WO1997043796A1 - Membrane reactor for producing co- and co2-free hydrogen - Google Patents

Membrane reactor for producing co- and co2-free hydrogen Download PDF

Info

Publication number
WO1997043796A1
WO1997043796A1 PCT/DE1997/000880 DE9700880W WO9743796A1 WO 1997043796 A1 WO1997043796 A1 WO 1997043796A1 DE 9700880 W DE9700880 W DE 9700880W WO 9743796 A1 WO9743796 A1 WO 9743796A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
chamber
membrane
methanol
reactor
Prior art date
Application number
PCT/DE1997/000880
Other languages
German (de)
French (fr)
Inventor
Josefin Meusinger
Lambertus G. J. De Haart
Ulrich Stimming
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to AU29496/97A priority Critical patent/AU2949697A/en
Priority to JP09540374A priority patent/JP2000510433A/en
Publication of WO1997043796A1 publication Critical patent/WO1997043796A1/en
Priority to US09/185,228 priority patent/US6129861A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0407Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
    • B01J8/0411Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds the beds being concentric
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00117Controlling the temperature by indirect heating or cooling employing heat exchange fluids with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a reactor for converting methanol into hydrogen.
  • Such reactors are intended for use in connection with fuel cells, in particular with PEM fuel cells. In the future, the latter are to be used as components of electrical drive systems in vehicles.
  • PEM fuel cells In comparison to other fuel cells, a solid polymer electrolyte can be used in PEM fuel cells, which enables simple handling and the construction of compact cells.
  • PEM fuel cells have a high power density of approx. 1 W / cm at operating temperatures of 80 ° C.
  • Platinum (Pt) has proven to be the most effective electrocatalyst for the oxidation of pure hydrogen in acidic electrolytes, such as in the PEM fuel cell. But since the existing infrastructure for the car will also be used in the future, i.e. liquid fuel to be sold, liquid methanol must be converted to hydrogen in the vehicle by a reforming reaction.
  • the object of the invention is to provide a reactor which converts methanol into hydrogen in such a way that the hydrogen can be used directly as fuel gas in a PEM fuel cell.
  • the task is solved by a reactor with the features of the main claim. The reactor is used to carry out the method according to the independent claim.
  • the reactor has a membrane which divides the reactor into two chambers.
  • the membrane filters C0 2 out of a hydrogen-CO-C0 2 mixture. It is consequently practically impermeable to CO 2 . CO and especially hydrogen can cross the membrane.
  • Ceramic membranes in particular are provided in the invention.
  • Methanol is introduced into the first chamber, where it is converted into hydrogen.
  • the conversion takes place, for example, using a suitable catalyst at the conversion temperatures required for this.
  • Means for heating the first chamber provide the required transition temperatures.
  • CO and hydrogen permeate through the membrane into the second chamber. Here the CO is now converted into methane.
  • a conventional burner for example, is suitable as a means of generating the heat of reaction.
  • the reactor consists of a tubular membrane which is located in the interior of a further tube (reaction tube).
  • This annular gap is filled with a reforming catalyst and takes over the function of the first chamber (first zone).
  • Required heat of reaction in the first chamber is provided by heating the outer wall of the reaction tube.
  • the second chamber (second zone) is located within the tubular membrane and is filled with a methanation catalyst.
  • (Oxygen-containing) reaction products in the first chamber leave the reactor through the annular gap.
  • Means are advantageously provided which lead the residual gases out of the first chamber and feed them to a heating medium (burner).
  • the residual gases are burned in a mixture with fresh methanol, if necessary, and the heat of reaction for the methanol reforming reaction, ie the heating of the first reaction zone, is thus generated.
  • the hydrogen-CO mixture in the second chamber is (sufficiently) free of CO 2 . It will go directly to the methanation catalyst in the second chamber
  • a strongly endothermic reaction is advantageously coupled to a strongly exothermic reaction via the permeable membrane: an undesired rise in temperature in the methanation catalyst is prevented by the reforming reaction taking place in the shell.
  • the reactor is made in particular from ceramic materials.
  • the membrane advantageously consists of an oxide based on Al 2 O 3 and / or SiO. These materials have high separation factors for hydrogen / CO 2 under the reaction conditions of methanol reforming. They do not age, are easy to shape and inexpensive.
  • the invention is explained in more detail with reference to the figure and the following data.
  • the figure shows in cross section a tubular membrane 1, which is surrounded by an enveloping tube 2.
  • the annular gap 3 forms the first chamber.
  • the second chamber 4 is located inside the tubular membrane 1.
  • the membrane is closed at one end of the tube.
  • the product gases are fed via a discharge line 5 to a PEM fuel cell.
  • Methanol is fed to the first chamber of the reactor via a feed line 6.
  • Residual gases arising in the first chamber are fed via line 7 to a burner (not shown here) which, if necessary, heats the reactor from the outside.
  • a 70 kW passenger car needs a fuel cell that delivers 170 kW of electrical power. This results in a value for the hydrogen flow to be made available of approximately 0.158 mol / s. This hydrogen must be obtained in pure form (less than 10 ppm CO) after the second chamber. Based on experimentally determined permeation rates for ceramic membranes at 200 ° C. for hydrogen (20 * 10 "7 mol / m 2 / s / Pa), a minimum membrane area of at least 5 * 10 Pa is required 15.8 dm 2 .
  • the generation of hydrogen is based on methanol reforming in the first zone.
  • the necessary reforming catalyst volume can be determined from the experimentally determined rate of formation of hydrogen (2-4 Nm / h / dm cat ): 3.16 dm. If 4 liters of a highly active noble metal catalyst are placed in the second reaction zone, comes it at a temperature around 180 ° C for methanation of the CO contained in the permeate. The proportion of 2% by volume of CO produced during the reforming is thus reduced to 10 ppm at sufficiently low space velocities.

Abstract

The invention concerns a reactor for converting methanol into CO- and CO2-free hydrogen. The reactor comprises a membrane (1) which divides it into two chambers. The membrane filters CO2 out of a hydrogen-CO-CO2 mixture. Methanol is introduced into the first chamber (3) and is converted into hydrogen there by means of a catalyst. During this conversion, CO and CO2 are produced as by-products. A burner heats the first chamber, so ensuring that the required conversion temperatures are provided. CO and hydrogen are diffused through the membrane (1) into the second chamber (4) in which CO is converted into methane by means of a catalyst. The resultant hydrogen is now sufficiently free from CO and CO2 and can be fed directly as fuel gas to the anode side of a PEM fuel cell.

Description

B e s c h r e i b u n gDescription
Membranreaktor zur Erzeugung von CO- und C02-freiem WasserstoffMembrane reactor for the production of CO and CO 2 -free hydrogen
Die Erfindung bezieht sich auf einen Reaktor zur Um¬ wandlung von Methanol in Wasserstoff.The invention relates to a reactor for converting methanol into hydrogen.
Gedacht sind solche Reaktoren für einen Einsatz in Ver¬ bindung mit Brennstoffzellen und zwar insbesondere mit PEM-Brennstoffzellen. Die letzteren sollen zukünftig als Komponenten von elektrischen Antriebssystemen in Fahrzeugen eingesetzt werden.Such reactors are intended for use in connection with fuel cells, in particular with PEM fuel cells. In the future, the latter are to be used as components of electrical drive systems in vehicles.
Vorteilhaft kann in PEM-BrennstoffZeilen im Vergleich zu anderen Brennstoffzellen ein polymerer Festelektro- lyt verwendet werden, der eine einfache Handhabung und die Konstruktion von kompakten Zellen ermöglicht. PEM- Brennstoffzellen zeigen eine hohe Leistungsdichte von ca. 1 W/cm bei Betriebstemperaturen von 80 °C.In comparison to other fuel cells, a solid polymer electrolyte can be used in PEM fuel cells, which enables simple handling and the construction of compact cells. PEM fuel cells have a high power density of approx. 1 W / cm at operating temperatures of 80 ° C.
Für die Oxidation von reinem Wasserstoff in sauren Elektrolyten wie in der PEM-Brennstoffzelle erweist sich Platin (Pt) als der effektivste Elektrokatalysa- tor. Da aber die für das Auto vorhandene Infrastruktur auch zukünftig genutzt werden, also flüssiger Brenn- stoff vertrieben werden soll, muß flüssiges Methanol im Fahrzeug durch eine Reformierungsreaktion zu Wasser¬ stoff umgesetzt werden.Platinum (Pt) has proven to be the most effective electrocatalyst for the oxidation of pure hydrogen in acidic electrolytes, such as in the PEM fuel cell. But since the existing infrastructure for the car will also be used in the future, i.e. liquid fuel to be sold, liquid methanol must be converted to hydrogen in the vehicle by a reforming reaction.
Nachteilhaft treten bei der Umsetzung von Methanol zu Wasserstoff Nebenprodukte wie CO auf, die als Katalysa¬ torgifte für den Elektrokatalysator Pt wirken. Enthält also das Brenngas neben Wasserstoff auch CO, tritt eine drastische Minderung der Zelleistung ein.By-products such as CO, which act as catalyst poisons for the electrocatalyst Pt, occur disadvantageously in the conversion of methanol to hydrogen. So if the fuel gas contains CO as well as hydrogen, the cell capacity is drastically reduced.
Daher muß eine Gasnachbehandlung zur Erzeugung von Was- serstoffbrenngas mit einem CO- Gehalt kleiner 10 ppm zwischen Reformer und PEM-Brennstoffzelle durchgeführt werden. Die gewünschte Reinheit kann derzeit nur durch Nutzung einer Pd/Ag-Membran erreicht werden. Die An¬ schaffungskosten für eine solche Membran sind nachteil- haft sehr hoch.For this reason, a gas aftertreatment to generate hydrogen fuel gas with a CO content of less than 10 ppm must be carried out between the reformer and the PEM fuel cell. The desired purity can currently only be achieved by using a Pd / Ag membrane. The acquisition costs for such a membrane are disadvantageously very high.
Eine andere Möglichkeit, den Reinheitsanforderungen ge¬ recht zu werden, basiert auf der chemischen Umsetzung von CO mit Wasserstoff zu Methan (Methanisierungsreak- tion) . Bei niedrigen Reaktionstemperaturen (180 °C) und Verwendung von Edelmetallkatalysatoren gelingt es, den CO-Gehalt in einer derartigen Gasnachbehandlungs- einheit auf 10 ppm abzusenken. Voraussetzung hierfür ist allerdings, daß zuvor das C02 aus dem Gasgemisch entfernt wurde. C02 unterliegt bei analogen Reaktions- bedingungen ebenfalls der Methanisierungsreaktion oder bei geringfügig höheren Reaktionstemperaturen der Kon¬ vertierung zu CO. Aufgabe der Erfindung ist die Schaffung eines Reaktors, der Methanol in Wasserstoff derart umwandelt, daß der Wasserstoff direkt als Brenngas in einer PEM-Brenn¬ stoffzelle eingesetzt werden kann. Gelöst wird die Aufgabe durch einen Reaktor mit den Merkmalen des Hauptanspruchs. Der Reaktor dient der Durchführung des Verfahrens gemäß Nebenanspruch.Another possibility of meeting the purity requirements is based on the chemical conversion of CO with hydrogen to methane (methanation reaction). At low reaction temperatures (180 ° C) and the use of noble metal catalysts, the CO content in such a gas aftertreatment unit can be reduced to 10 ppm. The prerequisite for this is, however, that the CO 2 has been removed from the gas mixture beforehand. C0 2 is also subject to the methanation reaction under analogous reaction conditions or to conversion to CO at slightly higher reaction temperatures. The object of the invention is to provide a reactor which converts methanol into hydrogen in such a way that the hydrogen can be used directly as fuel gas in a PEM fuel cell. The task is solved by a reactor with the features of the main claim. The reactor is used to carry out the method according to the independent claim.
Der Reaktor weist eine Membran auf, die den Reaktor in zwei Kammern unterteilt. Die Membran filtert C02 aus einem Wasserstoff-CO-C02-Gemisch heraus. Sie ist folg¬ lich praktisch undurchlässig für C02. CO und vor allem Wasserstoff können die Membran passieren.The reactor has a membrane which divides the reactor into two chambers. The membrane filters C0 2 out of a hydrogen-CO-C0 2 mixture. It is consequently practically impermeable to CO 2 . CO and especially hydrogen can cross the membrane.
Insbesondere keramische Membranen sind bei der Erfin¬ dung vorgesehen. In die erste Kammer wird Methanol eingeleitet und dort in Wasserstoff umgewandelt. Die Umwandlung erfolgt bei¬ spielsweise durch einen geeigneten Katalysator bei hierfür erforderlichen Umwandlungstemperaturen. Mittel zur Beheizung der ersten Kammer sorgen für die Bereit- Stellung der erforderlichen Umwandlungstemperaturen. CO und Wasserstoff permeieren durch die Membran in die zweite Kammer. Hier wird nun das CO in Methan umgewan¬ delt.Ceramic membranes in particular are provided in the invention. Methanol is introduced into the first chamber, where it is converted into hydrogen. The conversion takes place, for example, using a suitable catalyst at the conversion temperatures required for this. Means for heating the first chamber provide the required transition temperatures. CO and hydrogen permeate through the membrane into the second chamber. Here the CO is now converted into methane.
Die in der zweiten Kammer entstandenen Produktgase sind praktisch frei von CO und C02. Sie können nun direkt der Anodenseite einer (PEM-)Brennstoffzelle zugeführt werden. Vorteilhaft sind Mittel vorgesehen, mittels derer aus den Restgasen (=nicht in die zweite Kammer diffundierte Reaktionsprodukte sowie nicht umgesetztes Methanol) Reaktionswärme für die Methanol-Reformierungsreaktion erzeugt wird. Als Mittel zur Erzeugung der Reaktions¬ wärme ist beispielsweise ein konventioneller Brenner geeignet .The product gases generated in the second chamber are practically free of CO and CO 2 . They can now be fed directly to the anode side of a (PEM) fuel cell. Means are advantageously provided by means of which reaction heat for the methanol reforming reaction is generated from the residual gases (= reaction products not diffused into the second chamber and unreacted methanol). A conventional burner, for example, is suitable as a means of generating the heat of reaction.
Bei einem vorteilhaft einfachen Aufbau besteht der Re¬ aktor aus einer röhrenförmigen Membran, die sich im In- neren eines weiteren Rohres (Reaktionsrohr) befindet.In the case of an advantageously simple construction, the reactor consists of a tubular membrane which is located in the interior of a further tube (reaction tube).
Es entsteht so ein Ringspalt zwischen der Außenwand der Membran und der Innenwand des Reaktionsrohres. Dieser Ringspalt ist mit einem Reformierungskatalysator ge¬ füllt und übernimmt die Funktion der ersten Kammer (erste Zone) . Erforderliche Reaktionswärme in der er¬ sten Kammer wird durch Beheizen der Außenwand des Reak¬ tionsrohres zur Verfügung gestellt . Die zweite Kammer (zweite Zone) befindet sich innerhalb der röhrenförmi¬ gen Membran und ist mit einem Methanisierungskatalysa- tor gefüllt.This creates an annular gap between the outer wall of the membrane and the inner wall of the reaction tube. This annular gap is filled with a reforming catalyst and takes over the function of the first chamber (first zone). Required heat of reaction in the first chamber is provided by heating the outer wall of the reaction tube. The second chamber (second zone) is located within the tubular membrane and is filled with a methanation catalyst.
Aufgrund des bestehenden Konzentrations- und Druckge¬ fälles zwischen erster und zweiter Reaktorkammer wan¬ dern die in der ersten Kammer erzeugten Wasserstoff- und CO-Gase durch die Membran hindurch in die zweite Kammer. Nicht umgesetztes Methanol und die anderenDue to the existing concentration and pressure gradient between the first and second reactor chambers, the hydrogen and CO gases generated in the first chamber migrate through the membrane into the second chamber. Unreacted methanol and the others
(sauerstoffhaltigen) Reaktionsprodukte in der ersten Kammer verlassen den Reaktor über den Ringspalt . Vorteilhaft sind Mittel vorgesehen, die die Restgase aus der ersten Kammer wieder heraus- und einem Heizmit¬ tel (Brenner) zuführen. Hier werden die Restgase erfor¬ derlichenfalls im Gemisch mit frischem Methanol ver- brannt und so die Reaktionswärme für die Methanol-Re- formierungsreaktion, also hier die Beheizung der ersten Reaktionszone erzeugt.(Oxygen-containing) reaction products in the first chamber leave the reactor through the annular gap. Means are advantageously provided which lead the residual gases out of the first chamber and feed them to a heating medium (burner). Here, the residual gases are burned in a mixture with fresh methanol, if necessary, and the heat of reaction for the methanol reforming reaction, ie the heating of the first reaction zone, is thus generated.
Das Wasserstoff-CO-Gemisch in der zweiten Kammer ist (hinreichend) frei von C02. Es wird direkt mit dem Methanisierungskatalysator in der zweiten KammerThe hydrogen-CO mixture in the second chamber is (sufficiently) free of CO 2 . It will go directly to the methanation catalyst in the second chamber
(Innenraum) des Reaktors kontaktiert und so das CO in Methan umgewandelt. Die Produktgase können dann der Anodenseite der PEM-Brennstoffzelle zugeführt werden.(Interior) of the reactor contacted and thus converted the CO into methane. The product gases can then be fed to the anode side of the PEM fuel cell.
Beim röhrenförmigen Aufbau ist eine stark endotherme mit einer stark exothermen Reaktion über die permeable Membran in vorteilhafter Weise gekoppelt: Ein unerwünschter Tempe¬ raturanstieg im Methanisierungskatalysator wird durch die in der Hülle ablaufende Reformierungsreaktion verhindert.In the case of a tubular structure, a strongly endothermic reaction is advantageously coupled to a strongly exothermic reaction via the permeable membrane: an undesired rise in temperature in the methanation catalyst is prevented by the reforming reaction taking place in the shell.
Der Reaktor wird insbesondere aus keramischen Materia- lien hergestellt.The reactor is made in particular from ceramic materials.
Die Membran besteht vorteilhaft aus einem Oxid auf Ba¬ sis von Al203 und/oder SiO. Diese Materialien weisen bei Reaktionsbedingungen einer Methanolreformierung hohe Trennfaktoren für Wasserstoff/C02 auf. Sie altern nicht, sind unproblematisch bezüglich Formgebung und preiswert .The membrane advantageously consists of an oxide based on Al 2 O 3 and / or SiO. These materials have high separation factors for hydrogen / CO 2 under the reaction conditions of methanol reforming. They do not age, are easy to shape and inexpensive.
Die Erfindung wird anhand der Figur und der nachfolgenden Daten näher erläutert . Die Figur zeigt im Querschnitt eine röhrenförmige Membran 1, die von einem einhüllenden Rohr 2 umgeben wird. Der Ringspalt 3 bildet die erste Kammer. Die zweite Kammer 4 befindet sich im Inneren der röhrenförmigen Membran 1. Die Membran ist an einem Rohrende verschlossen. Am anderen Ende werden die Produktgase über eine Ableitung 5 einer PEM-Brennstoffzelle zugeleitet. Methanol wird über eine Zuleitung 6 der ersten Kammer des Reaktors zugeführt . In der ersten Kammer entstehende Restgase werden über die Ableitung 7 einem hier nicht dargestellten Brenner zugeführt, der den Reaktor erforderlichenfalls von außen beheizt .The invention is explained in more detail with reference to the figure and the following data. The figure shows in cross section a tubular membrane 1, which is surrounded by an enveloping tube 2. The annular gap 3 forms the first chamber. The second chamber 4 is located inside the tubular membrane 1. The membrane is closed at one end of the tube. At the other end, the product gases are fed via a discharge line 5 to a PEM fuel cell. Methanol is fed to the first chamber of the reactor via a feed line 6. Residual gases arising in the first chamber are fed via line 7 to a burner (not shown here) which, if necessary, heats the reactor from the outside.
Ein Personenkraftwagen der Leistungsklasse 70 kW benötigt eine Brennstoffzelle, die 170 kW an elektrischer Leistung liefert. Daraus ergibt sich ein Wert für den bereitzu¬ stellenden Wasserstoffström von ca. 0,158 mol/s. Dieser Wasserstoff muß in reiner Form (weniger als 10 ppm CO) nach der zweiten Kammer anfallen. Ausgehend von experi¬ mentell bestimmten Permeationsraten für keramische Membra- nen bei 200 °C für Wasserstoff (20*10"7 mol/m2/s/Pa) ergibt sich bei einer Druckdifferenz von 5 * 10 Pa eine min¬ destens notwendige Membranfläche von 15,8 dm2.A 70 kW passenger car needs a fuel cell that delivers 170 kW of electrical power. This results in a value for the hydrogen flow to be made available of approximately 0.158 mol / s. This hydrogen must be obtained in pure form (less than 10 ppm CO) after the second chamber. Based on experimentally determined permeation rates for ceramic membranes at 200 ° C. for hydrogen (20 * 10 "7 mol / m 2 / s / Pa), a minimum membrane area of at least 5 * 10 Pa is required 15.8 dm 2 .
Die Erzeugung des Wasserstoffes basiert auf der Methanol- reformierung in der ersten Zone. Bei einer Temperatur von 250 °C kann von der experimentell bestimmten Bildungsge¬ schwindigkeit von Wasserstoff (2-4 Nm /h/dm kat) ausgehend, das notwendige Reformierungskatalysatorvolumen ermittelt werden: 3,16 dm . Werden 4 1 eines hochaktiven Edelmetall- katalysators in der zweiten Reaktionszone plaziert, kommt es bei einer sich einstellenden Temperatur um 180 °C zur Methanisierung des im Permeat enthaltenen CO's. Der bei der Reformierung entstehende Anteil von 2 Vol.-% CO wird so bei hinreichend kleinen Raumgeschwindigkeiten auf 10 ppm abgebaut . The generation of hydrogen is based on methanol reforming in the first zone. At a temperature of 250 ° C, the necessary reforming catalyst volume can be determined from the experimentally determined rate of formation of hydrogen (2-4 Nm / h / dm cat ): 3.16 dm. If 4 liters of a highly active noble metal catalyst are placed in the second reaction zone, comes it at a temperature around 180 ° C for methanation of the CO contained in the permeate. The proportion of 2% by volume of CO produced during the reforming is thus reduced to 10 ppm at sufficiently low space velocities.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Reaktor zur Umwandlung von Methanol in Wasserstoff1. Reactor for converting methanol to hydrogen
- mit einer Membran (1) zur Unterteilung des Reak¬ tors in zwei Kammern (3, 4) , wobei die Membran eine Herausfilterung von C02 aus einem Wasser- Stoff-CO-C02-Gemisch bewirkt,with a membrane (1) for dividing the reactor into two chambers (3, 4), the membrane filtering out C0 2 from a hydrogen / CO 2 mixture,
- mit Mitteln zur Einleitung von Methanol in die er¬ ste Kammer und zur Umsetzung des Methanols in Was¬ serstoffhaltige Gase in dieser ersten Kammer,with means for introducing methanol into the first chamber and for converting the methanol into hydrogen-containing gases in this first chamber,
- mit Mitteln zur Umwandlung von CO in Methan in der zweiten Kammer.- With means for converting CO to methane in the second chamber.
2. Röhrenförmiger Reaktor nach vorhergehendem Anspruch mit einer röhrenförmigen Membran (1) , die die erste Kammer (3) von der zweiten Kammer (4) trennt.2. A tubular reactor according to the preceding claim with a tubular membrane (1) which separates the first chamber (3) from the second chamber (4).
3. Verfahren zur Umwandlung von Methanol in Wasserstoff mit den Schritten:3. Method for converting methanol to hydrogen with the steps:
- Umwandlung von Methanol in ein aus Wasserstoff, Kohlendioxid und Kohlenmonoxid bestehendes Gasge- misch,Conversion of methanol into a gas mixture consisting of hydrogen, carbon dioxide and carbon monoxide,
- Entfernung des Kohlendioxids aus dem Gasgemisch,Removal of the carbon dioxide from the gas mixture,
- Umwandlung des Kohlenmonoxids in Methan. - Conversion of carbon monoxide to methane.
PCT/DE1997/000880 1996-05-10 1997-04-26 Membrane reactor for producing co- and co2-free hydrogen WO1997043796A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU29496/97A AU2949697A (en) 1996-05-10 1997-04-26 Membrane reactor for producing co- and co2-free hydrogen
JP09540374A JP2000510433A (en) 1996-05-10 1997-04-26 Membrane reactor for producing hydrogen that does not contain CO or CO2
US09/185,228 US6129861A (en) 1996-05-10 1998-11-03 Membrane reactor for producing CO- and CO2 -free hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19618816.4 1996-05-10
DE19618816A DE19618816C2 (en) 1996-05-10 1996-05-10 Membrane reactor for the production of CO and CO¶2¶ free hydrogen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/185,228 Continuation US6129861A (en) 1996-05-10 1998-11-03 Membrane reactor for producing CO- and CO2 -free hydrogen

Publications (1)

Publication Number Publication Date
WO1997043796A1 true WO1997043796A1 (en) 1997-11-20

Family

ID=7793921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000880 WO1997043796A1 (en) 1996-05-10 1997-04-26 Membrane reactor for producing co- and co2-free hydrogen

Country Status (4)

Country Link
JP (1) JP2000510433A (en)
AU (1) AU2949697A (en)
DE (1) DE19618816C2 (en)
WO (1) WO1997043796A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6419728B1 (en) 1999-03-22 2002-07-16 Idatech, Llc Hydrogen-permeable metal membrane and method for producing the same
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6451464B1 (en) 2000-01-03 2002-09-17 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
US6572837B1 (en) 2000-07-19 2003-06-03 Ballard Power Systems Inc. Fuel processing system
US6582499B2 (en) * 1998-11-10 2003-06-24 Ati Properties, Inc. Fluid separation assembly
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
US7390347B2 (en) 2000-08-07 2008-06-24 Noritake Co., Ltd. Zeolite membranes for selective oxidation of carbon monoxide in mixed hydrogen gas source
WO2019174679A1 (en) * 2018-03-15 2019-09-19 Karl Bau Gmbh Method and arrangement for methanol synthesis
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997594A (en) * 1996-10-30 1999-12-07 Northwest Power Systems, Llc Steam reformer with internal hydrogen purification
DE19817534A1 (en) * 1998-04-16 1999-10-21 Mannesmann Ag Production of electrical energy from hydrogen-rich crude gas
BR9914560A (en) * 1998-10-14 2001-06-26 Ida Tech Llc Steam reformer, and, process to produce hydrogen that contains concentrations of carbon monoxide and carbon dioxide below a minimum defined level
DE19904401C2 (en) * 1999-02-04 2001-05-17 Daimler Chrysler Ag Hydrogen generation plant with membrane reactor
WO2002004347A1 (en) * 2000-04-21 2002-01-17 Institut Français Du Petrole Hydrogen derived from methanol cracking is used as a clean fuel for power generation while reinjecting co-product carbon dioxide
JP4742405B2 (en) 2000-06-28 2011-08-10 トヨタ自動車株式会社 Fuel reformer
JP4682403B2 (en) * 2000-08-31 2011-05-11 株式会社Ihi CO removing device and fuel cell power generator using the same
AU2002249256A1 (en) * 2001-03-05 2002-09-19 Shell Internationale Research Maatschappij B.V. Apparatus and process for the production of hydrogen
CN112705116B (en) * 2019-10-25 2021-10-08 中国石油化工股份有限公司 Heavy oil hydrogenation reactor and hydrogenation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469944A (en) * 1968-05-13 1969-09-30 Joseph P Bocard Process and apparatus for the manufacture of hydrogen for fuel cells
JPS63274063A (en) * 1987-04-30 1988-11-11 Sanyo Electric Co Ltd Fuel cell power generating system
US4840783A (en) * 1986-12-16 1989-06-20 Institut Francais Du Petrole Process for the production of hydrogen by catalytic reforming of methanol with water vapor
JPH0263545A (en) * 1988-08-30 1990-03-02 Toshiaki Kabe Reaction tube
JPH0465301A (en) * 1990-07-02 1992-03-02 Marutani Kakoki Kk Production of pure hydrogen
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
JPH07330304A (en) * 1994-06-08 1995-12-19 Ngk Insulators Ltd Removal of co in reformed gas
DE4423587A1 (en) * 1994-07-06 1996-01-11 Daimler Benz Ag High purity hydrogen, free of carbon mon:oxide, for fuel cells
EP0729196A1 (en) * 1995-02-27 1996-08-28 FINMECCANICA S.p.A. AZIENDA ANSALDO Fuel cell integrated with catalytic reactor producing hydrogen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8619373D0 (en) * 1986-08-08 1986-09-17 Ici Plc Hydrogenation
FR2655873B1 (en) * 1989-12-20 1992-04-10 Medal Lp PROCESS AND DEVICE FOR THE PERIMATION REMOVAL OF CARBON MONOXIDE IN A GAS MIXTURE BASED ON HYDROGEN.
DE4131309A1 (en) * 1991-09-20 1993-03-25 Metallgesellschaft Ag METHOD FOR PRODUCING HYDROGEN FROM A RAW GAS FROM THE GASIFICATION OF SOLID, LIQUID OR GASEOUS FUELS
DE4408962C2 (en) * 1994-03-16 1998-01-22 Daimler Benz Ag Process for removing carbon monoxide from a methanol / steam reforming process gas and apparatus using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469944A (en) * 1968-05-13 1969-09-30 Joseph P Bocard Process and apparatus for the manufacture of hydrogen for fuel cells
US4840783A (en) * 1986-12-16 1989-06-20 Institut Francais Du Petrole Process for the production of hydrogen by catalytic reforming of methanol with water vapor
JPS63274063A (en) * 1987-04-30 1988-11-11 Sanyo Electric Co Ltd Fuel cell power generating system
JPH0263545A (en) * 1988-08-30 1990-03-02 Toshiaki Kabe Reaction tube
JPH0465301A (en) * 1990-07-02 1992-03-02 Marutani Kakoki Kk Production of pure hydrogen
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
JPH07330304A (en) * 1994-06-08 1995-12-19 Ngk Insulators Ltd Removal of co in reformed gas
US5612012A (en) * 1994-06-08 1997-03-18 Ngk Insulators, Ltd. Method for removing carbon monoxide from reformed gas
DE4423587A1 (en) * 1994-07-06 1996-01-11 Daimler Benz Ag High purity hydrogen, free of carbon mon:oxide, for fuel cells
EP0729196A1 (en) * 1995-02-27 1996-08-28 FINMECCANICA S.p.A. AZIENDA ANSALDO Fuel cell integrated with catalytic reactor producing hydrogen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 099 (E - 724) 8 March 1989 (1989-03-08) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 242 (C - 0721) 23 May 1990 (1990-05-23) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 265 (C - 0951) 16 June 1992 (1992-06-16) *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 001 28 February 1995 (1995-02-28) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
US6582499B2 (en) * 1998-11-10 2003-06-24 Ati Properties, Inc. Fluid separation assembly
US6419728B1 (en) 1999-03-22 2002-07-16 Idatech, Llc Hydrogen-permeable metal membrane and method for producing the same
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6451464B1 (en) 2000-01-03 2002-09-17 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
US6818335B2 (en) 2000-01-03 2004-11-16 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
US7008708B2 (en) 2000-01-03 2006-03-07 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
US7368195B2 (en) 2000-01-03 2008-05-06 Idatech, Llc System and method for early detection of contaminants in a fuel processing system
US6458189B1 (en) 2000-03-23 2002-10-01 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6572837B1 (en) 2000-07-19 2003-06-03 Ballard Power Systems Inc. Fuel processing system
US7390347B2 (en) 2000-08-07 2008-06-24 Noritake Co., Ltd. Zeolite membranes for selective oxidation of carbon monoxide in mixed hydrogen gas source
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
WO2019174679A1 (en) * 2018-03-15 2019-09-19 Karl Bau Gmbh Method and arrangement for methanol synthesis
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers

Also Published As

Publication number Publication date
AU2949697A (en) 1997-12-05
JP2000510433A (en) 2000-08-15
DE19618816A1 (en) 1997-11-13
DE19618816C2 (en) 1999-08-26

Similar Documents

Publication Publication Date Title
WO1997043796A1 (en) Membrane reactor for producing co- and co2-free hydrogen
EP0934772B1 (en) Reactor for carrying out catalytic chemical reactions, in particular a reactor for methanol reforming
DE69830222T2 (en) Reformer and method of its operation
WO1999045172A1 (en) Method and device for obtaining synthesis gas
DE10062662A1 (en) Methanol reforming catalyst comprising first catalytic component containing copper oxide and zinc oxide, and a second catalytic component containing metal oxide and platinum or palladium
DE19615562C1 (en) Device and method for the combined cleaning and compression of CO-containing hydrogen and use of the hydrogen obtained with the method as fuel gas in fuel cells
DE60101660T2 (en) solid oxide fuel cell
DE112006003579T5 (en) A catalyst having a dehydrogenation function or hydrogenation function, a fuel cell using the catalyst, and a hydrogen storage / supply device
DE10029468A1 (en) Fuel cell system for producing electrical energy comprises a reforming unit, a fuel cell and a hydrogen separating unit
US6129861A (en) Membrane reactor for producing CO- and CO2 -free hydrogen
DE10062578A1 (en) Methanol reforming catalyst useful for producing hydrogen for fuel cells comprises metal oxide support impregnated with palladium-zinc alloy
DE19902926C2 (en) Reactor plant and operating procedure therefor
DE10040282A1 (en) fuel cell
EP1012896B1 (en) Fuel cell with direct transformation of methanol into current
EP1224705B1 (en) Fuel cell having an internal reformer and a method for operating same
DE1671685A1 (en) Fuel cell and process for its operation
DE112017003988T5 (en) Hydrogen processing device
DE19652341C2 (en) Process for the preparation of fuel for fuel cells and suitable fuel cell for carrying out the process
DE19647534A1 (en) Electrode for an electrochemical energy converter
DE10143656B4 (en) A method of generating energy in a cracking reactor fuel cell fuel cell system and apparatus for carrying out the method
EP2200114B1 (en) Reformer fuel cell system
AT523122B1 (en) SOEC system and method for operating a SOEC system
DE602004006636T2 (en) AUXILIARY FORCED UNIT OF SOLID OXYGEN FUEL CELLS
DE19907796A1 (en) Reactor catalytically-converting hydrocarbon in presence of oxygen, to produce very pure hydrogen for use in e.g. vehicle fuel cells, employs selectively-permeable membranes for oxygen and hydrogen
DE10359231A1 (en) System and method for generating a reformate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09185228

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA