JPH08321321A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH08321321A
JPH08321321A JP7125224A JP12522495A JPH08321321A JP H08321321 A JPH08321321 A JP H08321321A JP 7125224 A JP7125224 A JP 7125224A JP 12522495 A JP12522495 A JP 12522495A JP H08321321 A JPH08321321 A JP H08321321A
Authority
JP
Japan
Prior art keywords
fuel cell
reformer
hydrogen
fuel
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7125224A
Other languages
Japanese (ja)
Inventor
Hirokuni Oota
洋州 太田
Yoshinori Shirasaki
義則 白▲崎▼
Kyoichi Inoue
恭一 井上
Kennosuke Kuroda
健之助 黒田
Masaki Iijima
正樹 飯島
Kazuto Kobayashi
一登 小林
Yoshiyuki Takeuchi
竹内  善幸
Hiroshi Makihara
洋 牧原
Isamu Osada
勇 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7125224A priority Critical patent/JPH08321321A/en
Publication of JPH08321321A publication Critical patent/JPH08321321A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a fuel cell having heat efficiency generally high per unit fuel by incorporating a reformer, which uses a hydrogen separating and transmitting film, into a fuel cell, and generating high-purity hydrogen for fuel, making use of its operation heat. CONSTITUTION: A reformer 3, which has a membrane 4 of a hydrogen separating and transmitting film, is incorporated into a fuel cell 8, and the operation heat of the fuel cell 8 is utilized for the heating of a reformer 3. It is to be desired that the said membrane 3 should be made in such structure that the film of palladium-containing alloy is made on the surface of, for example, an inert porous substance. Reforming material 1 is introduced into the reformer 3 together with the steam 2 generated in a heat exchanger 7, and hydrogen produced in reform reaction is made into high-purity hydrogen on a level of 10ppm or under in CO with the membrane 4 and is supplied to the fuel cell 8, and off gas 9 is used as fuel. At that time, in case that the reform material is hydrocarbon of natural gas or the like, it is to be desired that it should be combined with a fused carbonate type fuel battery high in working temperature, and in case that it is methanol, it is to be desired that it should be combined with a phosphorous fuel cell low in working temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単位燃料当たりの総合的
な熱効率の高い燃料電池に関する。
FIELD OF THE INVENTION The present invention relates to a fuel cell having a high total thermal efficiency per unit fuel.

【0002】[0002]

【従来の技術】熱効率が40〜60%と極めて高く、騒
音や振動がなく、かつ大気汚染の心配がない分散型電源
として、燃料電池の実用化に向けて盛んに研究開発がな
されている。燃料電池としては150〜230℃で作動
するリン酸型、100℃以下で作動する固体高分子型、
アルカリ型、600〜700℃で作動する溶融炭酸塩
型、800〜1000℃で作動する固体電解質型などが
ある。これらの燃料電池は何れも水素を反応物質に使用
することができる。また、電極の白金などの触媒がCO
により被毒されるため、燃料電池に供給する水素含有ガ
ス中のCO濃度はできるだけ低い方が好ましく、中には
10ppm以下にする必要があるとされているものもあ
る。このため、従来の炭化水素やアルコールの水蒸気改
質法により製造した水素を燃料電池用の燃料ガスとする
には、粗製水素をCO変成器や水素精製器によりさらに
精製し、CO含有量が10ppm以下の高純度とする必
要があり、そのための工程が複雑で、かつ多量の高温熱
エネルギを要し、コストの面から問題となっていた。
2. Description of the Related Art As a distributed power source having a very high thermal efficiency of 40 to 60%, no noise or vibration, and no fear of air pollution, research and development have been actively conducted toward the practical use of fuel cells. As a fuel cell, a phosphoric acid type that operates at 150 to 230 ° C., a solid polymer type that operates at 100 ° C. or less,
There are an alkali type, a molten carbonate type that operates at 600 to 700 ° C., and a solid electrolyte type that operates at 800 to 1000 ° C. Any of these fuel cells can use hydrogen as a reactant. In addition, the catalyst such as platinum of the electrode is CO
Therefore, it is preferable that the CO concentration in the hydrogen-containing gas supplied to the fuel cell is as low as possible, and some of them are said to require 10 ppm or less. Therefore, in order to use hydrogen produced by the conventional steam reforming method of hydrocarbons or alcohols as a fuel gas for a fuel cell, crude hydrogen is further refined by a CO shift converter or a hydrogen purifier, and the CO content is 10 ppm. The following high purity is required, the process therefor is complicated, and a large amount of high-temperature heat energy is required, which is a problem in terms of cost.

【0003】ところで最近、前記水蒸気改質法による水
素の製造方法において、膜分離の併用技術が提案されて
いる。例えば、米国特許第5,229,102号明細書
には、触媒を充填したチューブ状の多孔セラミック膜に
炭化水素を供給することにより、生成した水素を選択的
に透過させる改質器が記載されている。これにより、生
成した水素を系外に取去ることにより、改質反応の平衡
が水素生成系に傾く結果、従来の改質器において750
〜880℃の高温が必要であったのに対し、300〜7
00℃の比較的低温度で改質できる旨が記載されてい
る。また比較的低温度で改質できるので、ガスタービン
やガスエンジンの排出ガス程度の温度を改質熱源として
利用できることが記載されている。またこれとは別に、
改質装置にパラジウム系薄膜を併用し、改質により得ら
れる水素を薄膜を通して高純度水素とし、これを燃料電
池に供給する技術も知られている。
By the way, recently, in the method for producing hydrogen by the steam reforming method, a combined technique of membrane separation has been proposed. For example, US Pat. No. 5,229,102 describes a reformer which selectively permeates generated hydrogen by supplying hydrocarbon to a tubular porous ceramic membrane filled with a catalyst. ing. As a result, by removing the generated hydrogen out of the system, the equilibrium of the reforming reaction leans toward the hydrogen producing system, resulting in 750
Whereas a high temperature of ~ 880 ° C was required, 300 ~ 7
It is described that the reforming can be performed at a relatively low temperature of 00 ° C. Further, since it is possible to perform reforming at a relatively low temperature, it is described that a temperature about the exhaust gas of a gas turbine or a gas engine can be used as a reforming heat source. Also, apart from this,
A technique is also known in which a palladium-based thin film is used in combination with a reforming device, hydrogen obtained by reforming is made into high-purity hydrogen through the thin film, and this is supplied to a fuel cell.

【0004】[0004]

【発明が解決しようとする課題】このように改質器によ
る高純度水素の製造、さらには燃料電池による発電など
個々の技術やそれらの一部の組合わせ技術については断
片的に試みられ、単位燃料当たりの発電効率や総合熱効
率を高める努力がなされているものの、それらのより一
層の向上が求められていることは言うまでもない。
In this way, individual technologies such as the production of high-purity hydrogen by the reformer, power generation by the fuel cell, and some combinations of these technologies are tried in a fragmentary manner. Although efforts are being made to increase the power generation efficiency per fuel and the overall thermal efficiency, it goes without saying that further improvement is required.

【0005】また燃料電池の発電効率は前記のように非
常に高いが、それでも燃料電池自体の発熱により失われ
る熱エネルギは大きい。従って、これを有効利用してさ
らに総合的な熱効率を向上させることが課題であった。
Although the power generation efficiency of the fuel cell is extremely high as described above, the heat energy lost due to the heat generation of the fuel cell itself is still large. Therefore, it has been a problem to effectively utilize this and further improve the overall thermal efficiency.

【0006】[0006]

【課題を解決するための手段】このような技術の現状に
鑑み、本発明者らは燃料電池の総合的な熱効率を極限ま
で高めるために鋭意検討した結果、燃料電池内に燃料電
池の燃料となる水素を製造する特定の改質装置を組込む
ことにより、それを達成できることを見い出し、本発明
を完成するに至った。
In view of the current state of the art, the inventors of the present invention have diligently studied to maximize the overall thermal efficiency of the fuel cell, and as a result, the fuel of the fuel cell is used in the fuel cell. It has been found that this can be achieved by incorporating a specific reforming device for producing hydrogen, and has completed the present invention.

【0007】すなわち本発明は (1)水素分離透過膜を有
する改質装置を燃料電池内にその作動熱が改質装置の加
熱に利用できるように組込み、前記改質装置により炭化
水素またはメタノールを改質して得られる高純度水素を
前記燃料電池に供給して発電することを特徴とする燃料
電池、(2) 上記水素分離透過膜が無機多孔体の表面にパ
ラジウム含有合金の薄膜を形成させた構造を有するもの
であることを特徴とする上記 (1)記載の燃料電池、(3)
上記燃料電池が溶融炭酸塩型燃料電池または固体電解質
型燃料電池であり、改質原料が天然ガスであることを特
徴とする上記 (1)または (2)に記載の燃料電池、及び
(4) 上記燃料電池がリン酸型燃料電池であり、改質原料
がメタノールであることを特徴とする上記 (1)または
(2)に記載の燃料電池である。
That is, according to the present invention, (1) a reformer having a hydrogen permeable membrane is incorporated into a fuel cell so that its operating heat can be used to heat the reformer, and the reformer is used to remove hydrocarbons or methanol. A fuel cell characterized by supplying high-purity hydrogen obtained by reforming to the fuel cell to generate electricity, (2) the hydrogen separation / permeable membrane forms a thin film of a palladium-containing alloy on the surface of an inorganic porous body. (3) The fuel cell according to (1) above, which has a different structure,
The fuel cell is a molten carbonate fuel cell or a solid electrolyte fuel cell, the reforming raw material is a natural gas, the fuel cell according to (1) or (2), and
(4) The fuel cell is a phosphoric acid fuel cell, the reforming raw material is methanol (1) or
It is the fuel cell according to (2).

【0008】本発明で採用される改質装置としては水素
分離透過膜(メンブレンと称する)を有するものであ
る。これにより高純度水素、例えばCO濃度が10pp
m以下の高純度水素を供給でき、しかも改質が炭化水素
を原料とする場合では通常400〜650℃の温度範囲
で、またメタノールを原料とする場合では通常200〜
600℃、特には200〜400℃の温度範囲で改質す
ることができる。このように比較的低温で改質がなされ
得るのは改質装置がメンブレンを有しており、生成した
水素を系外に取出すことにより、前記のように化学平衡
が水素生成系に移行することに起因する。炭化水素とし
て天然ガスの主成分であるメタン(CH4)の場合を例
にとると、下記化1の改質反応
The reforming device employed in the present invention has a hydrogen permeable membrane (referred to as a membrane). As a result, high-purity hydrogen, for example, CO concentration of 10 pp
High purity hydrogen of m or less can be supplied, and when reforming uses hydrocarbon as a raw material, it is usually in the temperature range of 400 to 650 ° C., and when methanol is used as a raw material, usually 200 to
It can be reformed in the temperature range of 600 ° C, especially 200 to 400 ° C. In this way, reforming can be performed at a relatively low temperature because the reforming device has a membrane and the generated hydrogen is taken out of the system so that the chemical equilibrium shifts to the hydrogen production system as described above. caused by. Taking the case of methane (CH 4 ) which is the main component of natural gas as the hydrocarbon, the reforming reaction of the following chemical formula 1 is taken as an example.

【化1】 において、従来の改質法では反応領域温度を約800℃
にすることが必要であったが、同じ転化率を達成するの
にメンブレンを利用することにより、前記のように温度
400〜650℃で達成することができる。同様にメタ
ノールの場合は次の化2の改質反応
Embedded image In the conventional reforming method, the reaction zone temperature is about 800 ° C.
However, by utilizing a membrane to achieve the same conversion, it can be achieved at temperatures of 400-650 ° C. as described above. Similarly, in the case of methanol, the reforming reaction of the following chemical formula 2

【化2】 が起こり、やはり200〜600℃程度の低温で改質で
きる。
Embedded image Occurs, and it can be reformed at a low temperature of about 200 to 600 ° C.

【0009】このようなメンブレンを備えた改質装置は
通常メンブレンリアクタとも称されるものであり、熱効
率を考慮してより経済的な形状が種々工夫されている。
メンブレンとしては水素を選択的に透過する膜で、かつ
耐熱性を有する膜が用いられる。例えば膜厚100μm
以上のパラジウム含有合金膜、あるいは膜厚50μm以
下のパラジウム含有合金薄膜を無機多孔体、例えば金属
やセラミックの多孔体あるいは金属不織布上にコーティ
ングしたものが用いられる。無機多孔体としてはシール
などの加工性、耐衝撃性、水素透過性などの観点から、
金属多孔体が好ましい。前記パラジウム含有合金として
はパラジウム単独またはパラジウムを10重量%以上含
有するものが好ましく、パラジウム以外にPtなど10
族元素、Rh,Irなどの9族元素、Ruなどの8族元
素、Cu,Ag,Auなどの11族元素を有するものが
好ましい。この他、バナジウム(V)を含有する合金
膜、例えばNi−Co−V合金にパラジウムをコーティ
ングした膜などが用いられる。
A reformer equipped with such a membrane is usually called a membrane reactor, and various more economical shapes have been devised in consideration of thermal efficiency.
As the membrane, a membrane that selectively permeates hydrogen and has heat resistance is used. For example, film thickness 100 μm
An inorganic porous body, for example, a porous body of metal or ceramic, or a metal nonwoven fabric coated with the above palladium-containing alloy film or a palladium-containing alloy thin film having a thickness of 50 μm or less is used. As the inorganic porous material, from the viewpoint of workability such as sealing, impact resistance, hydrogen permeability, etc.
Metal porous bodies are preferred. The palladium-containing alloy is preferably palladium alone or containing 10% by weight or more of palladium.
Those having a group element, a group 9 element such as Rh and Ir, a group 8 element such as Ru, and a group 11 element such as Cu, Ag, and Au are preferable. Besides, an alloy film containing vanadium (V), for example, a film obtained by coating palladium on a Ni—Co—V alloy is used.

【0010】炭化水素を水蒸気改質する改質触媒として
は、8〜10族金属(Fe,Co,Ni,Ru,Pd,
Ptなど)を含有するものが好ましく、Ni,Ru,R
hを担持した触媒またはNiO含有触媒が特に好まし
い。
As a reforming catalyst for steam-reforming hydrocarbons, metals of groups 8 to 10 (Fe, Co, Ni, Ru, Pd,
Those containing Ni, Ru, R
A catalyst carrying h or a NiO-containing catalyst is particularly preferred.

【0011】改質原料としては、炭化水素及びメタノー
ルが用いられ、炭化水素としては炭素数1〜10程度の
ものが使用でき、これらにはメタンを主成分とする天然
ガス、LPG、都市ガス、ナフサなどの軽質炭化水素が
含まれるが、中でも天然ガスを用いることが好ましい。
Hydrocarbons and methanol are used as the reforming raw materials, and hydrocarbons having about 1 to 10 carbon atoms can be used. These include natural gas containing methane as a main component, LPG, city gas, Although light hydrocarbons such as naphtha are included, it is preferable to use natural gas among them.

【0012】本発明で使用する具体的な改質装置として
は特に限定はなく、公知のものが使用できる。例えば、
特開平2−311301号公報には、触媒を充填した反
応管内に水素分離機能を有する分離膜を、さらに前記反
応管外側に外筒を設け、触媒を充填した反応管内に改質
原料を供給して水素を発生させ、分離膜の内側に不活性
ガス(スイープガス)を流入させて分離膜を透過した水
素をスイープガスに同伴させて系外に取出し、燃料電池
に供給する技術が記載されている。すなわち改質部を同
心状の三重管とし、中間層に触媒を充填して水素を製造
し、分離膜を通して管の中心部に分離された水素をスイ
ープガスに同伴させて排出するものである。改質装置と
して好ましいものは上記の通りであるが、この他に前記
米国特許明細書に記載されているようなセラミックメン
ブレンを用いることもできる。
The specific reforming apparatus used in the present invention is not particularly limited, and known ones can be used. For example,
In Japanese Patent Laid-Open No. 2-311301, a separation membrane having a hydrogen separating function is provided in a reaction tube filled with a catalyst, an outer cylinder is further provided outside the reaction tube, and a reforming raw material is supplied into the reaction tube filled with the catalyst. To generate hydrogen, flow an inert gas (sweep gas) into the inside of the separation membrane, entrain hydrogen that has permeated the separation membrane into the sweep gas, take it out of the system, and supply it to the fuel cell. There is. That is, the reforming section is a concentric triple tube, the intermediate layer is filled with a catalyst to produce hydrogen, and the hydrogen separated in the central portion of the tube through the separation membrane is accompanied by the sweep gas and discharged. The preferred reformer is as described above, but it is also possible to use a ceramic membrane as described in the above-mentioned US Pat.

【0013】本発明で使用される燃料電池としては、燃
料電池の作動熱により燃料電池自体の燃料を改質により
製造するため、改質原料の種類により改質熱源となりう
る燃料電池が選択される。例えば改質原料が天然ガスな
どの炭化水素である場合、改質温度はメンブレンを有す
る改質器を用いても400〜600℃の高温が必要ある
から、このような高温の作動温度を有する燃料電池、例
えば溶融炭酸塩型燃料電池または固体電解質型燃料電池
が用いられる。これらの中では溶融炭酸塩型燃料電池が
好ましい。同様にメタノールを改質原料とする場合で
は、炭化水素を用いる場合の前記のような高温の作動温
度を有する燃料電池を使用しても改質率が高くなり構わ
ないが、熱効率の観点から比較的低温で作動するリン酸
型燃料電池が好ましい。
As the fuel cell used in the present invention, since the fuel of the fuel cell itself is produced by reforming by the operating heat of the fuel cell, a fuel cell which can serve as a reforming heat source is selected depending on the kind of the reforming raw material. . For example, when the reforming raw material is a hydrocarbon such as natural gas, the reforming temperature needs to be as high as 400 to 600 ° C. even if a reformer having a membrane is used. Therefore, a fuel having such a high operating temperature is required. A battery such as a molten carbonate fuel cell or a solid oxide fuel cell is used. Of these, the molten carbonate fuel cell is preferable. Similarly, when methanol is used as the reforming raw material, the reforming rate may be high even if a fuel cell having a high operating temperature as described above when using hydrocarbons is used. Phosphoric acid fuel cells that operate at extremely low temperatures are preferred.

【0014】本発明においては、改質装置を燃料電池内
にその作動熱が改質装置の加熱に利用できるように組込
むことが必要である。具体的には、燃料電池内の高温発
生部に改質装置自体を熱伝導率の大きい材料で挟み込む
ようにスタッキングすれば足り、スタッキング方法は特
に限定されるところはない。
In the present invention, it is necessary to incorporate the reformer into the fuel cell so that its operating heat can be used to heat the reformer. Specifically, it suffices to stack the reformer itself so as to be sandwiched between the high temperature generating parts in the fuel cell with a material having a high thermal conductivity, and the stacking method is not particularly limited.

【0015】[0015]

【実施例】以下、本発明を実施例を挙げて説明するが、
本発明はこれに限定されるところはない。 〔実施例1〕図1は本実施例において採用した本発明に
係る燃料電池の一例の概略説明図であり、本例において
は2基の燃料電池8の間に2基の改質装置3を組込んで
いる。図1において、天然ガスなどの改質原料1はスチ
ーム2と共にメンブレン4を有する改質装置3に供給さ
れる。メンブレン4を有する改質装置3において前記改
質反応が起こり、生成する水素はメンブレン4により高
純度水素5として取出され、熱交換器7で供給水6と熱
交換した後、燃料電池8に供給されて発電に使用され
る。一方、未反応の改質原料、改質反応で生成するC
O、CO2 、水素、スチームなどが含まれるオフガス9
はメンブレン4を有する改質装置3から取出され、エン
ジン、ガスタービンあるいは他の燃焼装置などの燃料と
して使用される。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to this. [Embodiment 1] FIG. 1 is a schematic explanatory view of an example of a fuel cell according to the present invention adopted in this embodiment. In this embodiment, two reforming devices 3 are provided between two fuel cells 8. Incorporated. In FIG. 1, a reforming raw material 1 such as natural gas is supplied with a steam 2 to a reforming apparatus 3 having a membrane 4. The reforming reaction occurs in the reforming apparatus 3 having the membrane 4, and the produced hydrogen is taken out as high-purity hydrogen 5 by the membrane 4, exchanges heat with the feed water 6 in the heat exchanger 7, and is then supplied to the fuel cell 8. It is used for power generation. On the other hand, unreacted reforming raw material, C produced by the reforming reaction
Off gas containing O, CO 2 , hydrogen, steam, etc. 9
Is taken out from the reformer 3 having the membrane 4 and used as fuel for an engine, a gas turbine, or another combustion device.

【0016】[0016]

【発明の効果】以上詳細に述べたように、本発明により
水素分離透過膜を有する改質装置を用い、これを燃料電
池内に組込み、その作動熱を燃料電池の燃料の改質熱源
として利用することにより、システム全体として極めて
高い熱効率を達成でき燃料電池とすることができる。
As described in detail above, the reformer having a hydrogen permeable membrane according to the present invention is used, and this reformer is incorporated into a fuel cell and its operating heat is used as a reforming heat source for the fuel of the fuel cell. By doing so, extremely high thermal efficiency can be achieved in the entire system, and a fuel cell can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池の一例の概略説明図。FIG. 1 is a schematic explanatory view of an example of a fuel cell according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 恭一 神奈川県横浜市鶴見区岸谷1−3−25− 504 (72)発明者 黒田 健之助 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 小林 一登 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 竹内 善幸 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 牧原 洋 広島県広島市観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 長田 勇 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyoichi Inoue 1-3-25-504 Kishitani, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture (72) Kennosuke Kuroda 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. In-house (72) Inventor Masaki Iijima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Kazuto Kobayashi 4-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Sanryo Heavy Industries Co., Ltd. Company Hiroshima Laboratory (72) Inventor Yoshiyuki Takeuchi 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Sanryo Heavy Industries Ltd. Hiroshima Laboratory (72) Inventor Hiroshi Makihara 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Sanryo Heavy Industry Co., Ltd. Hiroshima Research Institute (72) Inventor Isamu Nagata 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素分離透過膜を有する改質装置を燃料
電池内にその作動熱が改質装置の加熱に利用できるよう
に組込み、前記改質装置により炭化水素またはメタノー
ルを改質して得られる高純度水素を前記燃料電池に供給
して発電することを特徴とする燃料電池。
1. A reformer having a hydrogen separation / permeable membrane is installed in a fuel cell so that its operating heat can be used to heat the reformer, and the reformer reforms hydrocarbons or methanol to obtain the reformer. A high-purity hydrogen that is supplied to the fuel cell to generate electric power, and a fuel cell.
【請求項2】 上記水素分離透過膜が無機多孔体の表面
にパラジウム含有合金の薄膜を形成させた構造を有する
ものであることを特徴とする請求項1記載の燃料電池。
2. The fuel cell according to claim 1, wherein the hydrogen permeable membrane has a structure in which a thin film of a palladium-containing alloy is formed on the surface of an inorganic porous body.
【請求項3】 上記燃料電池が溶融炭酸塩型燃料電池ま
たは固体電解質型燃料電池であり、改質原料が天然ガス
であることを特徴とする請求項1または請求項2記載の
燃料電池。
3. The fuel cell according to claim 1 or 2, wherein the fuel cell is a molten carbonate fuel cell or a solid oxide fuel cell, and the reforming raw material is natural gas.
【請求項4】 上記燃料電池がリン酸型燃料電池であ
り、改質原料がメタノールであることを特徴とする請求
項1または請求項2記載の燃料電池。
4. The fuel cell according to claim 1 or 2, wherein the fuel cell is a phosphoric acid type fuel cell and the reforming raw material is methanol.
JP7125224A 1995-05-24 1995-05-24 Fuel cell Pending JPH08321321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7125224A JPH08321321A (en) 1995-05-24 1995-05-24 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7125224A JPH08321321A (en) 1995-05-24 1995-05-24 Fuel cell

Publications (1)

Publication Number Publication Date
JPH08321321A true JPH08321321A (en) 1996-12-03

Family

ID=14904918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7125224A Pending JPH08321321A (en) 1995-05-24 1995-05-24 Fuel cell

Country Status (1)

Country Link
JP (1) JPH08321321A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031816A1 (en) * 1998-11-19 2000-06-02 Sk Corporation Miniature fuel reformer and system using metal thin film
JP2009298616A (en) * 2008-06-11 2009-12-24 Ihi Corp Apparatus and method for reforming glycerol
EP2282369A1 (en) * 2009-08-06 2011-02-09 Cell, Franco Device for producing electricity and heat, including a fuel cell accepting at least methane as fuel
US7942944B2 (en) 2002-05-27 2011-05-17 Sony Corporation Fuel reformer and method for producing the same, electrode for use in electrochemical device, and electrochemical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031816A1 (en) * 1998-11-19 2000-06-02 Sk Corporation Miniature fuel reformer and system using metal thin film
US6896709B1 (en) 1998-11-19 2005-05-24 Sk Corporation Miniature fuel reformer and system using metal thin film
US7942944B2 (en) 2002-05-27 2011-05-17 Sony Corporation Fuel reformer and method for producing the same, electrode for use in electrochemical device, and electrochemical device
US8882864B2 (en) 2002-05-27 2014-11-11 Sony Corporation Fuel reformer including a two layer integrated article
JP2009298616A (en) * 2008-06-11 2009-12-24 Ihi Corp Apparatus and method for reforming glycerol
EP2282369A1 (en) * 2009-08-06 2011-02-09 Cell, Franco Device for producing electricity and heat, including a fuel cell accepting at least methane as fuel
FR2949020A1 (en) * 2009-08-06 2011-02-11 Franco Cell DEVICE FOR GENERATING ELECTRICITY AND HEAT, INCLUDING A FUEL CELL ADMITTING AT LEAST METHANE AS A FUEL

Similar Documents

Publication Publication Date Title
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
Uemiya Brief review of steam reforming using a metal membrane reactor
CN107073427B (en) Shell-and-tube reactor for reforming natural gas and method for producing synthesis gas or hydrogen using the same
CA2515514C (en) Pressure swing reforming for fuel cell systems
JP4184037B2 (en) Hydrogen production equipment
JPH07330304A (en) Removal of co in reformed gas
EP1333009A1 (en) Method for partial oxidation of methane using dense, oxygen selective permeation ceramic membrane
WO2007105696A1 (en) Hydrogen generator and process for producing hydrogen
JP3406021B2 (en) Hydrogen production equipment
KR102075627B1 (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP3297246B2 (en) Cogeneration method
JP4008051B2 (en) Power generation method
JP2003007321A (en) Direct reforming combined system of hybrid fuel cell using low-grade hydrocarbon
JP3971564B2 (en) Fuel cell system
JPH09266005A (en) Solid high polymer fuel cell system
JPH08321321A (en) Fuel cell
JP2955054B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP3690833B2 (en) Power generation method
JP2755685B2 (en) Hydrogen production method for fuel cell
JP3625487B2 (en) Fuel cell system
JPH04325402A (en) Method and equipment for producing gaseous hydrogen for fuel cell and supply method therefor
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JPH08261014A (en) Power generating method
Julbe et al. Role of membranes and membrane reactors in the hydrogen supply of fuel cells

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010918