JP2955054B2 - Method and apparatus for producing hydrogen for fuel cells and supply method - Google Patents

Method and apparatus for producing hydrogen for fuel cells and supply method

Info

Publication number
JP2955054B2
JP2955054B2 JP3092144A JP9214491A JP2955054B2 JP 2955054 B2 JP2955054 B2 JP 2955054B2 JP 3092144 A JP3092144 A JP 3092144A JP 9214491 A JP9214491 A JP 9214491A JP 2955054 B2 JP2955054 B2 JP 2955054B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
steam
gas
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3092144A
Other languages
Japanese (ja)
Other versions
JPH04321502A (en
Inventor
哲也 今井
健之助 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3092144A priority Critical patent/JP2955054B2/en
Publication of JPH04321502A publication Critical patent/JPH04321502A/en
Application granted granted Critical
Publication of JP2955054B2 publication Critical patent/JP2955054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体高分子膜型燃料電池
に供給する水素含有ガスの製造方法及び装置並びに同水
素の固体高分子膜型燃料電池への供給方法に関する。
The present invention relates about the supply method of the solid polymer membrane fuel cell manufacturing method and apparatus, and the hydrogen in the hydrogen-containing gas supplied to the solid polymer membrane fuel cell.

【0002】[0002]

【従来の技術】燃料電池は水素と酸素との反応により発
生するエネルギーを電気エネルギーとして取り出すもの
である。 H2 + O2 → H2 O (1) この水素製造方法としては、石油、天然ガス等の炭化水
素のスチームリフォーミング法がある。これは、触媒層
中で原料ガスとスチームとを反応させる方法である。主
要な反応は以下の通りである。 Cn Hm + nH2 O= nCO + (n+m/2)H2 (平衡反応) (2) Cn Hm +2nH2 O= nCO2 +(2n+m/2)H2 (平衡反応) (3)
2. Description of the Related Art A fuel cell extracts energy generated by a reaction between hydrogen and oxygen as electric energy. H 2 + O 2 → H 2 O (1) As this hydrogen production method, there is a steam reforming method for hydrocarbons such as petroleum and natural gas. This is a method of reacting a raw material gas and steam in a catalyst layer. The main reactions are as follows. Cn Hm + nH 2 O = nCO + (n + m / 2) H 2 ( equilibrium reaction) (2) Cn Hm + 2nH 2 O = nCO 2 + (2n + m / 2) H 2 ( equilibrium reaction) (3)

【0003】これらの反応は触媒層中で生じ、反応速度
及び転化率は触媒層中の各ガス成分の分圧の影響を大き
く受ける。従来の方法では生成ガス全体を触媒層から系
外に抜き出す方法であるから熱力学的平衡状態までしか
反応は進まないという問題点があった。
[0003] These reactions occur in the catalyst layer, and the reaction rate and conversion are greatly affected by the partial pressure of each gas component in the catalyst layer. In the conventional method, the entire product gas is extracted from the catalyst layer to the outside of the system, so that there is a problem that the reaction proceeds only up to a thermodynamic equilibrium state.

【0004】[0004]

【発明が解決しようとする課題】前記反応(2)、
(3)は、大きな吸熱を伴う反応で、熱力学平衡上、転
化率を高くするためには通常700℃以上の高温にする
必要がある。前記反応(2)、(3)の代表例として、
メタンのスチームリフォーミング反応における平衡転化
率を下記の表1に示す。表1に示すように圧力1kg/
cm2 abs.の場合、700℃でメタンの平衡転化率
は97%であるが、圧力を高くすると平衡転化率は低く
なるので、反応温度をさらに高くする必要がある。
The above-mentioned reaction (2),
(3) is a reaction involving a large endotherm, and it is usually necessary to raise the temperature to 700 ° C. or higher in order to increase the conversion in terms of thermodynamic equilibrium. As a typical example of the reactions (2) and (3),
Table 1 below shows the equilibrium conversion in the steam reforming reaction of methane. As shown in Table 1, pressure 1kg /
cm 2 abs. In the case of, the equilibrium conversion of methane at 700 ° C. is 97%, but when the pressure is increased, the equilibrium conversion decreases, so the reaction temperature needs to be further increased.

【表1】 [Table 1]

【0005】また従来の方法では、触媒層から得られる
ガスには表2に示す熱力学平衡農度に近いCOが生成す
る。
[0005] Further, in the conventional method, CO close to the thermodynamic equilibrium fertility shown in Table 2 is generated in the gas obtained from the catalyst layer.

【表2】 [Table 2]

【0006】一方、200℃以下で作動する燃料電池に
おいては、電極の白金などの触媒がCOにより被毒され
るため、該燃料電池に供給する水素含有ガス中のCO濃
度は1%以下にする必要がある。200℃以下で作動す
る燃料電池としては150℃〜200℃で作動するリン
酸型燃料電池、100℃以下で作動する固体高分子膜
型、アルカリ型燃料電池などがある。特に100℃以下
で作動する燃料電池に供給する水素含有ガス中のCO濃
度は10ppm以下にする必要があると言われている。
On the other hand, in a fuel cell which operates at 200 ° C. or lower, since the catalyst such as platinum of the electrode is poisoned by CO, the CO concentration in the hydrogen-containing gas supplied to the fuel cell is set to 1% or lower. There is a need. Examples of the fuel cell operating at 200 ° C. or lower include a phosphoric acid fuel cell operating at 150 ° C. to 200 ° C., a solid polymer membrane type operating at 100 ° C. or lower, and an alkaline fuel cell. In particular, it is said that the CO concentration in the hydrogen-containing gas supplied to the fuel cell operating at 100 ° C. or lower needs to be 10 ppm or lower.

【0007】前述したように従来の方法ではリフォーミ
ング触媒層から得られるガスのCO濃度は通常10%以
上であり、更に追設したCOコンバーターを通しても
0.2%程度までにしか低減できない。そのため上記燃
料電池に供給する場合、許容濃度以下になるように更に
COを除去しなければならないなどの問題点がある。
[0007] As described above, in the conventional method, the CO concentration of the gas obtained from the reforming catalyst layer is usually 10% or more, and can be reduced to only about 0.2% through an additional CO converter. Therefore, when supplying to the above-mentioned fuel cell, there is a problem that CO must be further removed so as to be lower than the allowable concentration.

【0008】[0008]

【課題を解決するための手段】本発明は、次の(1)〜
(7)の構成を有するものである。 (1)炭化水素又はメタノールスチームリフォーミン
グにより固体高分子膜型燃料電池用水素を製造するに際
し、スチームリフォーミングにより生成する水素を逐次
水素分離機能膜により透過させ、イナートガス及びスチ
ームに同伴させて水素を系外に取出すことを特徴とする
固体高分子膜型燃料電池用水素の製造方法。
Means for Solving the Problems The present invention provides the following (1)-
It has the configuration of (7). (1) upon the production of hydrogen for a polymer membrane fuel cell by steam reforming of hydrocarbons or methanol, is transmitted by the sequential hydrogen separation function membrane hydrogen generated by steam reforming, it is entrained in Lee Natogasu and steam To remove hydrogen out of the system
A method for producing hydrogen for a polymer electrolyte membrane fuel cell.

【0009】(2)炭化水素又はメタノールと水蒸気よ
りなる原料供給手段を有するリフォーミング触媒充填部
の一方に水素分離機能膜を隣接して設置すると共に、リ
フォーミング触媒充填部の他方に加熱部を隣接して設置
してなり、前記水素分離機能膜を透過した水素を系外に
取出すイナートガス及びスチームの供給手段を設けてな
ることを特徴とする固体高分子膜型燃料電池用水素の製
造装置。
(2) A hydrogen separation function membrane is installed adjacent to one of the reforming catalyst filled sections having a raw material supply means composed of hydrocarbon or methanol and steam, and a heating section is provided at the other of the reforming catalyst filled sections. It will be installed adjacent to, solid polymer membrane-type fuel cell characterized by comprising the hydrogen that has passed through the hydrogen separation functional film provided with supply means outside of the system <br/> extraction to i Natogasu and steam Hydrogen production equipment.

【0010】(3)イナートガス及びスチームの供給手
段を有する水素分離機能膜製筒体、該水素分離機能膜製
筒体を囲撓し、炭化水素又はメタノールと水蒸気よりな
る原料供給手段を有するリフォーミング触媒充填筒体、
該スチームリフォーミング触媒充填筒体を囲撓し、未反
応リフォーミング原料と空気の供給手段を有する加熱筒
体を具備してなることを特徴とする固体高分子膜型燃料
電池用水素の製造装置。
[0010] (3) i Natogasu and hydrogen separation function membrane made tubular body having a supply means steam, and囲撓a hydrogen separation function membrane made cylindrical body, Li having a raw material supply means consisting of hydrocarbon or methanol and water vapor Forming catalyst filled cylinder,
An apparatus for producing hydrogen for a polymer electrolyte membrane fuel cell, comprising: a heating cylinder having a means for supplying an unreacted reforming raw material and air, which surrounds the steam reforming catalyst-filled cylinder. .

【0011】(4)未反応リフォーミング原料と空気の
供給手段を有する加熱筒体、該加熱筒体を囲撓し、炭化
水素又はメタノールと水蒸気よりなる原料供給手段を有
するリフォーミング触媒充填筒体、該リフォーミング触
媒充填筒体を囲撓し、イナートガス及びスチームの供給
手段を有する水素分離機能膜製筒体を具備してなること
を特徴とする固体高分子膜型燃料電池用水素の製造装
置。
(4) A heating cylinder having supply means for supplying unreacted reforming raw material and air, and a reforming catalyst-filled cylinder having a raw material supply means which surrounds the heating cylinder and is made of hydrocarbon or methanol and steam. and囲撓the reforming catalyst packed cylindrical body, the production of the solid polymer membrane-type fuel cell hydrogen characterized by being provided with a hydrogen separation function membrane made tubular body having a supply means Lee Natogasu and steam apparatus.

【0012】(5)上記(2)〜(4)のうちのいずれ
かの水素分離機能膜部から取出されるイナートガス及び
スチーム同伴水素ガスを固体高分子膜型燃料電池の水素
極に供給することを特徴とする固体高分子膜型燃料電池
への水素の供給方法。
[0012] (5) above (2) for supplying either taken out from the hydrogen separation function membrane portion Louis Natogasu and steam entrained hydrogen gas to the solid polymer membrane fuel cell hydrogen electrode of the - (4) A method for supplying hydrogen to a polymer electrolyte fuel cell, comprising the steps of:

【0013】(6)燃料電池の水素極出口ガスを水素分
離機能膜部に循環することを特徴とする上記(5)記載
固体高分子膜型燃料電池への水素の供給方法。
(6) The method for supplying hydrogen to a polymer electrolyte membrane fuel cell according to the above (5), wherein the hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen separation function membrane section.

【0014】(7)燃料電池の水素極出口ガスを燃料電
池の水素極入口に循環することを特徴とする上記(5)
記載の固体高分子膜型燃料電池への水素の供給方法
(7) The hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen electrode inlet of the fuel cell (5).
A method for supplying hydrogen to a polymer electrolyte fuel cell according to the above .

【0015】[0015]

【作用】本発明により下記の作用が奏される。 (1)生成ガス中のH2 を選択的に分離・除去すること
により、スチームリフォーミング反応の速度、即ちH2
の生成速度が増大する。(2)選択的に透過されたH2
の同伴ガスとしてイナートガスとスチームを使用し、透
過側の水素分圧を下げることにより分離膜の水素透過速
度を増大させる。(3)分離膜を透過するガスは水素の
みであるので、200℃以下で作動する燃料電池にその
まま供給できる。また同伴ガスとしてイナートガスとス
チームを使用するので、冷却により凝縮させる方法など
によりスチームの分圧を容易に制御することができる
し、燃料電池に供給するガスの加湿装置を省略又はコン
パクトにすることができる。(4)燃料電池の水素極出
口ガスを循環使用することによって燃料電池の効率が向
上する。
The present invention has the following effects. (1) The rate of the steam reforming reaction, that is, H 2 , by selectively separating and removing H 2 in the product gas
Is increased. (2) Selectively transmitted H 2
The carrier gas and to use the i Natogasu and steam, to increase the hydrogen permeation rate of the separation membrane by lowering the hydrogen partial pressure on the permeate side. (3) Since only hydrogen passes through the separation membrane, it can be supplied to a fuel cell operating at 200 ° C. or lower as it is. In addition, since inert gas and steam are used as the accompanying gas, the partial pressure of steam can be easily controlled by a method of condensing by cooling, and the humidifying device for gas supplied to the fuel cell can be omitted or made compact. can Ru. (4) The efficiency of the fuel cell is improved by circulating the hydrogen gas outlet gas of the fuel cell.

【0016】以下、本発明方法を実施する装置の概要を
説明する。図1は本発明方法を実施する装置の要部(メ
ンブレンリアクタ)の概略図で、1は反応管、2は外
筒、3は分離膜、4はリフォーミング触媒、5は原料ガ
ス(スチームリフォーミング反応原料ガス)、6はイ
ートガスとスチーム又は循環ガス、7はイナートガスと
スチームとH2 ガスの混合ガス、8は非透過ガス(未反
応ガス)、9は加熱用ガス、10は燃焼排ガスである。
Hereinafter, an outline of an apparatus for performing the method of the present invention will be described. FIG. 1 is a schematic view of a main part (membrane reactor) of an apparatus for carrying out the method of the present invention, 1 is a reaction tube, 2 is an outer cylinder, 3 is a separation membrane, 4 is a reforming catalyst, 5 is a raw material gas (steam reactor). forming reactant gas), the Lee Na <br/> Togasu and steam or circulating gas 6, the mixed gas of Lee Natogasu and steam and H 2 gas 7, 8 non-permeate gas (unreacted gas), the heating 9 Gas 10 is a combustion exhaust gas.

【0017】反応管1内の分離膜3と区切られた空間に
はリフォーミング触媒4が充填されており、この触媒4
充填部に原料ガス5が供給され、前記反応(2)、
(3)を行わせる。反応の進行に伴い発生したH2 は分
離膜3を透過し分離膜3内の空間に至り、ここに供給さ
るイナートガスとスチーム又は循環ガス6により系外
にイナートガスとスチーム+H2 混合ガス7として取出
される。分離膜3を通して触媒4充填層から水素が系外
に取り出されるので、反応(2)、(3)は右側に進行
し熱力学平衡転化率以上の転化率が得られる。
A space separated from the separation membrane 3 in the reaction tube 1 is filled with a reforming catalyst 4.
The raw material gas 5 is supplied to the filling section, and the reaction (2) is performed.
Perform (3). H 2 generated with the progress of the reaction is transmitted through the separation membrane 3 reaches the space in the separation membrane 3, system by Louis Natogasu and steam or circulating gas 6 is supplied here
It is taken out as Lee Natogasu and steam + H 2 mixed gas 7 in. Since hydrogen is extracted from the packed bed of the catalyst 4 through the separation membrane 3 to the outside of the system, the reactions (2) and (3) proceed to the right, and a conversion higher than the thermodynamic equilibrium conversion is obtained.

【0018】リフォーミング触媒4充填部から排出され
る非透過ガス(未反応ガス)8は、別に設置する燃焼器
又は反応管1と外筒2の間の空間に循環供給され、ここ
で燃焼させることによって燃焼熱を発生させ、リフォー
ミング触媒4充填部の加熱に用いられた後、燃焼排ガス
10は系外に排出される。
The non-permeated gas (unreacted gas) 8 discharged from the filling portion of the reforming catalyst 4 is circulated and supplied to a separately installed combustor or a space between the reaction tube 1 and the outer cylinder 2 and burns there. As a result, combustion heat is generated, and after the combustion heat is used to heat the filling portion of the reforming catalyst 4, the combustion exhaust gas 10 is discharged out of the system.

【0019】上記構成の装置に使用できる分離膜3とし
ては水素を選択的に透過する膜で、かつ耐熱性を有する
膜が用いられる。例えば膜厚100μm以上のPdを含
有する合金膜又は多孔体に膜厚50μm以下のPdを含
有する薄膜をコーティングしたものが用いられる。Pd
を含有する膜はPd100%又はPdを10重量%以上
含有する合金をさし、Pdを10重量%以上含有する合
金としてはPd以外にPt,Rh,Ru,IrなどのVI
II族元素、Cu,Ag,AuなどのIb族元素を含有す
るものをさす。上記膜以外にV(バナジウム)を含有す
る合金膜、例えばNi−Co−V合金にPdをコーティ
ングした膜などが用いられる。また上記多孔体としては
セラミックス製多孔体または金属製多孔体が用いられ
る。これらの多孔体にPd又はVを含有する薄膜をコー
ティングする方法としてはメッキなどの液相法、真空蒸
着法、イオンプレーティング法、気相化学反応法(CV
D)などの気相法が用いられる。
As the separation membrane 3 that can be used in the apparatus having the above-mentioned configuration, a membrane that selectively permeates hydrogen and has heat resistance is used. For example, an alloy film containing Pd with a thickness of 100 μm or more or a porous body coated with a thin film containing Pd with a thickness of 50 μm or less is used. Pd
Is a film containing 100% of Pd or an alloy containing 10% by weight or more of Pd. As an alloy containing 10% by weight or more of Pd, in addition to Pd, VI such as Pt, Rh, Ru, Ir, etc.
A material containing a Group II element, a Group Ib element such as Cu, Ag, or Au. In addition to the above film, an alloy film containing V (vanadium), for example, a film obtained by coating a Ni—Co—V alloy with Pd is used. As the porous body, a ceramic porous body or a metal porous body is used. These porous materials are coated with a thin film containing Pd or V by a liquid phase method such as plating, a vacuum deposition method, an ion plating method, a gas phase chemical reaction method (CV).
A gas phase method such as D) is used.

【0020】触媒としては第VIII族金属(Fe,Co,
Ni,Ru,Rh,Pd,Pt等)を含有する触媒が好
ましく、Ni,Ru,Rhを担持した触媒又はNiO含
有触媒が特に好ましい。
As a catalyst, a Group VIII metal (Fe, Co,
(Ni, Ru, Rh, Pd, Pt, etc.) is preferable, and a catalyst supporting Ni, Ru, Rh or a NiO-containing catalyst is particularly preferable.

【0021】[0021]

【実施例】(例1) 本発明の一実施例を図2によって説明する。CH4 ,H
2 O等の原料ガス5は触媒4充填部に供給されてスチー
ムリフォーミング反応によりH2 を生成する。生成ガス
中のH2 は分離膜3により選択的に分離・除去されて触
媒4充填部から反応系外に抜き出され、イナートガス及
びスチーム又は循環ガス6に同伴されてイナートガス及
びスチーム+H2 混合ガス7となって燃料電池12に供
給される。
Embodiment 1 An embodiment of the present invention will be described with reference to FIG. CH 4 , H
The source gas 5 such as 2 O is supplied to the catalyst 4 filling portion to generate H 2 by a steam reforming reaction. Of H 2 product gas is withdrawn from the selectively separated and removed by catalytic 4 filling unit by the separation membrane 3 in the reaction system, is entrained in Lee Natogasu and steam or circulation gas 6 Lee Natogasu and steam + H 2 The mixed gas 7 is supplied to the fuel cell 12.

【0022】燃料電池12内ではH2 と空気13中のO
2 が反応してH2 Oを生成する。燃料電池ではH+ イオ
ン又はOH- イオンの移動に伴う電子の移動を電流とし
て取り出す。H2 の大半を燃料電池12で消費した後の
ガス6は再度分離膜3内に循環使用される。
In the fuel cell 12, H 2 and O in the air 13
2 produces of H 2 O reacts. In a fuel cell, the movement of electrons accompanying the movement of H + ions or OH - ions is extracted as a current. The gas 6 after most of the H 2 has been consumed by the fuel cell 12 is circulated and used again in the separation membrane 3.

【0023】一方、スチームリフォーミング反応で未反
応のCH4 等の非透過ガス(未反応ガス)8は外筒2に
供給され、別途外部から導入される空気14により燃焼
して燃焼熱を発生する。この燃焼熱をスチームリフォー
ミング反応の反応熱として使用する。
On the other hand, the non-permeated gas (unreacted gas) 8 such as CH 4 which has not been reacted in the steam reforming reaction is supplied to the outer cylinder 2 and burns by air 14 separately introduced from the outside to generate combustion heat. I do. This combustion heat is used as reaction heat of the steam reforming reaction.

【0024】図2に示したフローに従って、下記のよう
な具体的条件で水素を製造し、燃料電池の発電を行っ
た。
According to the flow shown in FIG. 2, hydrogen was produced under the following specific conditions, and power was generated by the fuel cell.

【0025】 (1)装置寸法 分離膜3:外径10mm(内径7mm)×長さ600mm 反応管4:外径27.2m(内径23.2mm)×長さ550mm 外筒 2:外径42.7m(内径38.7mm)×長さ550mm(1) Apparatus dimensions Separation membrane 3: outer diameter 10 mm (inner diameter 7 mm) × length 600 mm Reaction tube 4: outer diameter 27.2 m (inner diameter 23.2 mm) × length 550 mm outer cylinder 2: outer diameter 42. 7m (38.7mm inside diameter) x 550mm length

【0026】(2)分離膜 東芝セラミックス(株)製セラミックフィルターMEM
BRALOX(外表面細孔径:約0.2μm)にPd及
びAgをメッキし800℃で5時間合金化処理を行い、
Pd:Ag=75:25(重量比)の合金膜10μmを
コーティングしたパイプ。
(2) Separation membrane Ceramic filter MEM manufactured by Toshiba Ceramics Co., Ltd.
Palladium and Ag are plated on BRALOX (outer surface pore diameter: about 0.2 μm) and alloyed at 800 ° C. for 5 hours.
A pipe coated with an alloy film 10 μm of Pd: Ag = 75: 25 (weight ratio).

【0027】(3)触媒 メタンのスチームリフォーミング触媒 NiO70重量%、Al2 3 28重量%、グラファイ
ト2重量%の組成を有する平均粒径1mmの触媒150
mlを反応管1と分離膜3の間(図1の触媒4充填部)
に充填する。 燃焼触媒 Pdを5g/l含有する平均粒径1.5mmの触媒35
0mlを反応管1と外筒2の間に充填する。
(3) Catalytic steam reforming catalyst of methane Catalyst 150 having a composition of 70% by weight of NiO, 28% by weight of Al 2 O 3 and 2% by weight of graphite and having an average particle diameter of 1 mm.
ml between the reaction tube 1 and the separation membrane 3 (the catalyst 4 filling portion in FIG. 1).
Fill. Combustion catalyst A catalyst 35 containing 5 g / l of Pd and having an average particle size of 1.5 mm
0 ml is filled between the reaction tube 1 and the outer cylinder 2.

【0028】(4)ガス流量及び温度 原料ガス5:CH4 :28Nl/h、H2 O:85
Nl/h、温度:500℃ イナートガス及びスチーム6:スチーム:70Nl
/h、N2 :30Nl/h 燃焼用空気14:340Nl/h、温度:350℃ 燃料電池用空気13:350Nl/h、温度:60
(4) Gas flow rate and temperature Source gas 5: CH 4 : 28 Nl / h, H 2 O: 85
Nl / h, temperature: 500 ° C Inert gas and steam 6: steam: 70Nl
/ H, N 2 : 30 Nl / h Combustion air 14: 340 Nl / h, temperature: 350 ° C. Fuel cell air 13: 350 Nl / h, temperature: 60
° C

【0029】(5)燃料電池 固体高分子膜型燃料電池 電極面積 70cm2 、5セル 温度 85℃ 以上の条件で試験を行った結果、以下の性能が確認され
た。
(5) Fuel Cell Solid Polymer Membrane Fuel Cell An electrode area of 70 cm 2 , a cell temperature of 85 ° C. or higher As a result of the test, the following performance was confirmed.

【0030】(1)メンブレンリアクタまわりのマスバ
ランス 触媒層4出口の非透過ガス(未反応ガス)8のガス
流量83Nl/h ガス温度 : 540℃ ガス組成(mol%):H2 :24%、CO:6%、C
2 :24%、CH4 :3%、H2 O:43% 上記ガスと空気14を混合後、燃焼させた触媒層の
温度 最高880℃、燃焼排ガス10の温度 590℃ 分離膜3の出口のイナートガス及びスチームとH2
混合ガス7 ガス温度 : 520℃ ガス組成(mol%):スチーム:70Nl/h、
2 :30Nl/h、H2 :75Nl/h
(1) Mass Balance around Membrane Reactor Gas flow rate of non-permeated gas (unreacted gas) 8 at the outlet of the catalyst layer 4 83 Nl / h Gas temperature: 540 ° C. Gas composition (mol%): H 2 : 24% CO: 6%, C
O 2 : 24%, CH 4 : 3%, H 2 O: 43% After mixing the above gas and air 14, the temperature of the catalyst layer burned at the maximum 880 ° C., the temperature of the combustion exhaust gas 10 590 ° C. The outlet of the separation membrane 3 Inert gas and steam and H 2
Mixed gas 7 Gas temperature: 520 ° C Gas composition (mol%): Steam: 70 Nl / h
N 2 : 30 Nl / h, H 2 : 75 Nl / h

【0031】(2)燃料電池まわりのマスバランス 水素極 入口ガス スチーム:70Nl/h:N2 :30Nl/h、H2
75Nl/h 出口ガス スチーム:70Nl/h:N2 :30Nl/h、H2
26Nl/h 空気極 入口ガス N2 :276.5Nl/h、O2 :73.5Nl/h 出口ガス N2 :276.5Nl/h、O2 :49Nl/h、H2
O:112Nl/h 燃料電池の性能 電圧 3.5V、電流 23.2A、得られた電力 8
1W
(2) Mass balance around fuel cell Hydrogen electrode Inlet gas Steam: 70 Nl / h: N 2 : 30 Nl / h, H 2 :
75Nl / h outlet gas Steam: 70Nl / h: N 2: 30Nl / h, H 2:
26Nl / h air electrode inlet gas N 2: 276.5Nl / h, O 2: 73.5Nl / h outlet gas N 2: 276.5Nl / h, O 2: 49Nl / h, H 2
O: 112 Nl / h Performance of fuel cell Voltage 3.5 V, current 23.2 A, obtained power 8
1W

【0032】(例2) (1)分離膜 外表面細孔径3μmの金属多孔体の表面にPdとAgの
合金を膜厚10μm蒸着したパイプ。 (2)ガス流量 図2において分離膜3内のガス流れを逆にし、向流
にする。(即ち、原料ガス5側からH2 混合ガス7を取
り出す。) スチーム及び循環ガス6のガス流量 スチーム:100Nl/h(スチーム供給ライン15の
流量92Nl/h)、 N2 :30Nl/h、H:25Nl/h 以上の条件以外は例1と同じ条件で試験を行った結果、
以下の性能が確認された。
Example 2 (1) Separation Membrane A pipe in which an alloy of Pd and Ag was deposited to a thickness of 10 μm on the surface of a porous metal body having an outer surface pore diameter of 3 μm. (2) Gas flow rate In FIG. 2, the gas flow in the separation membrane 3 is reversed to make the gas flow countercurrent. (That is, the H 2 mixed gas 7 is taken out from the raw material gas 5 side.) Gas flow rate of steam and circulating gas 6 Steam: 100 Nl / h (flow rate of steam supply line 15 at 92 Nl / h), N 2 : 30 Nl / h, H : 25 Nl / h As a result of conducting a test under the same conditions as in Example 1 except for the above conditions,
The following performance was confirmed.

【0033】(1)メンブレンリアクタまわりのマスバ
ランス 触媒層4出口の未反応ガス8のガス流量80Nl/
h ガス温度 : 550℃ ガス組成(mol%):H2 :23%、CO:6%、C
2 :23%、CH4 :4%、H2 O:44% 上記ガスと空気14を混合後燃焼させた触媒層の温
度 最高890℃、燃焼排ガス10の温度 600℃ 分離膜3の出口のイナートガス及びスチームとH2
混合ガス7 ガス温度 : 530℃ ガス流量 : スチーム:100Nl/h、N2 :30
Nl/h、H2 :100Nl/h
(1) Mass Balance Around Membrane Reactor The gas flow rate of the unreacted gas 8 at the outlet of the catalyst layer 4 is 80 Nl /
h Gas temperature: 550 ° C. Gas composition (mol%): H 2 : 23%, CO: 6%, C
O 2 : 23%, CH 4 : 4%, H 2 O: 44% The temperature of the catalyst layer, which was obtained by mixing the above gas and air 14 and then burned, at a maximum of 890 ° C., the temperature of the combustion exhaust gas 10 600 ° C. Inert gas and steam and H 2
Mixed gas 7 Gas temperature: 530 ° C Gas flow rate: Steam: 100 Nl / h, N 2 : 30
Nl / h, H 2: 100Nl / h

【0034】(2)燃料電池まわりのマスバランス 水素極 入口ガス スチーム:100Nl/h:N2 :30Nl/h、
2 :100Nl/h 出口ガス スチーム:8Nl/h:N2 :30Nl/h、H2 :2
5Nl/h 空気極 入口ガス N2 :276.5Nl/h、O2 :73.5Nl/h 出口ガス N2 :276.5Nl/h、O2 :36Nl/h、スチ
ーム:167Nl/h 燃料電池の性能 電圧 3.2V、電流 36A、得られた電力 115
(2) Mass balance around fuel cell Hydrogen electrode Inlet gas Steam: 100 Nl / h: N 2 : 30 Nl / h,
H 2: 100Nl / h outlet gas Steam: 8Nl / h: N 2: 30Nl / h, H 2: 2
5 nl / h air electrode inlet gas N 2: 276.5Nl / h, O 2: 73.5Nl / h outlet gas N 2: 276.5Nl / h, O 2: 36Nl / h, Steam: 167Nl / h fuel cell Performance Voltage 3.2V, Current 36A, Power obtained 115
W

【0035】[0035]

【発明の効果】【The invention's effect】

(1)触媒を充填した反応管内にスチームリフォーミン
グ反応原料を供給して水素を発生させ、分離膜の内側
ナートガス及びスチームを流入させて分離膜を透過し
た水素をイナートガス及びスチームに同伴させて系外に
抜出すことにより、平衡転化率以上のメタン転化率を得
るとともに高純度の水素を得ることができる。 (2)上記方法で得られた水素含有ガスを固体高分子膜
燃料電池に供給することにより、効率良く電力を得る
ことができる。
(1) catalyst was supplied to the steam reforming reaction materials into the reaction tube filled with to generate hydrogen, to the inside of the separation membrane
By withdrawing the Lee Natogasu and hydrogen which has passed through the separation membrane by flowing steam Lee Natogasu and out of the system by entrained in the steam, to obtain a high-purity hydrogen with obtaining equilibrium conversion over methane conversion it can. (2) The hydrogen-containing gas obtained by the above method is applied to a solid polymer membrane.
By supplying the mold fuel cell, it is possible to obtain the power efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する装置の要部の概略図FIG. 1 is a schematic view of a main part of an apparatus for implementing the present invention.

【図2】本発明の一実施例の説明図FIG. 2 is an explanatory diagram of one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 C01B 3/32 - 3/56 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01M 8/00-8/24 C01B 3/32-3/56

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化水素又はメタノールスチームリフ
ォーミングにより固体高分子膜型燃料電池用水素を製造
するに際し、スチームリフォーミングにより生成する水
素を逐次水素分離機能膜により透過させ、イナートガス
及びスチームに同伴させて水素を系外に取出すことを特
徴とする固体高分子膜型燃料電池用水素の製造方法。
Upon 1. A producing hydrogen for a polymer membrane fuel cell by steam reforming of hydrocarbons or methanol, is transmitted by the sequential hydrogen separation function membrane hydrogen generated by steam reforming, in Lee Natogasu and steam A method for producing hydrogen for a polymer electrolyte membrane fuel cell, wherein hydrogen is taken out of the system together with the hydrogen.
【請求項2】 炭化水素又はメタノールと水蒸気よりな
る原料供給手段を有するリフォーミング触媒充填部の一
方に水素分離機能膜を隣接して設置すると共に、リフォ
ーミング触媒充填部の他方に加熱部を隣接して設置して
なり、前記水素分離機能膜を透過した水素を系外に取出
すイナートガス及びスチームの供給手段を設けてなるこ
とを特徴とする固体高分子膜型燃料電池用水素の製造装
置。
2. A hydrogen separation function membrane is installed adjacent to one of the reforming catalyst filling sections having a raw material supply means composed of hydrocarbon or methanol and steam, and a heating section is adjacent to the other of the reforming catalyst filling sections. The hydrogen that has passed through the hydrogen separation function membrane is taken out of the system.
It is provided with a supply means to Lee Natogasu and steam solid polymer membrane-type fuel cell hydrogen production apparatus according to claim.
【請求項3】ナートガス及びスチームの供給手段を
有する水素分離機能膜製筒体、該水素分離機能膜製筒体
を囲撓し、炭化水素又はメタノールと水蒸気よりなる原
料供給手段を有するリフォーミング触媒充填筒体、該ス
チームリフォーミング触媒充填筒体を囲撓し、未反応リ
フォーミング原料と空気の供給手段を有する加熱筒体を
具備してなることを特徴とする固体高分子膜型燃料電池
用水素の製造装置。
3. Lee Natogasu and hydrogen separation function membrane made tubular body having a supply means steam, and囲撓a hydrogen separation function membrane made cylindrical body, reforming with raw material supply means consisting of hydrocarbon or methanol and water vapor A solid polymer membrane fuel cell comprising: a catalyst-filled cylinder; a heating cylinder having a means for supplying unreacted reforming raw material and air, which surrounds the steam-reformed catalyst-filled cylinder. Hydrogen production equipment.
【請求項4】 未反応リフォーミング原料と空気の供給
手段を有する加熱筒体、該加熱筒体を囲撓し、炭化水素
又はメタノールと水蒸気よりなる原料供給手段を有する
リフォーミング触媒充填筒体、該リフォーミング触媒充
填筒体を囲撓し、イナートガス及びスチームの供給手段
を有する水素分離機能膜製筒体を具備してなることを特
徴とする固体高分子膜型燃料電池用水素の製造装置。
4. A heating cylinder having supply means for supplying unreacted reforming raw material and air, a reforming catalyst-filled cylinder which surrounds the heating cylinder and has a raw material supply means comprising hydrocarbon or methanol and steam, and囲撓the reforming catalyst packed cylindrical body, Lee Natogasu and solid polymer membrane-type fuel cell hydrogen production apparatus characterized by comprising comprises a hydrogen separation function membrane made tubular body having a supply means steam .
【請求項5】 請求項2〜4のうちのいずれかの水素分
離機能膜部から取出されるイナートガス及びスチーム同
伴水素ガスを固体高分子膜型燃料電池の水素極に供給す
ることを特徴とする固体高分子膜型燃料電池への水素の
供給方法。
5. A retrieved from either hydrogen separation function membrane unit of claim 2-4 Louis Natogasu and steam entrained hydrogen gas and wherein the supplying the solid polymer membrane fuel cell hydrogen electrode For supplying hydrogen to a solid polymer membrane fuel cell.
【請求項6】 燃料電池の水素極出口ガスを水素分離機
能膜部に循環することを特徴とする請求項5記載の固体
高分子膜型燃料電池への水素の供給方法。
6. The solid according to claim 5, wherein the hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen separation function membrane part.
A method for supplying hydrogen to a polymer membrane fuel cell.
【請求項7】 燃料電池の水素極出口ガスを燃料電池の
水素極入口に循環することを特徴とする請求項5記載の
固体高分子膜型燃料電池への水素の供給方法。
7. The fuel cell according to claim 5, wherein the hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen electrode inlet of the fuel cell.
A method for supplying hydrogen to a polymer electrolyte fuel cell.
JP3092144A 1991-04-23 1991-04-23 Method and apparatus for producing hydrogen for fuel cells and supply method Expired - Lifetime JP2955054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092144A JP2955054B2 (en) 1991-04-23 1991-04-23 Method and apparatus for producing hydrogen for fuel cells and supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092144A JP2955054B2 (en) 1991-04-23 1991-04-23 Method and apparatus for producing hydrogen for fuel cells and supply method

Publications (2)

Publication Number Publication Date
JPH04321502A JPH04321502A (en) 1992-11-11
JP2955054B2 true JP2955054B2 (en) 1999-10-04

Family

ID=14046243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092144A Expired - Lifetime JP2955054B2 (en) 1991-04-23 1991-04-23 Method and apparatus for producing hydrogen for fuel cells and supply method

Country Status (1)

Country Link
JP (1) JP2955054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656617B2 (en) * 2000-01-24 2003-12-02 Toyota Jidosha Kabushiki Kaisha Fuel gas production system for fuel cells
US7132002B2 (en) 2001-09-21 2006-11-07 Toyota Jidosha Kabushiki Kaisha Hydrogen generating device having hydrogen separator membrane and control method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755815C2 (en) 1997-12-16 1999-12-09 Dbb Fuel Cell Engines Gmbh Process for steam reforming a hydrocarbon or hydrocarbon derivative, reformer that can be operated with it, and fuel cell operating method
DE19755813C2 (en) 1997-12-16 2000-09-14 Dbb Fuel Cell Engines Gmbh Process for operating a steam reforming plant, thus operable reforming plant and fuel cell system operating method
NL1013876C2 (en) * 1999-12-17 2001-07-03 Stichting Energie Low temperature fuel cell assembly as well as a method of operating it.
EP1316529A4 (en) 2000-08-25 2006-03-08 Matsushita Electric Ind Co Ltd Hydrogen generator
KR100649676B1 (en) * 2005-06-10 2006-11-27 삼성전기주식회사 A micro reformer of wire type and a micro fuel cell with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656617B2 (en) * 2000-01-24 2003-12-02 Toyota Jidosha Kabushiki Kaisha Fuel gas production system for fuel cells
US7132002B2 (en) 2001-09-21 2006-11-07 Toyota Jidosha Kabushiki Kaisha Hydrogen generating device having hydrogen separator membrane and control method therefor

Also Published As

Publication number Publication date
JPH04321502A (en) 1992-11-11

Similar Documents

Publication Publication Date Title
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
US4684581A (en) Hydrogen diffusion fuel cell
JP4184037B2 (en) Hydrogen production equipment
EP1135822B1 (en) Miniature fuel reformer and system using metal thin film
JP5015638B2 (en) Permselective membrane reactor and hydrogen production method
JPH07330304A (en) Removal of co in reformed gas
JPH06239601A (en) Combined reformer and conversion reactor
JP2003201103A (en) Reactor system having auto ignition and carbon suppression foam
JPS5864771A (en) Fuel battery generating device and method of operating same
KR101866500B1 (en) Hydrogen production rector including carbon monoxide removing unit
JPH06321501A (en) Electrochemical apparatus and hydrogen generation
KR102075627B1 (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP2955054B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP3971564B2 (en) Fuel cell system
JP2955040B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP4008051B2 (en) Power generation method
JP3297246B2 (en) Cogeneration method
JP2007524553A (en) Fuel processing system having a membrane separator
US6939634B2 (en) Fuel cell system having two reformer units for catalytic decomposition
JPH04325402A (en) Method and equipment for producing gaseous hydrogen for fuel cell and supply method therefor
JPH09266005A (en) Solid high polymer fuel cell system
KR20200118299A (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JPH06345405A (en) Hydrogen production device
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
JP3215462B2 (en) Hydrogen production equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

EXPY Cancellation because of completion of term