JP3297246B2 - Cogeneration method - Google Patents

Cogeneration method

Info

Publication number
JP3297246B2
JP3297246B2 JP08900195A JP8900195A JP3297246B2 JP 3297246 B2 JP3297246 B2 JP 3297246B2 JP 08900195 A JP08900195 A JP 08900195A JP 8900195 A JP8900195 A JP 8900195A JP 3297246 B2 JP3297246 B2 JP 3297246B2
Authority
JP
Japan
Prior art keywords
reformer
heating
hydrogen
steam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08900195A
Other languages
Japanese (ja)
Other versions
JPH08287932A (en
Inventor
健之助 黒田
正樹 飯島
一登 小林
竹内  善幸
芳正 藤本
洋州 太田
義則 白▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08900195A priority Critical patent/JP3297246B2/en
Publication of JPH08287932A publication Critical patent/JPH08287932A/en
Application granted granted Critical
Publication of JP3297246B2 publication Critical patent/JP3297246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭化水素の改質装置と燃
料電池とを用いた熱併給発電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration system using a hydrocarbon reformer and a fuel cell.

【0002】[0002]

【従来の技術】工場、オフィスあるいは家庭用の熱併給
発電(コジェネレーション)としては、原動機により電
力を発生し、電力の一部をまかなうと共に、原動機の排
熱は排気を利用して発生させた蒸気や温水などの熱を供
給し、総合熱効率の向上を図るものである。しかし、こ
れは蒸気タービン、ガスタービン、ディーゼルエンジン
やガスエンジンなどの原動機を使用するため装置も大が
かりであり、騒音や振動も発生し、また小型化も困難で
あった。
2. Description of the Related Art As a cogeneration system for factories, offices, or homes, electric power is generated by a prime mover to supply a part of the electric power, and exhaust heat of the prime mover is generated by using exhaust gas. It supplies heat such as steam or hot water to improve overall thermal efficiency. However, since this uses a prime mover such as a steam turbine, a gas turbine, a diesel engine, or a gas engine, the apparatus is large-scale, and noise and vibration are generated, and miniaturization is difficult.

【0003】一方、発電効率が50%以上と極めて高
く、騒音や振動が小さく、かつ大気汚染の心配がない都
市型の電源として、燃料電池の実用化に向けて盛んに研
究開発がなされている。燃料電池としては150〜23
0℃で作動するりん酸型、100℃以下で作動する固体
高分子型、アルカリ型、作動温度600〜700℃の溶
融炭酸塩型などがある。これらのうち、特に100℃以
下で作動する固体高分子型では、電極の白金などの触媒
がCOにより被毒されるため、燃料電池に供給する水素
含有ガス中のCO濃度を10ppm以下にする必要があ
るとされている。このため、従来の炭化水素やアルコー
ルの水蒸気改質法により製造した水素を燃料電池用の燃
料ガスとするには、当該粗製水素をCO変成器や水素精
製器によりさらに精製し、CO含有量が10ppm以下
の高純度とする必要があり、そのための工程が複雑で、
かつ多量の高温熱エネルギを要し、コストの面から問題
となっていた。
[0003] On the other hand, research and development are being actively conducted for the practical use of fuel cells as an urban power supply having an extremely high power generation efficiency of 50% or more, low noise and vibration and no fear of air pollution. . 150 to 23 for fuel cell
There are a phosphoric acid type operating at 0 ° C., a solid polymer type operating at 100 ° C. or less, an alkali type, a molten carbonate type operating at an operating temperature of 600 to 700 ° C., and the like. Among them, in particular, in a solid polymer type that operates at 100 ° C. or less, since the catalyst such as platinum of the electrode is poisoned by CO, it is necessary to reduce the CO concentration in the hydrogen-containing gas supplied to the fuel cell to 10 ppm or less. It is said that there is. For this reason, in order to use hydrogen produced by a conventional steam reforming method of hydrocarbons or alcohols as a fuel gas for a fuel cell, the crude hydrogen is further purified by a CO converter or a hydrogen purifier to reduce the CO content. It is necessary to have a high purity of 10 ppm or less, the process is complicated,
In addition, a large amount of high-temperature heat energy is required, which has been a problem in terms of cost.

【0004】ところで最近、前記水蒸気改質法による水
素の製造方法において、膜分離の併用技術が提案され、
例えば米国特許第5,229,102号明細書には、触
媒を充填したチューブ状の多孔質セラミック膜に炭化水
素を供給することにより、生成した水素を選択的に透過
させる改質器が記載されている。これにより、生成した
水素を系外に取去ることにより、改質反応の平衡が水素
生成系に傾く結果、従来の改質器において750〜88
0℃の高温が必要であったのに対し、300〜700℃
の比較的低温度で改質できる旨が記載されている。また
比較的低温度で改質できるので、ガスタービンやガスエ
ンジンの排出ガス程度の温度を改質熱源として利用でき
ることが記載されている。またこれとは別に、改質装置
にパラジウム系薄膜を併用し、改質により得られる水素
を薄膜を通して高純度水素とし、これを燃料電池に供給
する技術も知られている。
[0004] Recently, in the method of producing hydrogen by the steam reforming method, a combined use technique of membrane separation has been proposed.
For example, U.S. Pat. No. 5,229,102 describes a reformer that selectively permeates generated hydrogen by supplying hydrocarbons to a tubular porous ceramic membrane filled with a catalyst. ing. As a result, by removing the generated hydrogen to the outside of the system, the equilibrium of the reforming reaction is inclined toward the hydrogen generation system.
While a high temperature of 0 ° C. was required, 300-700 ° C.
It is described that it can be reformed at a relatively low temperature. Further, it is described that since reforming can be performed at a relatively low temperature, a temperature about the exhaust gas of a gas turbine or a gas engine can be used as a reforming heat source. Separately from this, there is also known a technique in which a palladium-based thin film is used in combination with a reformer, hydrogen obtained by the reforming is converted into high-purity hydrogen through the thin film, and the hydrogen is supplied to a fuel cell.

【0005】[0005]

【発明が解決しようとする課題】このように改質器によ
る高純度水素の製造、さらには燃料電池による発電など
個々の技術やそれらの一部の組合わせ技術については断
片的に試みられ、単位燃料当たりの発電効率や総合熱効
率を高める努力がなされているものの、より一層の向上
が求められていることは言うまでもない。また後者の改
質装置にパラジウム系薄膜を取付け、得られる高純度の
水素を燃料電池に供給する技術に関しても、改質装置の
オフガスの燃焼熱をその改質の加熱源とし、さらに前記
加熱後の燃焼ガスの排熱を暖房や温給水熱源として有効
利用する点については知られていない。
As described above, individual technologies such as production of high-purity hydrogen by a reformer, and power generation by a fuel cell and a combination of some of these technologies have been tried in a fragmentary manner. Efforts have been made to increase power generation efficiency per fuel and overall thermal efficiency, but it goes without saying that further improvements are required. In addition, regarding the technology of attaching a palladium-based thin film to the latter reformer and supplying the resulting high-purity hydrogen to the fuel cell, the heat of combustion of the off-gas of the reformer is used as a heating source for the reforming, and further after the heating. It is not known that the waste heat of the combustion gas of the present invention is effectively used as a heat source for heating or hot water supply.

【0006】[0006]

【課題を解決するための手段】このような技術の現状に
鑑み、本発明者らは水素分離透過膜を有する改質装置と
燃料電池を組合わせることにより、比較的簡単な装置で
騒音などもない優れた熱効率を有する熱併給発電が可能
であることに想到し、本発明を完成させることができ
た。
In view of the current state of the art, the present inventors have combined a reformer having a hydrogen separation and permeable membrane with a fuel cell to provide a relatively simple apparatus and reduce noise and the like. The inventors have conceived that it is possible to perform cogeneration with excellent heat efficiency and have completed the present invention.

【0007】すなわち本発明は膜厚100μm以上のパ
ラジウム含有合金膜からなる水素分離透過膜、あるいは
膜厚50μm以下のパラジウム含有合金薄膜を無機多孔
体にコーティングした構造の水素分離透過膜を有する改
質装置により炭化水素を水蒸気改質させて得られる高純
度水素を、固体高分子型燃料電池に供給して発電すると
共に、前記改質装置のオフガスの燃焼熱により前記改質
装置を加熱すると共に前記改質装置へスチームを供給す
るスチーム発生器を加熱し、前記改質装置及びスチーム
発生器を加熱した後の燃焼ガス排熱を暖房熱源または温
水供給装置の加熱源として使用することを特徴とする熱
併給発電方法である。
That is, the present invention relates to a package having a film thickness of 100 μm or more.
A hydrogen separation and permeable membrane consisting of a radium-containing alloy membrane, or
Palladium-containing alloy thin film with a thickness of 50 μm or less
High-purity hydrogen obtained by steam reforming hydrocarbons by a reformer having a hydrogen separation and permeable membrane having a structure coated on the body is supplied to a polymer electrolyte fuel cell to generate power, and the reformer is The reformer is heated by the combustion heat of the off-gas and steam is supplied to the reformer.
Heating the steam generator, the reformer and the steam
A cogeneration how, characterized by using a combustion gas exhaust heat after heating the generator as a heat source for heating the heat source or hot water supply.

【0008】本発明で使用される改質装置は後述する構
成のメンブレンを有し、高純度の水素、例えばCO濃度
が10ppm以下の高純度水素を供給でき、改質が40
0〜650℃の温度範囲で行えるものである。このよう
に比較的低温で改質がなされ得るのは、メンブレンによ
り生成した水素を系外に取出すことにより、前記のよう
な化学平衡が水素生成系に移行することに起因する。天
然ガスの主成分であるメタン(CH4 )の場合を例にと
ると、改質反応
The reforming apparatus used in the present invention has a structure described later.
Has a configuration of the membrane, can supply high-purity hydrogen, for example CO concentration less high purity hydrogen 10 ppm, reforming 40
It can be performed in a temperature range of 0 to 650 ° C. The reason that the reforming can be performed at a relatively low temperature is because the chemical equilibrium described above is transferred to the hydrogen generation system by extracting hydrogen generated by the membrane out of the system. Taking the case of methane (CH 4 ), which is the main component of natural gas, as an example, the reforming reaction

【化1】 において、従来の改質法では反応領域温度を約800℃
にすることが必要であったが、同じ転化率を達成するの
にメンブレンを利用することにより、温度400〜65
0℃で達成することができる。
Embedded image In the conventional reforming method, the reaction zone temperature is set to about 800 ° C.
However, by utilizing the membrane to achieve the same conversion, temperatures between 400 and 65
It can be achieved at 0 ° C.

【0009】このようなメンブレンを備えた改質装置は
通常メンブレンリアクタとも称されるものであり、熱効
率を考慮して経済的な形状が種々工夫されている。メン
ブレンとしては水素を選択的に透過する膜で、かつ耐熱
性を有する膜厚100μm以上のパラジウム含有合金
膜、あるいは膜厚50μm以下のパラジウム含有合金薄
膜を無機多孔体、例えば金属やセラミックの多孔体ある
いは金属不織布上にコーティングしたものが用いられ
る。無機多孔体としては、シールなどの加工性、耐衝撃
性、水素透過性などの観点から金属多孔体が好ましい。
前記パラジウム含有合金としてはパラジウム単独または
パラジウムを10重量%以上含有するものが好ましく、
パラジウム以外にPtなど10族元素、Rh,Irなど
の9族元素、Ruなどの8族元素、Cu,Ag,Auな
どの11族元素を有するものが好ましい。この他、バナ
ジウム(V)を含有する合金膜、例えばNi−Co−V
合金にパラジウムをコーティングした膜などが用いられ
る。
A reforming apparatus having such a membrane is usually called a membrane reactor, and various economical shapes are devised in consideration of thermal efficiency. In membrane selectively permeable to hydrogen as a membrane, and heat resistance Yusuke that thickness 100μm or more palladium-containing alloy film or film thickness 50μm following palladium-containing alloy thin film of an inorganic porous material, for example metal or ceramic, A material coated on a porous material or a metal nonwoven fabric is used. As the inorganic porous body, a metal porous body is preferable from the viewpoints of workability of a seal or the like, impact resistance, hydrogen permeability, and the like.
The palladium-containing alloy is preferably one containing palladium alone or 10% by weight or more,
In addition to palladium, those containing a Group 10 element such as Pt, a Group 9 element such as Rh and Ir, a Group 8 element such as Ru, and a Group 11 element such as Cu, Ag, and Au are preferable. In addition, an alloy film containing vanadium (V), for example, Ni—Co—V
A film in which an alloy is coated with palladium is used.

【0010】炭化水素を水蒸気改質させる改質触媒とし
ては、8〜10族金属(Fe,Co,Ni,Ru,P
d,Ptなど)を含有するものが好ましく、Ni,R
u,Rhを担持した触媒またはNiO含有触媒が特に好
ましい。
[0010] As a reforming catalyst for steam reforming hydrocarbons, a group 8 to 10 metal (Fe, Co, Ni, Ru, P
d, Pt, etc.), and Ni, R
Catalysts supporting u, Rh or NiO-containing catalysts are particularly preferred.

【0011】改質原料として用いられる炭化水素として
は炭素数1〜10程度のものが使用でき、これらにはメ
タンを主成分とする天然ガス、LPG、都市ガス、ナフ
サなどの軽質炭化水素が含まれるが、中でも天然ガスを
用いることが好ましい。
As the hydrocarbon used as the reforming raw material, those having about 1 to 10 carbon atoms can be used, including light hydrocarbons such as natural gas containing methane as a main component, LPG, city gas, and naphtha. However, it is particularly preferable to use natural gas.

【0012】具体的な改質装置として特に制限はなく、
公知のものが使用できる。例えば、特開平2−3113
01号公報には、触媒を充填した反応管内に水素分離機
能を有する分離膜を、さらに前記反応管外側に外筒を設
け、触媒を充填した反応管内に改質原料を供給して水素
を発生させ、分離膜の内側に不活性ガス(スイープガ
ス)を流入させて分離膜を透過した水素をスイープガス
に同伴させて系外に取出し、燃料電池に供給する技術が
記載されている。すなわち改質部を同心状の三重管と
し、中間層に触媒を充填して水素を製造し、分離膜を通
して管の中心部に分離された水素をスイープガスに同伴
させて排出するものである
There are no particular restrictions on the specific reformer,
Known ones can be used. For example, Japanese Unexamined Patent Publication No.
No. 01 discloses a separation membrane having a hydrogen separation function inside a reaction tube filled with a catalyst, and an outer cylinder provided outside the reaction tube to supply a reforming raw material into the reaction tube filled with a catalyst to generate hydrogen. A technique is described in which an inert gas (sweep gas) flows into the inside of the separation membrane, and hydrogen permeated through the separation membrane is taken out of the system together with the sweep gas and supplied to the fuel cell. That is, the reforming unit is a concentric triple tube, a middle layer is filled with a catalyst to produce hydrogen, and the hydrogen separated at the center of the tube through the separation membrane is discharged together with the sweep gas .

【0013】本発明で使用される燃料電池としては、特
に固体高分子型燃料電池が好ましい。
[0013] As the fuel cell used in the present invention, a polymer electrolyte fuel cell in Japanese <br/> are preferred.

【0014】本発明においては、前記特定構成のメンブ
レンを有する改質装置により炭化水素を水蒸気改質させ
て得られる高純度水素を固体高分子型燃料電池に供給し
て発電すると共に、前記改質装置のオフガスを燃焼器に
導いて燃焼させ、その燃焼熱を前記改質装置自体の加熱
源とする。さらに改質装置を加熱した後の燃焼ガス
熱を利用して暖房や温水供給装置を加熱する。前記改質
装置の加熱温度は適切な改質反応が起こるように、オフ
ガスの燃焼をコントロールすることにより制御する。
In the present invention, high-purity hydrogen obtained by steam reforming a hydrocarbon by a reformer having the above-mentioned specific structure is supplied to a polymer electrolyte fuel cell to generate electric power. At the same time, the off-gas of the reformer is guided to a combustor for combustion, and the combustion heat is used as a heating source of the reformer itself. Furthermore, the heating and the hot water supply device are heated by using the exhaust heat of the combustion gas after heating the reforming device. The heating temperature of the reformer is controlled by controlling off-gas combustion so that an appropriate reforming reaction occurs.

【0015】図1は本発明に係る熱併給発電システム装
置の一例の説明図である。図1において、取込まれた空
気1はブロワ2により燃焼器3に送り込まれる。燃焼器
3にはメンブレン4を有するメンブレン改質装置5から
のオフガス6が燃料として供給される。燃焼器3による
オフガス6の燃焼熱でメンブレン改質装置5が加熱され
る。メンブレン改質装置5には天然ガス7及びスチーム
8が供給される。スチーム8は別のスチーム源から供給
してもよいが、図1のようにメンブレン改質装置5を加
熱した後の燃焼排ガスによりスチーム発生器10で水9
を加熱して発生させて供給するのが好ましい。メンブレ
ン改質装置5においては、前記天然ガス7とスチーム8
により前記改質反応が起こり、得られる水素はメンブレ
ン4により高純度水素11として取出され、燃料電池1
2に供給されて発電に使用される。一方、未反応の天然
ガス、改質反応で生成するCO、CO2 、水素、スチー
ムなどが含まれるオフガス6がメンブレン改質装置5か
ら取出され、燃焼器3の燃料として使用される。燃焼器
3で発生した高温の燃焼ガスでメンブレン改質装置5及
びスチーム発生器10を加熱した後の燃焼排ガス13の
有する排熱を暖房に用いる。
FIG . 1 is an explanatory diagram of an example of a cogeneration system according to the present invention. In FIG. 1, taken air 1 is sent into a combustor 3 by a blower 2. An off-gas 6 from a membrane reformer 5 having a membrane 4 is supplied to the combustor 3 as fuel. The membrane reformer 5 is heated by the heat of combustion of the off-gas 6 by the combustor 3. The natural gas 7 and the steam 8 are supplied to the membrane reformer 5. Although the steam 8 may be supplied from another steam source, as shown in FIG. 1, water 9 is supplied to the steam generator 10 by the combustion exhaust gas after heating the membrane reformer 5.
Is preferably generated by heating . In the membrane reformer 5, the natural gas 7 and the steam 8
The reforming reaction takes place, and the resulting hydrogen is extracted as high-purity hydrogen 11 by the membrane 4 and
2 and used for power generation. On the other hand, off-gas 6 containing unreacted natural gas, CO, CO 2 , hydrogen, steam, and the like generated in the reforming reaction is taken out from the membrane reforming device 5 and used as fuel for the combustor 3. The exhaust heat of the combustion exhaust gas 13 after heating the membrane reformer 5 and the steam generator 10 with the high-temperature combustion gas generated in the combustor 3 is used for heating.

【0016】図2は本発明に係る熱併給発電システム装
置の別の一例を示す説明図であり、図1の燃焼排ガス1
3を暖房に使用する代わりに温水供給装置14の加熱に
使用するものである。図1と共通部分は同一符号を付し
てあるので説明は省略する。温水供給装置14には、水
9が供給され、温水15が得られる。温水供給装置14
を加熱した後の低温燃焼排ガス16は大気に放出され
る。
FIG . 2 is an explanatory diagram showing another example of the cogeneration system according to the present invention.
3 is used for heating the hot water supply device 14 instead of using it for heating. 1 are denoted by the same reference numerals, and description thereof is omitted. Water 9 is supplied to the hot water supply device 14, and hot water 15 is obtained. Hot water supply device 14
The low-temperature combustion exhaust gas 16 after heating is released to the atmosphere.

【0017】[0017]

【発明の効果】以上詳細に述べたように、本発明により
従来の改質装置に比べ比較的低温で炭化水素の改質が可
能であり、改質装置から得られた高純度水素を発電効率
のよい燃料電池に供給すると共に、改質装置からのオフ
ガスの燃焼により改質装置自体を加熱し、さらにその排
熱を暖房や温水の加熱源とすることにより、小型でかつ
簡便な装置で総合熱効率の優れた熱併給発電が可能とな
った。
As described above in detail, according to the present invention, it is possible to reform hydrocarbons at a relatively low temperature as compared with a conventional reformer, and to convert high-purity hydrogen obtained from the reformer into power generation efficiency. In addition to supplying fuel to a good fuel cell, the reformer itself is heated by the combustion of off-gas from the reformer, and the exhaust heat is used as a heating source for heating or hot water, making it a compact and simple device. Cogeneration with excellent thermal efficiency has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による熱併給発電方法で使用できる装置
の一例の説明図。
FIG. 1 is a diagram illustrating an example of an apparatus that can be used in a cogeneration method according to the present invention.

【図2】本発明による熱併給発電方法で使用できる別の
装置の一例の説明図。
FIG. 2 is an explanatory diagram of an example of another device that can be used in the cogeneration method according to the present invention.

フロントページの続き (72)発明者 小林 一登 広島県広島市観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 竹内 善幸 広島県広島市観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 藤本 芳正 広島県広島市観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 太田 洋州 神奈川県逗子市久木7−7−31 (72)発明者 白▲崎▼ 義則 埼玉県川口市芝西2−29−14 (56)参考文献 特開 平4−321502(JP,A) 特開 平5−159793(JP,A) 特開 平5−290865(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00,8/04,8/06 Continued on the front page (72) Inventor Kazuto Kobayashi 4-622 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center (72) Inventor Yoshiyuki Takeuchi 4-622 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Hiroshima Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Yoshimasa Fujimoto 4-6-22 Kannon Shinmachi, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Center (72) Inventor Yoshu 7-7 Hisagi, Zushi City, Kanagawa Prefecture 31 (72) Inventor Yoshinori Shirasakizaki 2-29-14 Shibanishi, Kawaguchi City, Saitama Prefecture (56) References JP-A-4-321502 (JP, A) JP-A-5-159793 (JP, A) Kaihei 5-290865 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 8/00, 8/04, 8/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 膜厚100μm以上のパラジウム含有合
金膜からなる水素分離透過膜、あるいは膜厚50μm以
下のパラジウム含有合金薄膜を無機多孔体にコーティン
グした構造の水素分離透過膜を有する改質装置により炭
化水素を水蒸気改質させて得られる高純度水素を、固体
高分子型燃料電池に供給して発電すると共に、前記改質
装置のオフガスの燃焼熱により前記改質装置を加熱する
と共に前記改質装置へスチームを供給するスチーム発生
器を加熱し、前記改質装置及びスチーム発生器を加熱し
た後の燃焼ガス排熱を暖房熱源または温水供給装置の加
熱源として使用することを特徴とする熱併給発電方法。
1. A palladium-containing alloy having a thickness of 100 μm or more.
Hydrogen separation / permeable membrane consisting of gold membrane, or 50 μm or less
The following palladium-containing alloy thin film is coated on inorganic porous material.
Hydrocarbons of high purity hydrogen obtained by steam reformed by the reforming device having a hydrogen separation permeable membrane grayed structure, solid
The power is supplied to the polymer fuel cell to generate power, and the reformer is heated by the heat of combustion of the off-gas of the reformer.
To generate steam to supply steam to the reformer
A method of co-generation, comprising: using a combustion gas exhaust heat after heating a reformer and heating the reformer and the steam generator as a heating heat source or a heating source of a hot water supply device.
JP08900195A 1995-04-14 1995-04-14 Cogeneration method Expired - Fee Related JP3297246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08900195A JP3297246B2 (en) 1995-04-14 1995-04-14 Cogeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08900195A JP3297246B2 (en) 1995-04-14 1995-04-14 Cogeneration method

Publications (2)

Publication Number Publication Date
JPH08287932A JPH08287932A (en) 1996-11-01
JP3297246B2 true JP3297246B2 (en) 2002-07-02

Family

ID=13958576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08900195A Expired - Fee Related JP3297246B2 (en) 1995-04-14 1995-04-14 Cogeneration method

Country Status (1)

Country Link
JP (1) JP3297246B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408043B (en) * 1998-11-23 2001-08-27 Vaillant Gmbh FUEL CELL ARRANGEMENT
JP4515574B2 (en) * 1999-12-22 2010-08-04 株式会社東芝 Polymer electrolyte fuel cell system
JP2002008707A (en) * 2000-06-27 2002-01-11 Idemitsu Kosan Co Ltd Fuel cell equipment
EP1294637A2 (en) * 2000-06-29 2003-03-26 ExxonMobil Research and Engineering Company Heat exchanged membrane reactor for electric power generation
JP4592937B2 (en) * 2000-12-05 2010-12-08 東京瓦斯株式会社 Hydrogen production equipment
KR100422660B1 (en) * 2001-09-11 2004-03-16 현대자동차주식회사 System for withdrawing energy in fuel reformer for fuel cell car
DE10149987A1 (en) * 2001-10-11 2003-04-30 Viessmann Werke Kg Method for operating an apparatus for generating hydrogen and apparatus for carrying out the method
KR100464202B1 (en) * 2002-03-07 2005-01-03 주식회사 엘지이아이 Heating system for fuel cell and control method thereof
JP5052765B2 (en) * 2005-05-31 2012-10-17 株式会社Eneosセルテック Fuel cell system
JP5085358B2 (en) * 2008-01-31 2012-11-28 東京瓦斯株式会社 Solid oxide fuel cell-hydrogen production system
JP5127772B2 (en) * 2009-05-08 2013-01-23 株式会社東芝 Polymer electrolyte fuel cell system

Also Published As

Publication number Publication date
JPH08287932A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
Uemiya Brief review of steam reforming using a metal membrane reactor
JP3816565B2 (en) Power generation method
JPH07330304A (en) Removal of co in reformed gas
JP3297246B2 (en) Cogeneration method
JP2004149332A (en) Hydrogen production system
CN110739471B (en) Cogeneration system based on reforming hydrogen production device and fuel cell
JPH0696790A (en) Method for generation of electric energy from biological raw material
JP2000510433A (en) Membrane reactor for producing hydrogen that does not contain CO or CO2
JP4008051B2 (en) Power generation method
KR20190143593A (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP3367790B2 (en) Power generation method
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JP3971564B2 (en) Fuel cell system
JP3690833B2 (en) Power generation method
JPH09266005A (en) Solid high polymer fuel cell system
JP2684297B2 (en) Carbon dioxide free cogeneration system with power recovery type fuel reforming reactor
JPH08261014A (en) Power generating method
JP3453218B2 (en) Power generation method
JP3680936B2 (en) Fuel reformer
JP2955054B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP4416503B2 (en) Apparatus and method for supplying hydrogen to a fuel cell and use of the fuel cell for electrically driving a vehicle
JP2755685B2 (en) Hydrogen production method for fuel cell
JPH08321321A (en) Fuel cell
CN114132896A (en) Device and method for preparing hydrogen by oxidizing and reforming ethanol
JPH0757758A (en) Fuel cell system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees