JP2000510433A - Membrane reactor for producing hydrogen that does not contain CO or CO2 - Google Patents

Membrane reactor for producing hydrogen that does not contain CO or CO2

Info

Publication number
JP2000510433A
JP2000510433A JP09540374A JP54037497A JP2000510433A JP 2000510433 A JP2000510433 A JP 2000510433A JP 09540374 A JP09540374 A JP 09540374A JP 54037497 A JP54037497 A JP 54037497A JP 2000510433 A JP2000510433 A JP 2000510433A
Authority
JP
Japan
Prior art keywords
hydrogen
chamber
reactor
methanol
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP09540374A
Other languages
Japanese (ja)
Inventor
モイジンガー・ヨーゼフィン
ドゥ・ハールト・ラムベルトス・ヘー・イェー
シュティミング・ウルリッヒ
Original Assignee
フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング filed Critical フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Publication of JP2000510433A publication Critical patent/JP2000510433A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0407Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
    • B01J8/0411Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds the beds being concentric
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00117Controlling the temperature by indirect heating or cooling employing heat exchange fluids with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

(57)【要約】 この発明はメタノールを水素に変換する反応装置に関する。この水素はCOやCO2を含むべきでない。この反応装置には膜(1)があり、この膜が反応装置を二つの室に分割している。この膜は水素・CO・CO2の混合物からCO2を濾過する。第一の室(3)にはメタノールが導入され、そこで触媒により水素に変換される。この変換では、副産物としてCOとCO2が生じる。バーナーがこの第一の室を加熱して、必要な変換温度を用意するために使用される。COと水素はこの膜(1)を通過して第二の室(4)に拡散する。ここで、COは触媒によりメタンに変換される。このように発生した水素はCOとCO2を殆ど含まず、燃焼ガスとして直接PEM燃料電池の陽極側に導入される。 (57) [Summary] The present invention relates to a reactor for converting methanol to hydrogen. The hydrogen should not contain CO and CO 2. The reactor has a membrane (1), which divides the reactor into two chambers. The membrane filtration of CO 2 from a mixture of hydrogen · CO · CO 2. Methanol is introduced into the first chamber (3), where it is converted to hydrogen by a catalyst. This conversion produces CO and CO 2 as by-products. A burner is used to heat this first chamber to provide the required conversion temperature. CO and hydrogen diffuse through this membrane (1) into the second chamber (4). Here, CO is converted to methane by a catalyst. The hydrogen thus generated contains almost no CO and CO 2 and is directly introduced as a combustion gas to the anode side of the PEM fuel cell.

Description

【発明の詳細な説明】 COやCO2を含まない水素を作製する膜反応装置 この発明はメタノールを水素に転換する反応装置に関する。 燃料電池、特にPEM燃料電池に関連して使用されるそのような反応装置が考 えられる。後者の燃料電池は将来乗物の電気駆動システムの構成要素として使用 されることになる。 PEM燃料電池では、他の燃料電池に比べて重合体の固定電解質を使用すると 有利で、この固定電解質は取り扱いが簡単でコンパクトな電池の構造を可能にす る。PEM燃料電池は80℃の運転温度で約1W/cm2の高出力密度を示す。 PEM燃料電池のように酸性の電解質中で純粋な水素を酸化させるためには、 白金(Pt)が最も有効な電気触媒であることが知られている。しかし、自動車 のためにある下部組織が将来にも利用されるから、つまり液状の燃料を駆逐すべ きであるから、液状のメタノールを乗物の中で改質反応により水素に変換する必 要がある。 メタノールを水素に変換する時に、COのような副産物が生じ、これが電気触 媒Ptに対して触媒の有害物として働くので不利である。燃料ガスが水素の外に COも含むと、電池の効率が劇的に低減する。 それ故、改質器とPEM燃料電池の間でCO含有量が10ppm以下の水素燃料ガ スを発生させるため、ガスの再処理を行う必要がある。望ましい純度は目下のと ころPd/Ag膜を利用してのみ達成できる。このような膜の取得原価は非常に高く て不利である。 純度の要請を満たす他の可能性は、COを水素でメタンに化学変換することに 基礎を置くものである(メタン化反応)。反応温度が低く(180℃),貴金属触 媒を使用する場合、CO量をこのような再処理ユニット中で10ppmに低下させる ことができる。もっとも、これに対する前提条件はCO2を予めガス混合物から 除去しておくことである。CO2は同じ反応条件でメタン化反応を受けるか、あ るいは反応温度が僅かに高くなるとCOへの変換に支配される。 この発明の課題は、PEM燃料電池で水素を直接燃料ガスとして使用するよう にメタノールを水素に変換する反応装置を提供することにある。 上記の課題は主請求項の構成を持つ反応装置によって解決されている。この反 応装置は副請求項の方法を実施するために使用される。 この反応装置には、この反応装置を二つの室に分割する膜がある。この膜は水 素・CO・CO2の混合物からCO2を濾過する。従って、この膜はCO2に対し て実用上不透過である。COおよび取り分け水素はこの膜を透過する。 この発明では特にセラミックス膜を使用する。 第一の室にメタノールを導入し、そこで水素に変換する。この変換は、例えば 必要な変換温度の場合に適当な触媒で行われる。第一の室を加熱する手段は必要 な変換温度にするためにある。COと水素は膜を通過して第二の室に入る。ここ では、COをメタンに変換する。 第二の室内で生じる生成ガスは実質上COやCO2を含まない。この生成ガス は(PEM)燃料電池の陽極側に直接導入される。 残留ガス(第二の室に拡散した反応生成物や変換されたメタノールではない) からメタノール改質反応用の反応熱を発生させる手段を設けると有利である。反 応熱を発生させる手段としては、例えば通常のバーナーが適している。 有利で簡単な構造では、反応装置は他の円管(反応円管)の内部にある円管状 の膜で形成されている。従って、膜の外側の壁と反応円管の内側の壁の間にリン グ隙間が生じる。このリング隙間には改質触媒が充填され、このリング隙間は第 一の室(第一区域)の機能を引き受ける。第一の室で必要な反応熱は反応円管の 外側の壁を加熱して得られる。第二の室(第二区域)は円管状の膜の中にあり、 この第二の室にはメタン化触媒が充填されている。 第一の反応室と第二の反応室の間に濃度降下と圧力降下が生じるため、第一の 室で発生した水素とCOガスが膜を通過して第二の室に移動する。第一の室の未 変換のメタノールや他の(酸素を含む)反応生成物はリング隙間を経由して反応 装置から出てゆく。 残留ガスが第一の室から再び出て往き、加熱手段(バーナー)に導入する手段 を設けると有利である。ここでは、残留ガスを必要であれば新鮮なメタノールと 共に混合して燃やすので、メタノール改質反応、つまり第一反応区域を加熱する 反応熱が発生する。 第一の室の水素とCOの混合物はCO2を(殆ど)含まない。この混合物は反 応装置の第二の室(内部空間)のメタン化触媒に直接触れるので、COはメタン に変換される。生成ガスはPEM燃料電池の陽極側に導入される。 円管状の構造では、強い吸熱反応が透過性の膜を介して強い発熱反応に有利に 結び付いている。メタン化触媒中の望ましくない温度上昇はスリーブ内で行われ る改質反応により防止される。 この反応装置は、特にセラミックス材料で作製されている。 膜はAl23および/またはSiOをベースにする酸化物で作製すると有利で ある。これ等の材料はメタノール改質の反応条件で水素とCO2に対する分離係 数が高い。これ等の材料は劣化することがなく、造形に関して問題がなく、低価 格である。 図面と以下のデータに基づき、この発明をより詳しく説明する。 添付図は円管状の膜1を横断面図にして示す。この膜はジャケット状の円管2 で取り囲まれている。リング隙間3は第一の室を形成する。第二の室4は円管状 の膜1の内部にある。膜は円管の一端で封止されている。他端では生成ガスが排 出導管5を経由してPEM燃料電池に導入される。メタノールは導入導管6を経 由して反応装置の第一の室に導入される。第一の室で生じた残留ガスは排出導管 7を経由して図示していないバーナーに導入される。このバーナーは反応装置を 必要であれば外部から加熱する。 出力が70kWクラスの乗用車は、170kWの電力を出力する燃料電池を必要とする 。従って、準備すべき水素の流量の値は約0.158モル/sとなる。この水素は第二 の室の後には純粋な形(10ppmのCO以下)になる必要がある。実験的に求めた 水素に対する200℃のセラミックス膜の透過率(20*10-7mol/m2/s/Pa)を前提と して、圧力差が5*105Paで最低限必要な膜の面積は15.8dm2となる。 水素の発生は第一区域でのメタノール改質に基づく。温度が250℃の場合、実 験的に求めた水素の形成速度(2〜4Nm3/dm3)を前提として、必要な改質触媒容 積、3.16dm3を求めることができる。4lの高活性貴金属触媒を第二の反応区域に 入れれば、180℃の周りに温度を調節すると、透過膜の中に含まれるCOを メタン化する。改質で生じた2容量%のCOの成分は十分小さい空間速度で10ppm に低下する。DETAILED DESCRIPTION OF THE INVENTION CO and membrane reactor to produce hydrogen not containing CO 2 The present invention relates to a reactor for converting methanol to hydrogen. Such a reactor used in connection with a fuel cell, in particular a PEM fuel cell, is conceivable. The latter fuel cells will be used as components of electric vehicle drive systems in the future. In PEM fuel cells, it is advantageous to use a polymeric fixed electrolyte compared to other fuel cells, which allows for a simple and compact cell construction. PEM fuel cells exhibit a high power density of about 1 W / cm 2 at an operating temperature of 80 ° C. It is known that platinum (Pt) is the most effective electrocatalyst for oxidizing pure hydrogen in an acidic electrolyte such as a PEM fuel cell. However, since certain infrastructure for vehicles is to be used in the future, ie, liquid fuels should be driven out, it is necessary to convert liquid methanol to hydrogen in a vehicle by a reforming reaction. When methanol is converted to hydrogen, by-products such as CO are formed, which is disadvantageous because it acts as a catalyst harmful substance for the electrocatalyst Pt. If the fuel gas also contains CO in addition to hydrogen, the efficiency of the cell will be dramatically reduced. Therefore, in order to generate a hydrogen fuel gas having a CO content of 10 ppm or less between the reformer and the PEM fuel cell, it is necessary to reprocess the gas. Desirable purity can currently only be achieved using Pd / Ag membranes. The acquisition cost of such membranes is very high and disadvantageous. Another possibility of meeting the purity requirements is based on the chemical conversion of CO to methane with hydrogen (methanation reaction). If the reaction temperature is low (180 ° C.) and a noble metal catalyst is used, the amount of CO can be reduced to 10 ppm in such a reprocessing unit. However, a prerequisite for this is that CO 2 must be removed from the gas mixture in advance. CO 2 undergoes a methanation reaction under the same reaction conditions or is dominated by conversion to CO at slightly higher reaction temperatures. It is an object of the present invention to provide a reactor for converting methanol to hydrogen so that hydrogen is used directly as a fuel gas in a PEM fuel cell. The above object has been solved by a reactor having the structure of the main claim. This reactor is used to carry out the method of the subclaims. The reactor has a membrane that divides the reactor into two chambers. The membrane filtration of CO 2 from a mixture of hydrogen · CO · CO 2. Therefore, this membrane is practically impermeable to CO 2 . CO and, in particular, hydrogen permeate this membrane. In the present invention, a ceramic film is particularly used. Methanol is introduced into the first chamber where it is converted to hydrogen. This conversion takes place, for example, at the required conversion temperature with a suitable catalyst. The means for heating the first chamber is to bring the required conversion temperature. CO and hydrogen pass through the membrane and enter the second chamber. Here, CO is converted to methane. Product gas generated in the second chamber substantially free of CO and CO 2. This product gas is introduced directly to the anode side of the (PEM) fuel cell. It is advantageous to provide a means for generating reaction heat for the methanol reforming reaction from the residual gas (not the reaction product diffused into the second chamber or the converted methanol). As a means for generating heat of reaction, for example, a normal burner is suitable. In an advantageous and simple construction, the reactor is formed by a tubular membrane inside another tube (reaction tube). Thus, a ring gap is created between the outer wall of the membrane and the inner wall of the reaction tube. The ring gap is filled with a reforming catalyst, and the ring gap assumes the function of the first chamber (first section). The heat of reaction required in the first chamber is obtained by heating the outer wall of the reaction tube. The second chamber (second zone) is in a tubular membrane, which is filled with a methanation catalyst. Since a concentration drop and a pressure drop occur between the first reaction chamber and the second reaction chamber, hydrogen and CO gas generated in the first chamber pass through the membrane and move to the second chamber. Unconverted methanol and other (including oxygen) reaction products in the first chamber exit the reactor via the ring gap. Advantageously, means are provided for the residual gas to leave the first chamber again and to be introduced into the heating means (burner). Here, if necessary, the residual gas is mixed with fresh methanol and burned, so that a methanol reforming reaction, that is, reaction heat for heating the first reaction zone is generated. Mixture of hydrogen and CO in the first chamber does not contain a CO 2 (almost). This mixture directly contacts the methanation catalyst in the second chamber (inner space) of the reactor, so that the CO is converted to methane. The product gas is introduced to the anode side of the PEM fuel cell. In a tubular structure, a strong endothermic reaction is advantageously linked to a strong exothermic reaction via a permeable membrane. Undesired temperature rises in the methanation catalyst are prevented by the reforming reaction taking place in the sleeve. This reactor is made especially of a ceramic material. The membrane is advantageously made of an oxide based on Al 2 O 3 and / or SiO. These materials have high separation coefficients for hydrogen and CO 2 under the reaction conditions of methanol reforming. These materials do not degrade, have no problems with modeling, and are inexpensive. The present invention will be described in more detail with reference to the drawings and the following data. The attached figure shows the tubular membrane 1 in cross-section. This membrane is surrounded by a jacket-shaped circular tube 2. The ring gap 3 forms a first chamber. The second chamber 4 is inside the tubular membrane 1. The membrane is sealed at one end of the tube. At the other end, the product gas is introduced into the PEM fuel cell via the discharge conduit 5. Methanol is introduced into the first chamber of the reactor via an inlet conduit 6. The residual gas generated in the first chamber is introduced via a discharge conduit 7 into a burner, not shown. The burner heats the reactor externally if necessary. A 70 kW class passenger car requires a fuel cell that outputs 170 kW of power. Therefore, the value of the flow rate of hydrogen to be prepared is about 0.158 mol / s. The hydrogen must be in pure form (less than 10 ppm CO) after the second chamber. Based on the experimentally determined permeability of the ceramic film to hydrogen at 200 ° C (20 * 10 -7 mol / m 2 / s / Pa), the minimum required film area at a pressure difference of 5 * 10 5 Pa Is 15.8 dm 2 . Hydrogen evolution is based on methanol reforming in the first section. When the temperature is 250 ° C., assuming the rate of formation of hydrogen experimentally determined (2~4Nm 3 / dm 3), the necessary reforming catalyst volume, can be determined 3.16dm 3. If 4 l of a highly active noble metal catalyst is placed in the second reaction zone, adjusting the temperature around 180 ° C. methanates the CO contained in the permeable membrane. The component of 2% by volume of CO produced by the reforming drops to 10 ppm at a sufficiently low space velocity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 シュティミング・ウルリッヒ ドイツ連邦共和国、D―52074 アーヘン、 ヴァールザー・ストラーセ、47────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Stimming Ulrich             Germany, D-52074 Aachen,             Walser Strasse, 47

Claims (1)

【特許請求の範囲】 1.反応装置を二つの室(3,4)に分割し、水素・CO・CO2の混合物からC O2を濾過する膜(1)と、 メタノールを第一の室に導入し、メタノールをこの第一の室内で水素を含む ガスに変換する手段と、 第二の室でCOをメタンに変換する手段と、 を備えていることを特徴とするメタノールを水素に変換する反応装置。 2.第一の室(3)を第二の室(4)から分離する円管状の膜(1)を備えてい ることを特徴とする請求項1に記載の円管状の反応装置。 3.以下の工程、 メタノールを水素、二酸化炭素と一酸化炭素から成るガス混合物に変換し、 このガス混合物から二酸化炭素を除去し、 一酸化炭素をメタンに変換する、 から成ることを特徴とするメタノールを水素に変換する方法。[Claims] 1. The reactor was divided into two chambers (3,4), from a mixture of hydrogen · CO · CO 2 and film (1) for filtering C O 2, introducing the methanol into the first chamber, the methanol the first A reactor for converting methanol to hydrogen, comprising: means for converting gas into a gas containing hydrogen in one chamber; and means for converting CO to methane in a second chamber. 2. The tubular reactor according to claim 1, characterized in that it comprises a tubular membrane (1) separating the first chamber (3) from the second chamber (4). 3. Converting methanol to a gas mixture comprising hydrogen, carbon dioxide and carbon monoxide, removing carbon dioxide from the gas mixture, and converting carbon monoxide to methane. How to convert to hydrogen.
JP09540374A 1996-05-10 1997-04-26 Membrane reactor for producing hydrogen that does not contain CO or CO2 Pending JP2000510433A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19618816.4 1996-05-10
DE19618816A DE19618816C2 (en) 1996-05-10 1996-05-10 Membrane reactor for the production of CO and CO¶2¶ free hydrogen
PCT/DE1997/000880 WO1997043796A1 (en) 1996-05-10 1997-04-26 Membrane reactor for producing co- and co2-free hydrogen

Publications (1)

Publication Number Publication Date
JP2000510433A true JP2000510433A (en) 2000-08-15

Family

ID=7793921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09540374A Pending JP2000510433A (en) 1996-05-10 1997-04-26 Membrane reactor for producing hydrogen that does not contain CO or CO2

Country Status (4)

Country Link
JP (1) JP2000510433A (en)
AU (1) AU2949697A (en)
DE (1) DE19618816C2 (en)
WO (1) WO1997043796A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068710A (en) * 2000-08-31 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for removing co and apparatus for generating fuel cells using it
JP2003522087A (en) * 1998-10-14 2003-07-22 アイダテック・エルエルシー Fuel processor
JP2004531440A (en) * 2001-03-05 2004-10-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Apparatus and method for producing hydrogen
CN112705116A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Heavy oil hydrogenation reactor and hydrogenation method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152995A (en) 1999-03-22 2000-11-28 Idatech Llc Hydrogen-permeable metal membrane and method for producing the same
US5997594A (en) * 1996-10-30 1999-12-07 Northwest Power Systems, Llc Steam reformer with internal hydrogen purification
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
DE19817534A1 (en) * 1998-04-16 1999-10-21 Mannesmann Ag Production of electrical energy from hydrogen-rich crude gas
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
CH694150A5 (en) * 1998-11-10 2004-08-13 Ati Properties Inc A Delaware Hydrogen separation membrane.
DE19904401C2 (en) * 1999-02-04 2001-05-17 Daimler Chrysler Ag Hydrogen generation plant with membrane reactor
US6451464B1 (en) 2000-01-03 2002-09-17 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
EP1278700B1 (en) * 2000-04-21 2005-11-09 Institut Francais Du Petrole Hydrogen derived from methanol cracking is used as a clean fuel for power generation while reinjecting co-product carbon dioxide
JP4742405B2 (en) 2000-06-28 2011-08-10 トヨタ自動車株式会社 Fuel reformer
US6572837B1 (en) 2000-07-19 2003-06-03 Ballard Power Systems Inc. Fuel processing system
JP3871501B2 (en) 2000-08-07 2007-01-24 株式会社ノリタケカンパニーリミテド Zeolite membrane, production method thereof and membrane reactor
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
DE102018106076A1 (en) * 2018-03-15 2019-09-19 Karl Bau Gmbh Process and arrangement for methanol synthesis
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469944A (en) * 1968-05-13 1969-09-30 Joseph P Bocard Process and apparatus for the manufacture of hydrogen for fuel cells
GB8619373D0 (en) * 1986-08-08 1986-09-17 Ici Plc Hydrogenation
FR2608144B1 (en) * 1986-12-16 1989-03-24 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF HYDROGEN BY CATALYTIC REFORMING OF METHANOL WITH WATER VAPOR
JPS63274063A (en) * 1987-04-30 1988-11-11 Sanyo Electric Co Ltd Fuel cell power generating system
JPH0263545A (en) * 1988-08-30 1990-03-02 Toshiaki Kabe Reaction tube
FR2655873B1 (en) * 1989-12-20 1992-04-10 Medal Lp PROCESS AND DEVICE FOR THE PERIMATION REMOVAL OF CARBON MONOXIDE IN A GAS MIXTURE BASED ON HYDROGEN.
JPH0465301A (en) * 1990-07-02 1992-03-02 Marutani Kakoki Kk Production of pure hydrogen
DE4131309A1 (en) * 1991-09-20 1993-03-25 Metallgesellschaft Ag METHOD FOR PRODUCING HYDROGEN FROM A RAW GAS FROM THE GASIFICATION OF SOLID, LIQUID OR GASEOUS FUELS
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
DE4408962C2 (en) * 1994-03-16 1998-01-22 Daimler Benz Ag Process for removing carbon monoxide from a methanol / steam reforming process gas and apparatus using the same
JP3432892B2 (en) * 1994-06-08 2003-08-04 日本碍子株式会社 Method for removing CO from reformed gas
DE4423587C2 (en) * 1994-07-06 1996-09-05 Daimler Benz Ag Device for the production of hydrogen by means of partial oxidation and / or steam reforming of methanol
EP0729196A1 (en) * 1995-02-27 1996-08-28 FINMECCANICA S.p.A. AZIENDA ANSALDO Fuel cell integrated with catalytic reactor producing hydrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522087A (en) * 1998-10-14 2003-07-22 アイダテック・エルエルシー Fuel processor
JP2002068710A (en) * 2000-08-31 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for removing co and apparatus for generating fuel cells using it
JP4682403B2 (en) * 2000-08-31 2011-05-11 株式会社Ihi CO removing device and fuel cell power generator using the same
JP2004531440A (en) * 2001-03-05 2004-10-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Apparatus and method for producing hydrogen
CN112705116A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Heavy oil hydrogenation reactor and hydrogenation method
CN112705116B (en) * 2019-10-25 2021-10-08 中国石油化工股份有限公司 Heavy oil hydrogenation reactor and hydrogenation method

Also Published As

Publication number Publication date
DE19618816A1 (en) 1997-11-13
WO1997043796A1 (en) 1997-11-20
AU2949697A (en) 1997-12-05
DE19618816C2 (en) 1999-08-26

Similar Documents

Publication Publication Date Title
JP2000510433A (en) Membrane reactor for producing hydrogen that does not contain CO or CO2
JP4184037B2 (en) Hydrogen production equipment
US6129861A (en) Membrane reactor for producing CO- and CO2 -free hydrogen
US5427747A (en) Method and apparatus for producing oxygenates from hydrocarbons
US6896709B1 (en) Miniature fuel reformer and system using metal thin film
US20070157517A1 (en) Single stage membrane reactor for high purity hydrogen production
CA2428548C (en) Methanol-steam reformer
JPH06321501A (en) Electrochemical apparatus and hydrogen generation
EP1355372B1 (en) Apparatus and method for gas generation in a fuel cell
CN109399561A (en) A kind of online hydrogen generating system and method
JP3297246B2 (en) Cogeneration method
JP2001146404A (en) Apparatus for producing hydrogen gas
JP2001172003A (en) Reforming apparatus
JP4008051B2 (en) Power generation method
JP2007524553A (en) Fuel processing system having a membrane separator
JP3971564B2 (en) Fuel cell system
CN101295795A (en) Alkane cracking and fuel cell compound power generation system
JPH09266005A (en) Solid high polymer fuel cell system
CN114132896A (en) Device and method for preparing hydrogen by oxidizing and reforming ethanol
JP2755685B2 (en) Hydrogen production method for fuel cell
JP2955054B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP2007270256A (en) Apparatus for producing hydrogen, method for producing hydrogen and fuel cell power generator
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
JPH0757758A (en) Fuel cell system
JP2003192302A (en) Hydrogen production apparatus