薄膜を形成させた構造を有するものであること
を特徴とする上記 (1)記載の熱併給発電方法及び (3)燃
料電池が固体高分子型燃料電池であることを特徴とする
上記 (1)または (2)に記載の熱併給発電方法である。
That is, the present invention (1) supplies high-purity hydrogen obtained by steam reforming hydrocarbons to a fuel cell by a reformer having a hydrogen separation / permeable membrane (hereinafter referred to as a membrane) to generate electricity, Heat that heats the reformer by the combustion heat of the offgas of the reformer, and uses the exhaust heat of the combustion gas after heating the reformer as a heating heat source or a heating source of a hot water supply device. Cogeneration method,
(2) The method for combined heat and power generation according to (1) above, wherein the hydrogen separation / permeable membrane has a structure in which a thin film of a palladium-containing alloy is formed on the surface of an inorganic porous body, and (3) a fuel cell Is a polymer electrolyte fuel cell, which is the co-generation power generation method described in (1) or (2) above.

【0008】本発明で採用される改質装置としてはメン
ブレンを有し、高純度の水素、例えばCO濃度が10p
pm以下の高純度水素を供給でき、改質が400〜65
0℃の温度範囲で行えるものであれば特に限定されな
い。このように比較的低温で改質がなされ得るのは、メ
ンブレンにより生成した水素を系外に取出すことによ
り、前記のように化学平衡が水素生成系に移行すること
に起因する。天然ガスの主成分であるメタン(CH4
の場合を例にとると、改質反応
The reforming device adopted in the present invention has a membrane and has a high purity hydrogen, for example, a CO concentration of 10 p.
High-purity hydrogen of pm or less can be supplied, and reforming is 400 to 65
There is no particular limitation as long as it can be performed in the temperature range of 0 ° C. The reason why the reforming can be performed at a relatively low temperature as described above is that the chemical equilibrium is transferred to the hydrogen generation system as described above by taking out the hydrogen generated by the membrane to the outside of the system. Methane (CH 4 ) which is the main component of natural gas
For example, the reforming reaction

【化1】 において、従来の改質法では反応領域温度を約800℃
にすることが必要であったが、同じ転化率を達成するの
にメンブレンを利用することにより、温度400〜65
0℃で達成することができる。
Embedded image In the conventional reforming method, the reaction zone temperature is about 800 ° C.
However, by utilizing a membrane to achieve the same conversion, temperatures of 400-65
It can be achieved at 0 ° C.

【0009】このようなメンブレンを備えた改質装置は
通常メンブレンリアクタとも称されるものであり、熱効
率を考慮して経済的な形状が種々工夫されている。メン
ブレンとしては水素を選択的に透過する膜で、かつ耐熱
性を有する膜が用いられる。例えば膜厚100μm以上
のパラジウム含有合金膜、あるいは膜厚50μm以下の
パラジウム含有合金薄膜を無機多孔体、例えば金属やセ
ラミックの多孔体あるいは金属不織布上にコーティング
したものが用いられる。無機多孔体としては、シールな
どの加工性、耐衝撃性、水素透過性などの観点から金属
多孔体が好ましい。前記パラジウム含有合金としてはパ
ラジウム単独またはパラジウムを10重量%以上含有す
るものが好ましく、バラジウム以外にPtなど10族元
素、Rh,Irなどの9族元素、Ruなどの8族元素、
Cu,Ag,Auなどの11族元素を有するものが好ま
しい。この他、バナジウム(V)を含有する合金膜、例
えばNi−Co−V合金にパラジウムをコーティングし
た膜などが用いられる。
A reformer equipped with such a membrane is usually called a membrane reactor, and various economical shapes have been devised in consideration of thermal efficiency. As the membrane, a membrane that selectively permeates hydrogen and has heat resistance is used. For example, a palladium-containing alloy film having a film thickness of 100 μm or more, or a palladium-containing alloy thin film having a film thickness of 50 μm or less is coated on an inorganic porous body, for example, a metal or ceramic porous body or a metal nonwoven fabric. As the inorganic porous body, a metal porous body is preferable from the viewpoint of workability such as sealing, impact resistance, hydrogen permeability and the like. The palladium-containing alloy is preferably palladium alone or an alloy containing 10% by weight or more of palladium. In addition to palladium, Group 10 elements such as Pt, Group 9 elements such as Rh and Ir, Group 8 elements such as Ru,
Those having a Group 11 element such as Cu, Ag and Au are preferable. Besides, an alloy film containing vanadium (V), for example, a film obtained by coating palladium on a Ni—Co—V alloy is used.

【0010】炭化水素を水蒸気改質させる改質触媒とし
ては、8〜10族金属(Fe,Co,Ni,Ru,P
d,Ptなど)を含有するものが好ましく、Ni,R
u,Rhを担持した触媒またはNiO含有触媒が特に好
ましい。
As a reforming catalyst for steam reforming hydrocarbons, metals of groups 8 to 10 (Fe, Co, Ni, Ru, P) are used.
(d, Pt, etc.) are preferable, and Ni, R
A catalyst supporting u, Rh or a NiO-containing catalyst is particularly preferable.

【0011】改質原料として用いられる炭化水素として
は炭素数1〜10程度のものが使用でき、これらにはメ
タンを主成分とする天然ガス、LPG、都市ガス、ナフ
サなどの軽質炭化水素が含まれるが、中でも天然ガスを
用いることが好ましい。
As the hydrocarbon used as the reforming raw material, one having about 1 to 10 carbon atoms can be used, and these include light hydrocarbons containing methane as a main component such as natural gas, LPG, city gas and naphtha. Among them, it is preferable to use natural gas.

【0012】具体的な改質装置として特に限定はなく、
公知のものが使用できる。例えば、特開平2−3113
01号公報には、触媒を充填した反応管内に水素分離機
能を有する分離膜を、さらに前記反応管外側に外筒を設
け、触媒を充填した反応管内に改質原料を供給して水素
を発生させ、分離膜の内側に不活性ガス(スイープガ
ス)を流入させて分離膜を透過した水素をスイープガス
に同伴させて系外に取出し、燃料電池に供給する技術が
記載されている。すなわち改質部を同心状の三重管と
し、中間層に触媒を充填して水素を製造し、分離膜を通
して管の中心部に分離された水素をスイープガスに同伴
させて排出するものである。改質装置として好ましいも
のは上記のとおりであるが、この他に前記米国特許明細
書に記載されているようなセラミックメンブレンを用い
ることもできる。
There is no particular limitation as a concrete reformer,
Known ones can be used. For example, Japanese Patent Laid-Open No. 2-3113
In Japanese Patent Laid-Open No. 01-151, a separation membrane having a hydrogen separation function is provided in a reaction tube filled with a catalyst, an outer cylinder is provided outside the reaction tube, and a reforming raw material is supplied into the reaction tube filled with the catalyst to generate hydrogen. A technique is described in which an inert gas (sweep gas) is caused to flow into the inside of the separation membrane, hydrogen that has permeated through the separation membrane is entrained in the sweep gas, taken out of the system, and supplied to the fuel cell. That is, the reforming section is a concentric triple tube, the intermediate layer is filled with a catalyst to produce hydrogen, and the hydrogen separated in the central portion of the tube through the separation membrane is accompanied by the sweep gas and discharged. The preferred reformer is as described above, but in addition to this, a ceramic membrane as described in the above-mentioned US Pat.

【0013】本発明で使用される燃料電池としては、前
記のりん酸型、固体高分子型、アルカリ型、溶融炭酸塩
型などが挙げられるが、これらの中では特に固体高分子
型燃料電池が好ましい。
Examples of the fuel cell used in the present invention include the phosphoric acid type, the solid polymer type, the alkali type, the molten carbonate type, and the like. Among them, the solid polymer type fuel cell is particularly preferable. preferable.

【0014】本発明においては、メンブレンを有する改
質装置により炭化水素を水蒸気改質させて得られる高純
度水素を燃料電池に供給して発電すると共に、前記改質
装置のオフガスを燃焼器に導いて燃焼させ、その燃焼熱
を前記改質装置自体の加熱源とする。さらに改質装置を
加熱した後の燃焼ガスを排熱を利用して暖房や温水供給
装置を加熱する。前記改質装置の加熱温度は適切な改質
反応が起こるように、オフガスの燃焼をコントロールす
ることにより制御する。
In the present invention, high-purity hydrogen obtained by steam reforming hydrocarbons by a reformer having a membrane is supplied to a fuel cell to generate electricity, and the off-gas of the reformer is guided to a combustor. The reforming device itself is used as a heating source. Further, the exhaust gas of the combustion gas after heating the reformer is used to heat the heating and hot water supply device. The heating temperature of the reformer is controlled by controlling the combustion of offgas so that an appropriate reforming reaction occurs.

【0015】[0015]

【実施例】【Example】

〔実施例1〕図1は本実施例において採用した本発明に
係る熱併給発電システム装置の一例の説明図である。図
1において、取込まれた空気1はブロワ2により燃焼器
3に送り込まれる。燃焼器3にはメンブレン4を有する
メンブレン改質装置5からのオフガス6が燃料として供
給される。燃焼器3によるオフガス6の燃焼熱でメンブ
レン改質装置5が加熱される。メンブレン改質装置5に
は天然ガス7及びスチーム8が供給される。スチーム8
は別のスチーム源から供給してもよいが、図1のように
メンブレン改質装置5を加熱した後の燃焼排ガスにより
スチーム発生器10で水9を加熱して発生させて供給し
てもよい。メンブレン改質装置5においては、前記天然
ガス7とスチーム8により前記改質反応が起こり、得ら
れる水素はメンブレン4により高純度水素11として取
出され、燃料電池12に供給されて発電に使用される。
一方、未反応の天然ガス、改質反応で生成するCO、C
2 、水素、スチームなどが含まれるオフガス6がメン
ブレン改質装置5から取出され、燃焼器3の燃料として
使用される。燃焼器3で発生した高温の燃焼ガスでメン
ブレン改質装置5及びスチーム発生器10を加熱した後
の燃焼排ガス13の有する排熱を暖房に用いる。
 [Embodiment 1] FIG. 1 shows the present invention adopted in this embodiment.
It is explanatory drawing of an example of the cogeneration power generation system device which concerns. Figure
1, the air 1 taken in is combustor by the blower 2.
Sent to 3. The combustor 3 has a membrane 4
The off gas 6 from the membrane reformer 5 is used as fuel.
Be paid. The combustion heat of the offgas 6 from the combustor 3 causes a membrane.
The ren reformer 5 is heated. Membrane reformer 5
Is supplied with natural gas 7 and steam 8. Steam 8
May be supplied from another steam source,
The combustion exhaust gas after heating the membrane reforming device 5
The steam generator 10 heats the water 9 to generate and supply it.
May be. In the membrane reforming device 5, the natural
When the reforming reaction is caused by the gas 7 and the steam 8,
The hydrogen produced is taken as high-purity hydrogen 11 by the membrane 4.
It is taken out, supplied to the fuel cell 12 and used for power generation.
On the other hand, unreacted natural gas, CO and C produced by the reforming reaction
O 2Off gas 6 containing hydrogen, hydrogen, steam, etc.
Extracted from the Blaine reformer 5 and used as fuel for the combustor 3.
used. The high temperature combustion gas generated in the combustor 3
After heating the Blaine reformer 5 and the steam generator 10
The exhaust heat of the combustion exhaust gas 13 is used for heating.

【0016】〔実施例2〕図2は本実施例で用いた本発
明に係る熱併給発電システム装置の別の一例を示す説明
図であり、図1の燃焼排ガス13を暖房に使用する代わ
りに温水供給装置14の加熱に使用するものである。図
1と共通部分は同一符号を付してあるので説明は省略す
る。温水供給装置14には、水9が供給され、温水15
が得られる。温水供給装置14を加熱した後の低温燃焼
排ガス16は大気に放出される。
[Embodiment 2] FIG. 2 is an explanatory view showing another example of the cogeneration system of the present invention used in this embodiment. Instead of using the combustion exhaust gas 13 of FIG. 1 for heating. It is used for heating the hot water supply device 14. Since the same parts as those in FIG. 1 are designated by the same reference numerals, the description thereof will be omitted. The water 9 is supplied to the hot water supply device 14, and the hot water 15
Is obtained. The low temperature combustion exhaust gas 16 after heating the hot water supply device 14 is released to the atmosphere.

【0017】[0017]

【発明の効果】以上詳細に述べたように、本発明により
従来の改質装置に比べ比較的低温で炭化水素の改質が可
能であり、改質装置から得られた高純度水素を発電効率
のよい燃料電池に供給すると共に、改質装置からのオフ
ガスの燃焼により改質装置自体を加熱し、さらにその排
熱を暖房や温水の加熱源とすることにより、小型でかつ
簡便な装置で総合熱効率の優れた熱併給発電が可能とな
った。
As described in detail above, according to the present invention, hydrocarbons can be reformed at a relatively low temperature as compared with conventional reformers, and high-purity hydrogen obtained from the reformers can be used for power generation efficiency. The reformer itself is heated by the combustion of off-gas from the reformer, and the exhaust heat is used as a heating source for heating or hot water. Cogeneration with excellent thermal efficiency has become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による熱併給発電方法で使用できる装置
の一例の説明図。
FIG. 1 is an explanatory view of an example of an apparatus that can be used in the cogeneration power generation method according to the present invention.

【図2】本発明による熱併給発電方法で使用できる別の
装置の一例の説明図。
FIG. 2 is an explanatory view of an example of another device that can be used in the cogeneration power generation method according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 一登 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 竹内 善幸 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 藤本 芳正 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 太田 洋州 神奈川県逗子市久木7−7−31 (72)発明者 白▲崎▼ 義則 埼玉県川口市芝西2−29−14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuto Kobayashi 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Sanbishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Yoshiyuki Takeuchi 4, Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture No. 6-22 Sanryo Heavy Industries Co., Ltd. Hiroshima Research Laboratory (72) Inventor Yoshimasa Fujimoto 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Sanryo Heavy Industry Co., Ltd. Hiroshima Research Laboratory (72) Inventor Yoh Ota Zushi, Kanagawa Prefecture 7-7-31 Ichikuki (72) Inventor Shirasaki Yoshinori 2-29-14 Shibanishi, Kawaguchi City, Saitama Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素分離透過膜を有する改質装置により
炭化水素を水蒸気改質させて得られる高純度水素を燃料
電池に供給し発電すると共に、前記改質装置のオフガス
の燃焼熱により前記改質装置を加熱し、前記改質装置を
加熱した後の燃焼ガス排熱を暖房熱源または温水供給装
置の加熱源として使用することを特徴とする熱併給発電
方法。
1. High-purity hydrogen obtained by steam reforming hydrocarbons by a reformer having a hydrogen separation and permeable membrane is supplied to a fuel cell to generate electricity, and the reforming device uses the combustion heat of off-gas to modify the hydrogen. A combined heat and power generation method, characterized in that the exhaust heat of the combustion gas after heating the quality device and heating the reforming device is used as a heating heat source or a heating source of a hot water supply device.
【請求項2】 水素分離透過膜が無機多孔体の表面にパ
ラジウム含有合金の薄膜を形成させた構造を有するもの
であることを特徴とする請求項1記載の熱併給発電方
法。
2. The combined heat and power generation method according to claim 1, wherein the hydrogen permeable membrane has a structure in which a thin film of a palladium-containing alloy is formed on the surface of an inorganic porous body.
【請求項3】 燃料電池が固体高分子型燃料電池である
ことを特徴とする請求項1または請求項2に記載の熱併
給発電方法。
3. The combined heat and power generation method according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell.
JP08900195A 1995-04-14 1995-04-14 Cogeneration method Expired - Fee Related JP3297246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08900195A JP3297246B2 (en) 1995-04-14 1995-04-14 Cogeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08900195A JP3297246B2 (en) 1995-04-14 1995-04-14 Cogeneration method

Publications (2)

Publication Number Publication Date
JPH08287932A true JPH08287932A (en) 1996-11-01
JP3297246B2 JP3297246B2 (en) 2002-07-02

Family

ID=13958576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08900195A Expired - Fee Related JP3297246B2 (en) 1995-04-14 1995-04-14 Cogeneration method

Country Status (1)

Country Link
JP (1) JP3297246B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185166A (en) * 1999-12-22 2001-07-06 Toshiba Corp Solid polymeric fuel cell system and automatic vending machine
AT408043B (en) * 1998-11-23 2001-08-27 Vaillant Gmbh FUEL CELL ARRANGEMENT
JP2002008707A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Fuel cell equipment
JP2002173305A (en) * 2000-12-05 2002-06-21 Tokyo Gas Co Ltd Apparatus for producing hydrogen
EP1304311A2 (en) * 2001-10-11 2003-04-23 Viessmann Werke GmbH & Co Process for operating a hydrogen production apparatus and apparatus for producing hydrogen for fuel cells
JP2004502623A (en) * 2000-06-29 2004-01-29 エクソンモービル リサーチ アンド エンジニアリング カンパニー Power generation by heat exchange membrane reactor
KR100422660B1 (en) * 2001-09-11 2004-03-16 현대자동차주식회사 System for withdrawing energy in fuel reformer for fuel cell car
KR100464202B1 (en) * 2002-03-07 2005-01-03 주식회사 엘지이아이 Heating system for fuel cell and control method thereof
JP2005251766A (en) * 2005-05-31 2005-09-15 Sanyo Electric Co Ltd Fuel cell system
JP2009181959A (en) * 2009-05-08 2009-08-13 Toshiba Corp Polymer electrolyte fuel cell system
JP2009179541A (en) * 2008-01-31 2009-08-13 Tokyo Gas Co Ltd Solid oxide type fuel cell-hydrogen manufacturing system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408043B (en) * 1998-11-23 2001-08-27 Vaillant Gmbh FUEL CELL ARRANGEMENT
JP2001185166A (en) * 1999-12-22 2001-07-06 Toshiba Corp Solid polymeric fuel cell system and automatic vending machine
JP4515574B2 (en) * 1999-12-22 2010-08-04 株式会社東芝 Polymer electrolyte fuel cell system
JP2002008707A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Fuel cell equipment
JP2004502623A (en) * 2000-06-29 2004-01-29 エクソンモービル リサーチ アンド エンジニアリング カンパニー Power generation by heat exchange membrane reactor
JP2002173305A (en) * 2000-12-05 2002-06-21 Tokyo Gas Co Ltd Apparatus for producing hydrogen
JP4592937B2 (en) * 2000-12-05 2010-12-08 東京瓦斯株式会社 Hydrogen production equipment
KR100422660B1 (en) * 2001-09-11 2004-03-16 현대자동차주식회사 System for withdrawing energy in fuel reformer for fuel cell car
EP1304311A3 (en) * 2001-10-11 2003-07-09 Viessmann Werke GmbH & Co Process for operating a hydrogen production apparatus and apparatus for producing hydrogen for fuel cells
EP1304311A2 (en) * 2001-10-11 2003-04-23 Viessmann Werke GmbH & Co Process for operating a hydrogen production apparatus and apparatus for producing hydrogen for fuel cells
KR100464202B1 (en) * 2002-03-07 2005-01-03 주식회사 엘지이아이 Heating system for fuel cell and control method thereof
JP2005251766A (en) * 2005-05-31 2005-09-15 Sanyo Electric Co Ltd Fuel cell system
JP2009179541A (en) * 2008-01-31 2009-08-13 Tokyo Gas Co Ltd Solid oxide type fuel cell-hydrogen manufacturing system
JP2009181959A (en) * 2009-05-08 2009-08-13 Toshiba Corp Polymer electrolyte fuel cell system

Also Published As

Publication number Publication date
JP3297246B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP4184037B2 (en) Hydrogen production equipment
JP2004502623A (en) Power generation by heat exchange membrane reactor
JPH08287932A (en) Power generation method with heat utilization system
JP3711577B2 (en) Fuel reformer
JP4008051B2 (en) Power generation method
JP2003007321A (en) Direct reforming combined system of hybrid fuel cell using low-grade hydrocarbon
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JP3367790B2 (en) Power generation method
JP3690833B2 (en) Power generation method
JPH09266005A (en) Solid high polymer fuel cell system
JPH08261014A (en) Power generating method
JP3473900B2 (en) Hydrogen generator
JP3453218B2 (en) Power generation method
JP2684297B2 (en) Carbon dioxide free cogeneration system with power recovery type fuel reforming reactor
JP2755685B2 (en) Hydrogen production method for fuel cell
JP2955054B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JPH08321321A (en) Fuel cell
JP3625487B2 (en) Fuel cell system
JPH04325402A (en) Method and equipment for producing gaseous hydrogen for fuel cell and supply method therefor
JP2955040B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP4682403B2 (en) CO removing device and fuel cell power generator using the same
JP2003249254A (en) Cogeneration system of electric power, hydrogen, and aromatic hydrocarbon
JP3928674B2 (en) Pressure reformer
JP4319126B2 (en) Rapid hydrogen generation method and reactor module therefor
JP4381051B2 (en) Hydrogen generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees