JPH062615A - Engine combustion system utilizing carbon dioxide - Google Patents

Engine combustion system utilizing carbon dioxide

Info

Publication number
JPH062615A
JPH062615A JP4160853A JP16085392A JPH062615A JP H062615 A JPH062615 A JP H062615A JP 4160853 A JP4160853 A JP 4160853A JP 16085392 A JP16085392 A JP 16085392A JP H062615 A JPH062615 A JP H062615A
Authority
JP
Japan
Prior art keywords
carbon dioxide
engine
fuel
heat
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160853A
Other languages
Japanese (ja)
Inventor
Katsuji Tanizaki
勝二 谷崎
Yukimoto Ishiko
超基 石子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP4160853A priority Critical patent/JPH062615A/en
Publication of JPH062615A publication Critical patent/JPH062615A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To recover the energy of exhaust heat or the like so far lost and make it usable as fuel by reforming methane by means of carbon dioxide in a way of utilizing the exhaust heat of an engine, generating hydrogen and carbon monoxide, and adding them to the fuel. CONSTITUTION:Fuel 1 is taken into an engine 2 by a fuel injector 6 and made into combustion. Since hot exhaust gas is exhausted out of this engine 2, this exhaust gas is induced into a reformer 3, and heat of this exhaust gas heat- exchanged with methane and carbon dioxide in this reformer 3. In brief, heat of the exhaust gas is utilized, reforming the methane is reformed with the separately recovered carbon dioxide at a reaction temperature, and hydrogen and carbon monoxide are thus generated. Those of hydrogen and carbon monoxide generated are added to the fuel 1, getting the engine 2 into a complete combustion. With this constitution, a part of the carbon dioxide so far discharged out is recovered and changed into combustible gas being utilizable, thus the discharge of this carbon dioxide is reducible in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二酸化炭素の排出量を
低減化したエンジン燃焼システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine combustion system with reduced carbon dioxide emissions.

【0002】[0002]

【従来の技術】一般に、自動車のエンジンは消費燃料エ
ネルギーに対する走行エネルギーの比率が非常に低く、
消費燃料エネルギーのほとんどは熱等により放出されて
無駄になっているのが現状である。一方、地球温暖化の
原因の一つとして自動車から排出される二酸化炭素が最
近問題となっている。しかしながら、従来の自動車では
排ガス中の二酸化炭素を固定回収するのが難しいことも
あり、何ら対策がなされていない。
2. Description of the Related Art Generally, an automobile engine has a very low ratio of running energy to fuel consumption energy,
At present, most of fuel energy consumed is wasted because it is released by heat. On the other hand, carbon dioxide emitted from automobiles has recently become a problem as one of the causes of global warming. However, since it is difficult to fix and recover carbon dioxide in exhaust gas in conventional automobiles, no measures have been taken.

【0003】水素はガソリンに比べ質量あたりの反応エ
ネルギーが約3倍であり、またその発熱量はガソリンに
比べて約2.7倍であることから、自動車エンジンの燃
料として期待されている。ところで、従来、ガソリンを
燃料とする自動車のエンジンにおいてガソリンに数%程
度の水素を添加した燃料を用いると、水素の持っている
可燃範囲の広さ及び着火速度の速さの効果によりエンジ
ンの作動条件を希薄燃焼化、高圧縮化側に設定でき、結
果として燃料効率の向上が可能であることが知られてい
る(例えば、日本機械学会論文集52巻484号,昭和
61−12,4084〜4096頁)。
Since hydrogen has a reaction energy per mass of about 3 times that of gasoline and its calorific value is about 2.7 times that of gasoline, it is expected as a fuel for automobile engines. By the way, when a fuel obtained by adding about several% of hydrogen to gasoline is used in an engine of an automobile that uses gasoline as a fuel, the operation of the engine is caused by the effect of the wide flammable range of hydrogen and the speed of ignition speed. It is known that the conditions can be set to lean combustion and high compression side, and as a result, the fuel efficiency can be improved (eg, Japan Society of Mechanical Engineers, Vol. 52, No. 484, Showa 61-12, 4084-). 4096).

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は前記
した従来技術の問題点を解消し、従来、エンジンから排
出されて失われていた排熱等のエネルギーの損失を減少
させることにより消費燃料エネルギーに占める走行エネ
ルギーの比率を上げ、かつ地球温暖化の原因となる二酸
化炭素の排出を減少させたエンジン燃焼システムを提供
することを目的とする。また、本発明は、前記失われて
いた排熱等のエネルギーを水素の形で回収して燃料とし
て利用するエンジン燃焼システムを提供することを目的
とする。
Therefore, the present invention solves the above-mentioned problems of the prior art and reduces the energy loss such as exhaust heat that has been conventionally exhausted and lost from the engine to reduce fuel consumption. An object of the present invention is to provide an engine combustion system in which the ratio of traveling energy to energy is increased and the emission of carbon dioxide, which causes global warming, is reduced. Another object of the present invention is to provide an engine combustion system that recovers the energy such as the exhaust heat that has been lost in the form of hydrogen and uses it as fuel.

【0005】[0005]

【課題を解決するための手段】前記した問題点を解決す
るために、本発明は、エンジンの燃焼排気ガス中から二
酸化炭素を分離し、エンジンの排熱を利用して該二酸化
炭素によりメタンを改質して水素及び一酸化炭素を生成
させ、この生成した水素及び一酸化炭素を燃料に添加し
てエンジンを燃焼させることを特徴とするエンジン燃焼
システムとするものである。
In order to solve the above-mentioned problems, the present invention separates carbon dioxide from the combustion exhaust gas of an engine and utilizes the exhaust heat of the engine to generate methane by the carbon dioxide. The engine combustion system is characterized by reforming to generate hydrogen and carbon monoxide, and adding the generated hydrogen and carbon monoxide to a fuel to burn the engine.

【0006】[0006]

【実施例1】図1は本発明のエンジン燃焼システムのフ
ロー図、図2はそのシステムの全体図である。図1及び
図2中、1はガソリン、メタノール、メタン、プロパン
等の燃料、2はエンジン、3は改質器、4はメタンタン
ク、5は二酸化炭素分離器である。本実施例1のシステ
ムを図1及び図2に基づいて説明する。
Embodiment 1 FIG. 1 is a flow chart of an engine combustion system of the present invention, and FIG. 2 is an overall view of the system. 1 and 2, 1 is a fuel such as gasoline, methanol, methane and propane, 2 is an engine, 3 is a reformer, 4 is a methane tank, and 5 is a carbon dioxide separator. The system according to the first embodiment will be described with reference to FIGS. 1 and 2.

【0007】燃料1は燃料インジェクタ6よりエンジン
2内に導入され燃焼される。このエンジン2から高温の
排ガスが排出されるので、この排ガスを改質器3に導入
して、改質器3中で排ガスの熱を、後で説明するメタン
及び二酸化炭素と熱交換する。図3に、改質器3を示
す。この改質器3は、内部にメタンと二酸化炭素の通路
となる触媒層12が、エンジンからの燃焼された排気ガ
スと熱交換されやすくするために間隔をおいて多数、層
状に配置されている。この改質器3は、エンジンからの
排気ガスの熱により、650〜800℃程度に保たれて
おり、その熱を利用して反応温度約700℃でメタンを
別に回収した二酸化炭素で改質して、水素と一酸化炭素
を生成する。この反応は次の式(1)で示される。
The fuel 1 is introduced into the engine 2 by the fuel injector 6 and burned. Since high-temperature exhaust gas is discharged from the engine 2, the exhaust gas is introduced into the reformer 3 and the heat of the exhaust gas is exchanged with methane and carbon dioxide, which will be described later, in the reformer 3. FIG. 3 shows the reformer 3. In this reformer 3, a large number of catalyst layers 12, which serve as passages for methane and carbon dioxide, are arranged in layers at intervals to facilitate heat exchange with burned exhaust gas from the engine. . The reformer 3 is maintained at about 650 to 800 ° C. by the heat of the exhaust gas from the engine, and the heat is used to reform methane at a reaction temperature of about 700 ° C. with the carbon dioxide recovered separately. To produce hydrogen and carbon monoxide. This reaction is represented by the following formula (1).

【0008】 CH4 + CO2 → 2H2 + 2CO 式(1) この改質器3に用いられる触媒には、シリカに担持され
たニッケル(Ni/SiO2 )、アルミナに担持された
ルテニウム(Ru/Al2 4 )、酸化マグネシウムM
gOに担持されたNi,Ru,Rh,Pt,Pdから選
ばれた金属が用いられる。特に酸化マグネシウムに担持
された触媒は耐熱性に優れている。
CH 4 + CO 2 → 2H 2 + 2CO Formula (1) The catalyst used in this reformer 3 includes nickel (Ni / SiO 2 ) supported on silica and ruthenium (Ru) supported on alumina. / Al 2 O 4 ), magnesium oxide M
A metal selected from Ni, Ru, Rh, Pt, and Pd supported on gO is used. In particular, the catalyst supported on magnesium oxide has excellent heat resistance.

【0009】エンジンからの排ガスの熱は改質器3にお
いて熱交換されるため、温度が低下した排ガスが改質器
3から排出される。この改質器3からの排ガス中には二
酸化炭素が含まれているため、この排ガスを二酸化炭素
分離器5に導入し、二酸化炭素を分離する。この二酸化
炭素分離器5には構造の簡単な膜分離法による分離膜が
好適に用いられる。例えば、二酸化炭素の分離膜として
ポリ四フッ化エチレン膜にスチレンをグラフト重合し、
エチレンジアミン中に浸漬して得られる高分子膜が用い
られる。この高分子膜は、その膜中に含まれるエチレン
ジアミンが二酸化炭素と可逆的に錯体を形成することが
できる性質を利用した二酸化炭素回収分離作用を有する
高分子膜である。
Since the heat of the exhaust gas from the engine is heat-exchanged in the reformer 3, the exhaust gas having a lowered temperature is discharged from the reformer 3. Since the exhaust gas from the reformer 3 contains carbon dioxide, the exhaust gas is introduced into the carbon dioxide separator 5 to separate carbon dioxide. For this carbon dioxide separator 5, a separation membrane by a membrane separation method having a simple structure is preferably used. For example, graft polymerization of styrene onto a polytetrafluoroethylene membrane as a carbon dioxide separation membrane,
A polymer membrane obtained by immersing in ethylenediamine is used. This polymer membrane is a polymer membrane having a carbon dioxide recovery / separation action utilizing the property that ethylenediamine contained in the membrane can reversibly form a complex with carbon dioxide.

【0010】この高分子膜の表面積を大きくとるため
に、この高分子膜を中空繊維にして、自身が二酸化炭素
分離能力を持った中空繊維分離膜で、且つ高い圧力に耐
えるものとする。この中空繊維分離膜を数百万本束ねて
パイプ状の圧力容器に収め、二酸化炭素分離器5として
使用する。この二酸化炭素分離器5内に前記排気ガスを
導入することにより、中空繊維分離膜の各繊維の外側に
排気ガスを通し、各繊維の壁を透過してきた透過物質で
ある二酸化炭素は、各繊維の中空部の内部を通って取り
出される。このようにして分離された二酸化炭素を前記
したように、メタンタンク4から供給されるメタンと混
合して改質器3に導入することにより、前記式(1)の
反応を行い水素ガスと一酸化炭素ガスを生成させる。改
質器3と二酸化炭素分離器5を結ぶサイクルは、二酸化
炭素分離器5から排出される二酸化炭素を通す管路に設
けたガスバルブ9と、メタンタンク4からメタンが供給
される管路に設けたガスバルブ10とによりガス圧が保
たれている。なお、二酸化炭素及びメタンの流量はそれ
ぞれガスバルブ9、10で調整する。
In order to increase the surface area of the polymer membrane, the polymer membrane is made into a hollow fiber, which is a hollow fiber separation membrane itself having a carbon dioxide separation ability and can withstand a high pressure. Millions of the hollow fiber separation membranes are bundled and housed in a pipe-shaped pressure vessel and used as a carbon dioxide separator 5. By introducing the exhaust gas into the carbon dioxide separator 5, the exhaust gas is passed through the outside of each fiber of the hollow fiber separation membrane, and carbon dioxide, which is a permeable substance that has passed through the wall of each fiber, is It is taken out through the inside of the hollow part of. As described above, the carbon dioxide separated in this way is mixed with methane supplied from the methane tank 4 and introduced into the reformer 3, whereby the reaction of the above formula (1) is performed and hydrogen gas and hydrogen gas are mixed with each other. Generate carbon oxide gas. The cycle connecting the reformer 3 and the carbon dioxide separator 5 is provided in the gas valve 9 provided in the pipeline for passing the carbon dioxide discharged from the carbon dioxide separator 5 and the pipeline for supplying methane from the methane tank 4. The gas pressure is maintained by the gas valve 10. The flow rates of carbon dioxide and methane are adjusted by the gas valves 9 and 10, respectively.

【0011】このようにして排ガスの熱は改質器3での
反応に利用され、排ガスは熱交換された後、二酸化炭素
分離器5に導入されるが、余剰の改質ガスは、二酸化炭
素分離器5の手前のバイパスバルブ11から大気へ放出
される。また二酸化炭素分離器5を通ったあと、二酸化
炭素を含まない排気ガスも大気へ放出される。改質ガス
(H2 +CO)は、圧力レギュレータ7(ピストン型)
で圧力を調整され、燃料インジェクタ6の直前にあるガ
スバルブ8から吸気側通路内に導入され、吸気される空
気と合流してエンジン2内へ導入される。
In this way, the heat of the exhaust gas is utilized for the reaction in the reformer 3, and the exhaust gas is heat-exchanged and then introduced into the carbon dioxide separator 5, but the surplus reformed gas is carbon dioxide. It is discharged to the atmosphere from a bypass valve 11 in front of the separator 5. After passing through the carbon dioxide separator 5, exhaust gas containing no carbon dioxide is also released to the atmosphere. The reformed gas (H 2 + CO) is used as a pressure regulator 7 (piston type).
The pressure is adjusted by, and the gas is introduced into the intake side passage from the gas valve 8 immediately in front of the fuel injector 6, merges with the air to be taken in, and is introduced into the engine 2.

【0012】この改質器3とエンジン2とを結ぶサイク
ルは圧力レギュレータ7とガスバルブ8でガス圧が保た
れている。
In the cycle connecting the reformer 3 and the engine 2, the gas pressure is maintained by the pressure regulator 7 and the gas valve 8.

【0013】[0013]

【発明の効果】本発明によれば、従来排出されていた二
酸化炭素の一部を回収して可燃ガスに変えて利用するこ
とができ、二酸化炭素の排出を減少させることができ
る。また、CO2 によりメタンを改質する際に使用する
熱エネルギーとしてエンジンの排熱を利用するのでエネ
ルギー効率が良い。
EFFECTS OF THE INVENTION According to the present invention, a part of carbon dioxide that has been conventionally discharged can be recovered and used as a combustible gas, and the emission of carbon dioxide can be reduced. Further, since the exhaust heat of the engine is used as the thermal energy used when reforming methane with CO 2 , energy efficiency is good.

【0014】さらに、燃料に水素を添加することにより
エンジンの熱効率が向上する。また、水素は可燃範囲が
広く、着火速度が速いのでエンジンの作動条件を希薄燃
焼化、高圧縮化側に設定することができる。
Further, the addition of hydrogen to the fuel improves the thermal efficiency of the engine. In addition, since hydrogen has a wide flammable range and a high ignition speed, the operating conditions of the engine can be set to lean combustion and high compression.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のエンジン燃焼システムの構成図FIG. 1 is a configuration diagram of an engine combustion system of the present invention.

【図2】本発明のエンジン燃焼システムの全体図FIG. 2 is an overall view of an engine combustion system of the present invention

【図3】本発明のエンジン燃焼システムにおける改質器
を示す。
FIG. 3 shows a reformer in the engine combustion system of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料 2 エンジン 3 改質器 4 メタンタンク 5 二酸化炭素分離器 6 燃料インジェクタ 7 圧力レギュレータ 8,9,10 ガスバルブ 11 バイパスバルブ 12 触媒層 1 Fuel 2 Engine 3 Reformer 4 Methane Tank 5 Carbon Dioxide Separator 6 Fuel Injector 7 Pressure Regulator 8, 9, 10 Gas Valve 11 Bypass Valve 12 Catalyst Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの燃焼排気ガス中から二酸化炭
素を分離し、エンジンの排熱を利用して該二酸化炭素に
よりメタンを改質して水素及び一酸化炭素を生成させ、
この生成した水素及び一酸化炭素を燃料に添加してエン
ジンを燃焼させることを特徴とするエンジン燃焼システ
ム。
1. Carbon dioxide is separated from combustion exhaust gas of an engine and methane is reformed by the carbon dioxide by utilizing exhaust heat of the engine to generate hydrogen and carbon monoxide,
An engine combustion system characterized by adding the generated hydrogen and carbon monoxide to a fuel to burn the engine.
JP4160853A 1992-06-19 1992-06-19 Engine combustion system utilizing carbon dioxide Pending JPH062615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160853A JPH062615A (en) 1992-06-19 1992-06-19 Engine combustion system utilizing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160853A JPH062615A (en) 1992-06-19 1992-06-19 Engine combustion system utilizing carbon dioxide

Publications (1)

Publication Number Publication Date
JPH062615A true JPH062615A (en) 1994-01-11

Family

ID=15723812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160853A Pending JPH062615A (en) 1992-06-19 1992-06-19 Engine combustion system utilizing carbon dioxide

Country Status (1)

Country Link
JP (1) JPH062615A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386508C (en) * 2005-05-19 2008-05-07 张大弓 Device for generating gas using residual heat of engine
JP2013518718A (en) * 2010-02-10 2013-05-23 クィーンズ ユニバーシティー アット キングストン Water with switchable ionic strength
JP2014508240A (en) * 2011-01-20 2014-04-03 サウジ アラビアン オイル カンパニー Membrane separation method and system using waste heat for in-vehicle recovery and storage of CO2 from exhaust gas of vehicle internal combustion engine
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
CN111137860A (en) * 2019-12-31 2020-05-12 太原理工大学 Methane carbon dioxide dry reforming reaction furnace
KR20200055557A (en) * 2018-11-13 2020-05-21 엄환섭 Apparatus and method for eliminating carbon dioxide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386508C (en) * 2005-05-19 2008-05-07 张大弓 Device for generating gas using residual heat of engine
JP2013518718A (en) * 2010-02-10 2013-05-23 クィーンズ ユニバーシティー アット キングストン Water with switchable ionic strength
US11498853B2 (en) 2010-02-10 2022-11-15 Queen's University At Kingston Water with switchable ionic strength
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
JP2014508240A (en) * 2011-01-20 2014-04-03 サウジ アラビアン オイル カンパニー Membrane separation method and system using waste heat for in-vehicle recovery and storage of CO2 from exhaust gas of vehicle internal combustion engine
JP2017115891A (en) * 2011-01-20 2017-06-29 サウジ アラビアン オイル カンパニー Film separation process utilizing waste heat for on-vehicle recovery and storage of co2 from exhaust gas of vehicle internal combustion engine
KR20200055557A (en) * 2018-11-13 2020-05-21 엄환섭 Apparatus and method for eliminating carbon dioxide
CN111137860A (en) * 2019-12-31 2020-05-12 太原理工大学 Methane carbon dioxide dry reforming reaction furnace
CN111137860B (en) * 2019-12-31 2023-03-10 太原理工大学 Methane carbon dioxide dry reforming reaction furnace

Similar Documents

Publication Publication Date Title
JP4714691B2 (en) Temperature swing reforming and electric manufacturing method using solid oxide fuel cell
US20050132650A1 (en) Fast light-off catalytic reformer
US7059277B2 (en) Gas engine
WO2003033888A1 (en) Internal combustion fuel reforming
CA2520481A1 (en) System and method for reducing emission from a combustion engine
JP2003503295A (en) Ethanol reforming catalyst, reforming method, and fuel cell system using them
JP6473955B2 (en) An engine that burns oxygen and hydrogen separated by separation means.
JPH062615A (en) Engine combustion system utilizing carbon dioxide
CN101457715A (en) Mobile hydrogen making engine fuel system and device thereof
US7435275B2 (en) System and method of heating an exhaust treatment device
JP3297246B2 (en) Cogeneration method
Pant et al. Fundamentals and use of hydrogen as a fuel
JP4008051B2 (en) Power generation method
JP4682403B2 (en) CO removing device and fuel cell power generator using the same
JP2755685B2 (en) Hydrogen production method for fuel cell
JP2008240707A (en) Internal combustion engine with fuel reformer
JPH06280695A (en) Fuel reformer mounted on vehicle
JP2011007047A (en) Internal combustion engine having hydrogen generation device and internal combustion engine system
US6713202B2 (en) Multifuel fuel cell system and a method for its operation
JPH1193777A (en) Natural gas reforming device and gas engine provided with its device
GB2388465A (en) A fuel cell plant
Marsh et al. SULEV emission technologies for a five cylinder N/A engine
JPH03194111A (en) Super low-pollution methanol engine
JPH08259201A (en) Reforming device for hydrocarbon fuel
JP2007332892A (en) Engine system and engine control method