JPH08281289A - 有機性排液の好気性生物処理装置 - Google Patents

有機性排液の好気性生物処理装置

Info

Publication number
JPH08281289A
JPH08281289A JP8573095A JP8573095A JPH08281289A JP H08281289 A JPH08281289 A JP H08281289A JP 8573095 A JP8573095 A JP 8573095A JP 8573095 A JP8573095 A JP 8573095A JP H08281289 A JPH08281289 A JP H08281289A
Authority
JP
Japan
Prior art keywords
sludge
liquid
aeration tank
treatment
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8573095A
Other languages
English (en)
Other versions
JP3521535B2 (ja
Inventor
Masahide Shibata
雅秀 柴田
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP08573095A priority Critical patent/JP3521535B2/ja
Priority to US08/729,730 priority patent/US5858222A/en
Priority to DK96307395T priority patent/DK0835845T3/da
Priority to EP19960307395 priority patent/EP0835845B1/en
Priority to DE1996615193 priority patent/DE69615193T2/de
Publication of JPH08281289A publication Critical patent/JPH08281289A/ja
Application granted granted Critical
Publication of JP3521535B2 publication Critical patent/JP3521535B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)

Abstract

(57)【要約】 【目的】 余剰汚泥の減容化が可能で、しかも設置スペ
ースの拡大や建設コストの増大を抑制し、小型の装置を
用いて安定した処理水質を得ることができるとともに、
汚泥沈降性を改善することができる有機性排液の好気性
生物処理装置を得る。 【構成】 有機性排液17を生物汚泥と混合して曝気す
る第一の曝気槽11aと、固液分離装置12と、分離汚
泥22の一部を易生物分解性に改質するオゾン処理槽3
1と、オゾン処理汚泥35および返送汚泥24を曝気し
た後第一の曝気槽に返送する第二の曝気槽とを備えてい
る好気性生物処理装置。 【効果】 汚泥のSRTが長くなる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、有機性排液の好気性生
物処理装置、さらに詳しくは余剰汚泥の減容化手段を備
えた有機性排液の好気性生物処理装置に関するものであ
る。
【0002】
【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して、有機性排液を好気条件で処理す
る好気性処理方法では、難脱水性の余剰汚泥が大量に生
成し、その処理は困難である。従来、このような余剰汚
泥は投棄処分されていたが、その処分場の確保が困難と
なり、汚泥の減容化が必要となっている。
【0003】特開平6−206088号には、被処理液
中のBODの同化により増殖する汚泥量よりも多い量の
生物汚泥を好気性生物処理系から引抜き、この引抜汚泥
をオゾン処理したのち好気性生物処理系に導入する有機
性排液の好気性生物処理方法が記載され、図4はその処
理装置の系統図である。図4において、1は好気性生物
処理系、2は改質処理系であり、好気性生物処理系1は
曝気槽11および固液分離装置12から構成されてい
る。曝気槽11内の底部には散気装置15が設けられ、
空気供給路16が連絡している。また曝気槽11には被
処理液路17、およびポンプ23を有する返送汚泥路2
4が連絡している。曝気槽11から固液分離装置12に
は連絡路18が連絡している。固液分離装置12には処
理液路21および分離汚泥排出路22が連絡している。
分離汚泥排出路22は返送汚泥路24、引抜汚泥路32
および余剰汚泥排出路37に分岐している。
【0004】改質処理系2はオゾン処理により汚泥を易
生物分解性に改質するもので、オゾン処理槽31を有
し、上部には固液分離装置12から連絡する引抜汚泥路
32と排オゾン路33とが連絡し、下部にはオゾン供給
路34とオゾン処理汚泥路35とが連絡している。オゾ
ン処理汚泥路35は曝気槽11に連絡している。引抜汚
泥路32にはポンプ36が設けられている。
【0005】図4の装置により有機性排液を好気性生物
処理するには、まず被処理液路17から被処理液を曝気
槽11に導入し、返送汚泥路24から返送される返送汚
泥および曝気槽11内の生物汚泥と混合し、空気供給路
16から供給される空気を散気装置15から散気して好
気性生物処理を行う。曝気槽11内の混合液の一部は連
絡路18から固液分離装置12に導入して分離液と分離
汚泥とに固液分離する。分離液は処理液として処理液路
21から排出し、分離汚泥の一部は返送汚泥として返送
汚泥路24か曝気槽11に返送し、他の一部は引抜汚泥
として引抜汚泥路32からオゾン処理槽31に供給し、
余剰汚泥が生じる場合は余剰汚泥排出路37から系外へ
排出する。
【0006】改質処理系2では、分離汚泥の一部を引抜
汚泥として引抜汚泥路32からオゾン処理槽31に導入
する。ここではオゾン供給路34からオゾンを供給し、
引抜汚泥にオゾンを接触させてオゾン処理する。これに
より引抜汚泥中の生きた菌はほとんど死滅し、汚泥はB
OD化して易生物分解性に改質される。オゾン処理汚泥
はオゾン処理汚泥路35から曝気槽11に循環して好気
性生物処理を行う。このように引抜汚泥をオゾン処理し
た後、好気性生物処理することにより、余剰汚泥の減容
化が可能になり、増殖汚泥よりも多い引抜汚泥をオゾン
処理することにより、余剰汚泥の発生量をゼロにするこ
ともできる。
【0007】
【発明が解決しようとする課題】しかし、上記従来の方
法では、オゾン処理により生きた菌が死滅するため、下
式で表わされる生きた菌に着目した平均汚泥滞留時間
(SRT)は短くなる。 生きた菌のSRT=A/B …(a) (式中、Aは曝気槽保有汚泥量、Bはオゾン処理汚泥量
を示す。)
【0008】例えば、余剰汚泥の発生量をゼロにする場
合は、通常の活性汚泥法で生じる余剰汚泥の3倍程度の
汚泥を引抜汚泥としてオゾン処理するため、通常の活性
汚泥法における生きた菌のSRT(以下、生きた菌のS
RTをSRT′という)に比べて約1/3に短縮され
る。このため従来の方法では、冬場の低水温時などの場
合には有機物の分解が不十分となり処理水質が不安定に
なったり、汚泥フロック中に未分解の有機汚泥が蓄積
し、曝気槽や固液分離槽での汚泥沈降性が悪化する場合
がある。
【0009】このような問題点は、曝気槽を増設し、汚
泥負荷を下げることにより解決することが可能である
が、スペースの拡大、建設コストの増大が著しく、経済
的制約が大きい。
【0010】本発明の目的は、上記問題点を解決するた
め、余剰汚泥の減容化が可能で、しかも設置スペースの
拡大や建設コストの増大を抑制し、小型の装置を用いて
安定した処理水質を得ることができるとともに、汚泥沈
降性を改善することができる有機性排液の好気性生物処
理装置を提供することである。
【0011】
【課題を解決するための手段】本発明は次の有機性排液
の好気性生物処理装置である。 (1) 有機性排液を生物汚泥と混合して曝気する第一
の曝気槽と、この第一の曝気槽の混合液を分離液と分離
汚泥とに固液分離する固液分離装置と、前記固液分離装
置で分離した分離汚泥の一部または前記第一の曝気槽の
混合液の一部を易生物分解性に改質処理する改質処理装
置と、前記改質処理装置で改質された改質処理汚泥およ
び前記固液分離装置から排出される分離汚泥の他の一部
を混合して曝気し、曝気液を前記第一の曝気槽に返送す
る第二の曝気槽とを備えていることを特徴とする有機性
排液の好気性生物処理装置。 (2) 改質処理装置がオゾン処理装置である上記
(1)記載の有機性排液の好気性生物処理装置。
【0012】本発明において処理の対象となる有機性排
液は、通常の好気性生物処理法により処理される有機物
を含有する排液であるが、難生物分解性の有機物または
無機物が含有されていてもよい。このような有機性排液
としては、下水、し尿、食品工場排水その他の産業排液
などがあげられる。
【0013】本発明の装置における第一の曝気槽は、有
機性排液および後述の第二の曝気槽の混合液を受入れ、
槽内の生物汚泥と混合して曝気し、好気性生物処理を行
う槽である。本発明の装置における固液分離装置は、第
一の曝気槽の混合液を分離液と分離汚泥とに固液分離す
る装置である。このような固液分離装置としては、例え
ば沈殿、浮上、遠心または膜などによる固液分離装置が
使用できる。
【0014】本発明の装置における改質処理装置は、固
液分離装置で分離した分離汚泥または第一の曝気槽の混
合液(以下、これらを引抜汚泥という)を易生物分解性
に改質処理する装置である。このような改質処理装置と
しては、例えば引抜汚泥をオゾン処理して改質するオゾ
ン処理装置、酸処理して改質する酸処理装置、アルカリ
処理して改質するアルカリ処理装置、加熱処理して改質
する加熱処理装置、これらの装置を組合せた処理装置な
どが使用できる。これらの中ではオゾン処理装置が好ま
しい。
【0015】このような改質処理装置うち、まずオゾン
処理装置について説明する。改質処理装置としてのオゾ
ン処理装置は、引抜汚泥をオゾンと接触させる装置であ
り、オゾンの酸化作用により汚泥は易生物分解性に改質
される。オゾン処理装置としては、汚泥含有液中の汚泥
にオゾンを接触させて酸化反応させるためのオゾン処理
槽、およびオゾン処理汚泥を第二の曝気槽に導入する手
段を有している装置であればどのような構成の装置でも
使用することができる。この場合の接触方法としては、
オゾン処理槽に汚泥を導入してオゾンを吹込む方法、機
械攪拌による方法、充填層を利用する方法などが採用で
きる。オゾン処理槽内で汚泥が沈降しやすい場合、また
は浮上する汚泥に比べて沈降する汚泥が多い場合には、
汚泥含有液とオゾンとは並流で接触させるようにするの
が好ましく、これにより汚泥とオゾンとの接触効率がよ
くなる。一方、オゾン処理槽内で汚泥が浮上しやすい場
合、または沈降する汚泥に比べて浮上する汚泥が多い場
合には、向流で接触させるようにするのが好ましく、こ
れにより接触効率がよくなる。
【0016】オゾン処理槽にオゾンを吹込んでオゾン処
理を行うと発泡が生じるが、この発泡によるトラブルを
防止するために、オゾン処理槽内に消泡用の液散布手段
を設けることができる。液散布手段としては、オゾン処
理槽内の汚泥を含む槽内液を引抜いて、この引抜液を消
泡用水としてオゾン処理槽内の液面に散布するように構
成された装置が好ましい。
【0017】またオゾン処理槽として、槽の下部に、引
抜汚泥にオゾンを吹込んで気液接触させる液相接触域が
形成され、その上部に、発泡した泡沫とオゾンとを接触
させる泡沫接触域が形成されるように構成されたオゾン
処理槽を使用すると、オゾン処理効率はさらに高くな
る。液相接触域の高さは0.2〜3m、好ましくは0.
5〜1.5mとする。泡沫接触域の高さは液相接触域の
引抜汚泥の液面より1m以上の高さであればよいが、好
ましくは1〜10m、さらに好ましくは2〜5mの高さ
とする。
【0018】泡沫接触域には泡沫保持部材を充填するこ
とができ、これによりオゾン処理槽の内径が大きくて泡
が保持されにくい場合、または生物汚泥の濃度が低くて
引抜汚泥が発泡しにくい性状である場合などでも、泡沫
を効率よく保持することができ、オゾン処理効率を高く
することができる。泡沫保持部材としては、泡沫を保持
できる構造のものであればよいが、ハニカム状、格子状
などの仕切板構造のものが好ましい。
【0019】オゾン処理槽内の泡沫接触域の上部に前記
液散布装置を設けて、工業用水、最終処理液、オゾン処
理槽からの引抜液、または引抜液と被処理液との混合液
などを泡沫層に向けて散布することができ、これにより
過剰な発泡を抑制して、泡沫接触域を所定の高さに維持
することができる。この場合、引抜液または引抜液と被
処理液との混合液を使用すると、槽内液の汚泥濃度が低
下せず、またノズル等の閉塞が発生しないので好まし
い。オゾン処理槽の泡沫接触域は泡沫で満たされるだけ
なので、槽内を被処理液で満たす装置に比べてオゾン処
理槽の強度は小さくてもよくなり、それだけ低コストの
オゾン処理装置となる。
【0020】オゾン処理はpH5以下の酸性領域で行う
と酸化分解効率が高くなる。このときのpHの調整は、
硫酸、塩酸または硝酸などの無機酸をpH調整剤とし引
抜汚泥に添加するか、引抜汚泥を酸発酵処理して調整す
るか、あるいはこれらを組合せて行うのが好ましい。p
H調整剤を添加する場合、pHは3〜4に調整するのが
好ましく、酸発酵処理を行う場合、pHは4〜5となる
ように行うのが好ましい。オゾン処理は、引抜汚泥また
は酸発酵処理液をそのまま、または必要により遠心分離
機などで濃縮した後pH5以下に調整し、オゾンと接触
させることにより行うことができる。
【0021】オゾンとしてはオゾンガスの他、オゾン含
有空気、オゾン化空気などのオゾン含有ガスが使用でき
る。オゾンの使用量は0.002〜0.05g−O3
g−VSS、好ましくは0.005〜0.03g−O3
/g−VSSとするのが望ましい。
【0022】次に改質処理装置としての酸処理装置につ
いて説明する。酸処理装置は引抜汚泥に塩酸、硫酸など
の鉱酸を加え、pH2.5以下、好ましくはpH1〜2
の酸性条件下で所定時間滞留させて改質する装置であ
る。酸処理装置としては引抜汚泥を改質するための改質
槽、および酸処理汚泥を第二の槽気槽に導入する手段を
有している装置であればどのような構成の装置でも使用
することができる。改質槽における滞留時間としては、
例えば5〜24時間とする。このとき汚泥を加熱、例え
ば50〜100℃に加熱すると改質が促進されるので好
ましい。このような酸による処理により汚泥は易生物分
解性に改質される。
【0023】また改質処理装置としてのアルカリ処理装
置は、引抜汚泥に対して水酸化ナトリウム、水酸化カリ
ウム等のアルカリを0.1〜1重量%加え、所定時間滞
留させて改質する装置である。アルカリ処理装置として
は、引抜汚泥を改質する改質槽、およびアルカリ処理汚
泥を第二の曝気槽に導入する手段を有している装置であ
ればどのような構成の装置でも使用することができる。
改質槽における滞留時間としては、例えば0.5〜2時
間とする。このとき汚泥を加熱、例えば50〜100℃
に加熱すると改質が促進されるので好ましい。このよう
なアルカリ処理により汚泥は易生物分解性に改質され
る。
【0024】改質処理装置としての加熱処理装置は、引
抜汚泥を所定温度、例えば70〜100℃で、所定時
間、例えば2〜3時間滞留させて改質する装置である。
加熱処理装置としては、引抜汚泥を改質する改質槽、お
よび加熱処理汚泥を第二の曝気槽に導入する手段を有し
ている装置であればどのような構成の装置でも使用する
ことができるが、酸処理装置またはアルカリ処理装置と
組合せて使用するのが好ましい。加熱処理により汚泥は
易生物分解性に改質される。
【0025】本発明の装置における第二の曝気槽は、改
質処理装置で改質された改質処理汚泥および固液分離装
置から排出される分離汚泥の他の一部(返送汚泥)を受
入れ、槽内の生物汚泥と混合して曝気し、この曝気液を
第一の曝気槽に返送する手段を有する槽である。ここ
で、第一の曝気槽と第二の曝気槽とは別々の独立した槽
として設けることもできるし、一つの槽を区画して前段
を第二の曝気槽、後段を第一の曝気槽として構成するこ
ともできる。第一の曝気槽と第二の曝気槽との容積比
は、9:1〜4:6、好ましくは8:2〜5:5とする
のが望ましい。
【0026】
【作用】改質処理装置では、オゾン処理、酸処理、アル
カリ処理または加熱処理等の改質処理により引抜汚泥は
易生物分解性の有機物に改質される。このような改質処
理汚泥および分離汚泥の他の一部を第二の曝気槽に導入
し、槽内の生物汚泥と混合して曝気することにより、好
気性微生物は急速に増殖してMLSS量が増加する。第
一の曝気槽では、有機性排液および第二の曝気槽の曝気
液(混合液)を受入れ、槽内の生物汚泥と混合して曝気
することにより、有機性排液中の有機物および改質処理
により易生物分解性に改質された有機物は好気的に生物
分解される。第一および第二の曝気槽のいずれの曝気槽
においても、有機物が分解され、かつ好気性微生物が増
殖するが、第一の曝気槽では主として有機物が分解さ
れ、第二の曝気槽では好気性微生物の急速な増殖が起こ
る。
【0027】本発明の装置では、第一および第二の曝気
槽を設けているので、第一の曝気槽だけを設ける従来の
装置に比べて、曝気槽の合計容積が同じであっても、生
きた菌のSRT(SRT′)が長くなる。このため、有
機物の分解のための時間が長く確保され、これにより安
定した処理水質を得ることができるとともに、汚泥の沈
降性が改善する。SRT′が長くなる効果を、曝気槽の
MLSS濃度を低濃度で運転している従来の装置を本発
明の装置に切替えた場合と、MLSS濃度を高濃度で運
転している従来の装置を本発明の装置に切替えた場合と
で比較すると、前者の方がより大きい。
【0028】本発明における汚泥減容化の原理を図を用
いて説明する。図1は汚泥減容化の原理を説明するため
の模式図である。図において、1は好気性生物処理系、
2は改質処理系である。好気性生物処理系1は、活性汚
泥処理装置のように、有機性排液を生物汚泥と接触させ
て好気的に分解する処理系であり、第一および第二の曝
気槽と固液分離装置とが別々に設けられるが、これらを
含めた全体の処理系として図示されている。
【0029】図1の好気性生物処理系1には、好気性生
物処理を行うために一定量の生物汚泥3aが保持されて
いる。このような好気性生物処理系1に被処理液4を導
入して好気性生物処理を行うと、被処理液4に含まれる
BODは生物汚泥3aに同化され、その増殖により新た
に生成汚泥3bが生成する。一方、系内の生物汚泥3a
は自己分解により、自己分解分3cが消失する。従って
定常状態では、生成汚泥3bと自己分解分3cの差が増
殖汚泥3dとして増殖する。
【0030】増殖汚泥3dを余剰汚泥として改質処理系
2で処理する場合を、図1に破線5で示しているが、増
殖汚泥3dを改質処理して好気性生物処理系1に戻す
と、改質処理により生成するBODが汚泥に転換して、
別の生成汚泥3eが生成し、この分が実質的な汚泥増殖
分となり、余剰汚泥として排出されなければならない。
これに対し、増殖汚泥3dよりも多い量の引抜汚泥3f
を好気性生物処理系1から引抜き、改質処理系2で改質
処理してBODに転換し、改質処理汚泥6を好気性生物
処理系1に戻すことにより、改質処理で生成したBOD
から別の生成汚泥3gが生成する。この場合、引抜汚泥
3fと生成汚泥3gの差が無機化部分3hとなる。
【0031】ここで増殖汚泥3dよりも多い量の引抜汚
泥3fを改質処理してBODに転換することにより、増
殖汚泥3dのみを改質処理する場合よりも、無機化部分
が多くなり、汚泥減容化率は高くなる。増殖汚泥3dと
無機化部分hが等しくなるように、引抜汚泥3fの量を
決めると、余剰汚泥は実質的にゼロになる。増殖汚泥3
dが無機化部分3hより多い場合は、その差が実質的な
増加部分3iとなり、余剰汚泥7として系外に排出され
る。8は好気性生物処理系1の処理液である。
【0032】上記好気性生物処理系1における曝気槽容
量をV、その生物汚泥濃度をX、汚泥収率をY、被処理
液流量(処理液流量)をQ、被処理液の有機物濃度をC
i、処理液の有機物濃度をCe、生物処理された有機物
濃度を(Ci−Ce)、汚泥自己分解定数をKd、余剰
汚泥排出量をq、改質処理装置への引抜量をQ′、改質
処理された汚泥が生物汚泥に再変換された割合をkとす
ると、物質収支は次の〔1〕式で表される。
【数1】 VdX/dt=YQ(Ci−Ce)−VKdX−qX−Q′X+kQ′X 〔1〕
【0033】〔1〕式において、VdX/dtは好気性生物
処理系1における生物汚泥3aの変化量、YQ(Ci−C
e)は生成汚泥3bの量、VKdXは自己分解分3cの量、
qXは余剰汚泥7の排出量、Q′Xは引抜汚泥3fの
量、kQ′Xは生成汚泥3gの量を示している。ここで
Q(Ci−Ce)/V=LV(槽負荷)、q/V=1/SR
T(余剰汚泥滞留時間比)、Q′/V=θ(改質処理系
への生物汚泥の循環比)、(1−k)=δ(無機化率)と
おくと、定常状態では、〔1〕式は次の〔2〕式のよう
に簡略化される。
【数2】 YLV/X=Kd+1/SRT+δθ 〔2〕
【0034】改質処理系2が存在しない通常の好気性生
物処理系では、〔2〕式の第3項(δθ)がないので、
汚泥負荷を一定としたとき第2項で余剰汚泥(X/SR
T)が決定される。これに対して改質処理を組合せた処
理系では、〔2〕式から明らかなように、第3項の値に
より余剰汚泥が減容化する。そして第3項の値が第2項
の値に匹敵するような条件下では、余剰汚泥を排出しな
くても(1/SRT=0)、汚泥負荷を通常の値に設定
することが可能である。
【0035】改質処理がオゾン処理である場合について
詳しく説明すると、前記〔2〕式の第3項のパラメータ
は無機化率δと循環比θであるが、このうちδは汚泥に
対するオゾン注入率が0.01g−O3/g−VSS以
上では、0.5付近の定常値になるため、この領域では
汚泥の見かけの減容化率はθに比例して決定される。一
方、循環比θは、0.5day-1程度までは汚泥活性に
影響を与えない。このことは1日あたり、好気性生物処
理系1の保持された生物汚泥3aの1/2以下を引抜汚
泥3fとしてオゾン処理系に循環しても、好気性生物処
理系1の汚泥活性が維持されることを意味している。
【0036】従って、循環比θの上限は0.5day-1
とされる。θがゼロの場合は完全酸化方式となるが、こ
の場合低汚泥負荷であるとともに、減容効果も小さい。
また引抜汚泥3fが増殖汚泥3dと同量の場合は、従来
法と同様な値の減容率となる。通常の好気性生物処理で
は、SRTは10日、汚泥引抜率は0.1day-1であ
る。本発明において、増殖汚泥3dより多い引抜汚泥3
fを循環すると、循環比θの下限は0.1day-1を超
える値とされるが、0.2day-1以上とするのが好ま
しく、特に0.3day-1とすると、余剰汚泥が発生し
ない100%減容化が可能となる。
【0037】
【実施例】次に本発明の実施例について説明する。図2
は本発明の好気性生物処理装置を示す系統図であり、改
質処理としてオゾン処理を採用した例である。図2にお
いて、1は好気性生物処理系で、曝気槽11および固液
分離装置12から構成されている。曝気槽11内には仕
切板13が設けられ、第一の曝気槽11aおよび第二の
曝気槽11bに区画されている。第二の曝気槽11bと
第一の曝気槽11aとは流路14により連絡し、第二の
曝気槽11b内の混合液が流路14を通して第一の曝気
槽11aに流入するように構成されている。第一および
第二の曝気槽11a、11b内の底部にはそれぞれ散気
装置15a、15bが設けられ、空気供給路16a、1
6bが連絡している。第一の曝気槽11aには被処理液
路17が連絡し、また第一の曝気槽11aから固液分離
装置12に連絡路18が連絡している。固液分離装置1
2には処理液路21および分離汚泥排出路22が連絡し
ている。分離汚泥排出路22からはポンプ23を有する
返送汚泥路24が分岐し、第二の曝気槽11bに連絡し
ている。
【0038】改質処理系2はオゾン処理により汚泥を易
生物分解性に改質するもので、オゾン処理槽31を有
し、分離汚泥排出路22から分岐する引抜汚泥路32お
よび排オゾン路33が上部に連絡し、オゾン供給路34
およびオゾン処理汚泥路35が下部に連絡している。オ
ゾン処理汚泥路35はオゾン処理装置31から第二の曝
気槽11bに連絡している。引抜汚泥路32にはポンプ
36が設けられている。37は余剰汚泥排出路である。
【0039】図2の装置により有機性排液を好気性生物
処理するには、まず被処理液路17から被処理液を第一
の曝気槽11aに導入し、槽内の生物汚泥と混合し、第
一の空気供給路16aから供給される空気を第一の散気
装置15aから散気して好気性生物処理を行う。ここで
は、主として生物酸化反応による有機物の分解が行わ
れ、汚泥が増殖する。
【0040】第一の曝気槽11a内の混合液の一部は連
絡路18から固液分離装置12に導入し、沈降分離によ
り分離液と分離汚泥とに固液分離する。分離液は処理液
として処理液路21から系外へ排出する。分離汚泥は分
離汚泥排出路22から排出し、その一部は返送汚泥とし
て、ポンプ23を駆動して返送汚泥路24から第二の曝
気槽11bに導入する。
【0041】分離汚泥の他の一部は引抜汚泥として、ポ
ンプ36を駆動して引抜汚泥路32を通してオゾン処理
槽31に導入する。ここでは、オゾン供給路34からオ
ゾンを供給し、引抜汚泥にオゾンを接触させてオゾン処
理し、汚泥を易生物分解性に改質する。これにより引抜
汚泥中の生きた菌はほとんど死滅し、汚泥はBOD化す
る。オゾン排ガスは排オゾン路33から排出する。オゾ
ン処理汚泥はオゾン処理汚泥路35から第二の曝気槽1
1bに循環する。余剰汚泥が生じる場合は余剰汚泥排出
路37から系外へ排出する。
【0042】第二の曝気槽11bでは、分離汚泥の一部
(返送汚泥)、オゾン処理汚泥および槽内の生物汚泥を
混合し、第二の空気供給路16bから供給される空気を
第二の散気装置15bから散気して好気性生物処理を行
う。ここでは、生物酸化反応により有機物も分解される
が、主として汚泥の増殖が行われる。第二の曝気槽11
b内の混合液は流路14から第一の曝気槽11aに返送
する。
【0043】このように本発明では、曝気槽11を区画
して第一の曝気槽11aと第二の曝気槽11bを設け、
返送汚泥およびオゾン処理汚泥を第二の曝気槽11bで
好気性生物処理した後、この好気性処理液を第一の曝気
槽11aに導入し、被処理液と混合してさらに好気性生
物処理するように構成しているので、一つの曝気槽で好
気性生物処理する場合に比べて、曝気槽11全体に保有
される汚泥量が増加する。このため生きた菌のSRT
(SRT′)が長くなり、安定した処理水質が得られる
とともに、固液分離装置12での汚泥沈降性が改善す
る。
【0044】図2の装置では1つの曝気槽を仕切板13
により第一の曝気槽11aと第二の曝気槽11bとに区
画しているが、第一の曝気槽11aと第二の曝気槽11
bをそれぞれ独立した曝気槽として構成することもでき
る。この場合、第二の曝気槽の容積は小さくても生きた
菌のSRTを長くすることができるので、1つの曝気槽
で同等のSRTを得る場合に比べて曝気槽全体の容積は
小さくなり、増設スペースおよびコストの面で有利とな
る。また固液分離装置12で分離した分離汚泥をオゾン
処理しているが、第一の曝気槽11aの槽内液を引抜い
てオゾン処理するように構成することもできる。
【0045】試験例1 自動車工場総合排水を被処理液として好気性生物処理を
次のようにして行った。まず最初の25日間は図4の装
置により処理を行い(比較例)、次に図2の装置に切替
えて35日間処理を行った(実施例)。条件および処理
水質を表1に示す。試験期間中のSVIを図3に示す。
【0046】
【表1】 *1 10日目から25日目までの平均値 *2 40日目から60日目までの平均値
【0047】図3の結果からわかるように、運転開始時
(0日)の投入汚泥のSVIは約160であったが、運
転につれて上昇し、25日後には約400になった(比
較例)。その後、図2の装置による処理に切替えること
でSVIは急激に低下し、処理切替後15日目以降では
SVI 100前後の良好なフロックとなった(実施
例)。また表1の結果からわかるように、比較例の場合
は水質が悪化したが、実施例では安定した処理水質が得
られた。
【0048】試験例2 試験例1における生きた菌のSRT(SRT′)を前記
式(a)により求めると、次のようになる。 比較例のSRT′(日):3.5 実施例のSRT′(日):6.3 上記結果からわかるように、実施例のSRT′は比較例
に比べて長くなっていることがわかる。
【0049】
【発明の効果】本発明の好気性生物処理装置は、有機性
排液を生物汚泥と混合して曝気する第一の曝気槽、汚泥
の改質処理装置、ならびに改質処理汚泥および返送汚泥
を曝気し、この曝気液を第一の曝気槽に返送する第二の
曝気槽を備えているので、余剰汚泥の減容化が可能で、
しかも設置スペースの拡大や建設コストの増大を抑制
し、小型の装置を用いて安定した処理水質を得ることが
できるとともに、汚泥沈降性を改善することができる。
【図面の簡単な説明】
【図1】汚泥減容化の原理を説明するための模式図であ
る。
【図2】実施例の好気性生物処理装置を示す系統図であ
る。
【図3】試験例1の結果を示すグラフである。
【図4】従来の好気性生物処理装置を示す系統図であ
る。
【符号の説明】
1 好気性生物処理系 2 改質処理系 3a 活性汚泥 3b,3e,3g 生成汚泥 3c 自己分解分 3d 増殖汚泥 3f 引抜汚泥 3h 無機化部分 3i 増加部分 4 被処理液 6 改質処理汚泥 7 余剰汚泥 8 処理液 11 曝気槽 11a 第一の曝気槽 11b 第二の曝気槽 12 固液分離装置 13 仕切板 14 流路 15 散気装置 15a 第一の散気装置 15b 第二の散気装置 16 空気供給路 16a 第一の空気供給路 16b 第二の空気供給路 17 被処理液路 18 連絡路 21 処理液路 22 分離汚泥排出路 23,36 ポンプ 24 返送汚泥路 31 オゾン処理槽 32 引抜汚泥路 33 排オゾン路 34 オゾン供給路 35 オゾン処理汚泥路 37 余剰汚泥排出路

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 有機性排液を生物汚泥と混合して曝気す
    る第一の曝気槽と、この第一の曝気槽の混合液を分離液
    と分離汚泥とに固液分離する固液分離装置と、 前記固液分離装置で分離した分離汚泥の一部または前記
    第一の曝気槽の混合液の一部を易生物分解性に改質処理
    する改質処理装置と、 前記改質処理装置で改質された改質処理汚泥および前記
    固液分離装置から排出される分離汚泥の他の一部を混合
    して曝気し、曝気液を前記第一の曝気槽に返送する第二
    の曝気槽とを備えていることを特徴とする有機性排液の
    好気性生物処理装置。
  2. 【請求項2】 改質処理装置がオゾン処理装置である請
    求項1記載の有機性排液の好気性生物処理装置。
JP08573095A 1995-04-11 1995-04-11 有機性排液の好気性生物処理装置 Expired - Fee Related JP3521535B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP08573095A JP3521535B2 (ja) 1995-04-11 1995-04-11 有機性排液の好気性生物処理装置
US08/729,730 US5858222A (en) 1995-04-11 1996-10-07 Apparatus for aerobic biological treatment of aqueous organic wastes
DK96307395T DK0835845T3 (da) 1995-04-11 1996-10-10 Anlæg til aerob biologisk behandling af vandige organiske affaldsprodukter
EP19960307395 EP0835845B1 (en) 1995-04-11 1996-10-10 Apparatus for aerobic biological treatment of aqueous organic wastes
DE1996615193 DE69615193T2 (de) 1995-04-11 1996-10-10 Vorrichtung für die aerobe biologische Behandlung von organische Substraten enthaltenden Abwässern

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP08573095A JP3521535B2 (ja) 1995-04-11 1995-04-11 有機性排液の好気性生物処理装置
US08/729,730 US5858222A (en) 1995-04-11 1996-10-07 Apparatus for aerobic biological treatment of aqueous organic wastes
EP19960307395 EP0835845B1 (en) 1995-04-11 1996-10-10 Apparatus for aerobic biological treatment of aqueous organic wastes

Publications (2)

Publication Number Publication Date
JPH08281289A true JPH08281289A (ja) 1996-10-29
JP3521535B2 JP3521535B2 (ja) 2004-04-19

Family

ID=27237798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08573095A Expired - Fee Related JP3521535B2 (ja) 1995-04-11 1995-04-11 有機性排液の好気性生物処理装置

Country Status (5)

Country Link
US (1) US5858222A (ja)
EP (1) EP0835845B1 (ja)
JP (1) JP3521535B2 (ja)
DE (1) DE69615193T2 (ja)
DK (1) DK0835845T3 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347596A (ja) * 1998-06-05 1999-12-21 Mitsubishi Electric Corp 排水処理装置
JP2003010877A (ja) * 2001-06-29 2003-01-14 Kurita Water Ind Ltd 下水の活性汚泥処理方法および装置
JP2003033779A (ja) * 2001-07-23 2003-02-04 Mitsubishi Kakoki Kaisha Ltd 排水処理装置及び排水処理方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3763439B2 (ja) * 1997-05-30 2006-04-05 三菱電機株式会社 廃水のオゾン処理方法およびオゾン処理装置
DE19817258A1 (de) * 1998-04-20 1999-10-28 Heinz Hoelter Vorrichtung zum Einbringen von Ozon in flüssige Medien
US6063147A (en) * 1998-12-17 2000-05-16 Texaco Inc. Gasification of biosludge
WO2000036056A1 (en) * 1998-12-17 2000-06-22 Texaco Development Corporation Gasification of biosludge
FR2801880B1 (fr) * 1999-12-07 2002-02-22 Degremont Procede et installation de traitement d'eaux residuaires comprenant un traitement additionnel des boues par ozonation
US6569335B1 (en) * 2000-07-13 2003-05-27 Walter S. Johnson Wastewater treatment control method and apparatus
EP1293484A1 (en) * 2001-09-13 2003-03-19 Seghers Better Technology Group Process and an apparatus for biological treatment of aqueous organic wastes
DE10215413A1 (de) * 2002-04-08 2003-10-23 Air Liquide Gmbh Verfahren zur Aufbereitung von Wasser sowie Aufbereitungsanlage
CA2420395A1 (en) 2002-11-06 2004-05-06 Bestop, Inc. Removable header for vehicle soft tops
US7344643B2 (en) * 2005-06-30 2008-03-18 Siemens Water Technologies Holding Corp. Process to enhance phosphorus removal for activated sludge wastewater treatment systems
US7569147B2 (en) * 2005-09-02 2009-08-04 Siemens Water Technologies Corp. Screening of inert solids from a low-yield wastewater treatment process
US7473364B2 (en) * 2006-03-07 2009-01-06 Siemens Water Technologies Corp. Multivalent metal ion management for low sludge processes
DE102006037223A1 (de) * 2006-08-09 2008-02-14 Krüger WABAG GmbH Verfahren und Vorrichtung zur Behandlung von so genannten Food-Waste-Reject-haltigen Abwässern sowie eine Verwendung
US7309432B1 (en) 2006-09-29 2007-12-18 Praxair Technology, Inc. System and method for eliminating sludge via ozonation
US7513999B2 (en) 2006-09-29 2009-04-07 Praxair Technology, Inc. Ozonation of wastewater for reduction of sludge or foam and bulking control
US8894856B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8623213B2 (en) 2008-03-28 2014-01-07 Siemens Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8658037B2 (en) * 2008-07-11 2014-02-25 Seiko Pmc Corporation Method for determining physiological state of microbial community and wastewater treatment method
US8685247B2 (en) 2009-12-03 2014-04-01 Evoqua Water Technologies Llc Systems and methods for nutrient removal in biological treatment systems
WO2011133738A1 (en) 2010-04-21 2011-10-27 Siemens Pte. Ltd. Methods and systems for treating wastewater
WO2012024279A1 (en) 2010-08-18 2012-02-23 Siemens Industry, Inc. Contact-stabilization/prime-float hybrid
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
WO2013081977A1 (en) 2011-12-01 2013-06-06 Praxair Technology, Inc. Method and system for sludge ozonation in a wastewater treatment system
EP2636650A1 (de) * 2012-03-09 2013-09-11 MCI Management Center Innsbruck - Internationale Hochschule GmbH Vorrichtung und biologisches Verfahren mit teilweise ionisiertem Gas
AU2014262972B2 (en) 2013-05-06 2017-09-28 Evoqua Water Technologies Llc Wastewater biosorption with dissolved air flotation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654147A (en) * 1971-03-16 1972-04-04 Biospherics Inc Nitrate removal from sewage
US3660277A (en) * 1971-05-17 1972-05-02 Union Carbide Corp Oxygenation-ozonation of bod-containing water
DE2654431C3 (de) * 1976-12-01 1985-01-31 Passavant-Werke AG & Co KG, 6209 Aarbergen Kläranlage zur biologischen Reinigung von Abwasser
JPS558835A (en) * 1978-07-04 1980-01-22 Shinryo Air Conditioning Co Ltd Treatment of surplus sludge
US5022993A (en) * 1988-06-02 1991-06-11 Orange Water And Sewer Authority Process for treating wastewater
CA2098807C (en) * 1993-02-17 1999-08-31 Alan F. Rozich Waste treatment process employing oxidation
JP3493769B2 (ja) * 1994-12-01 2004-02-03 栗田工業株式会社 有機性排液の好気性処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347596A (ja) * 1998-06-05 1999-12-21 Mitsubishi Electric Corp 排水処理装置
JP2003010877A (ja) * 2001-06-29 2003-01-14 Kurita Water Ind Ltd 下水の活性汚泥処理方法および装置
JP2003033779A (ja) * 2001-07-23 2003-02-04 Mitsubishi Kakoki Kaisha Ltd 排水処理装置及び排水処理方法

Also Published As

Publication number Publication date
DE69615193T2 (de) 2002-07-04
US5858222A (en) 1999-01-12
EP0835845B1 (en) 2001-09-12
EP0835845A1 (en) 1998-04-15
DE69615193D1 (de) 2001-10-18
JP3521535B2 (ja) 2004-04-19
DK0835845T3 (da) 2002-01-07

Similar Documents

Publication Publication Date Title
JP3521535B2 (ja) 有機性排液の好気性生物処理装置
KR940000563B1 (ko) 폐수처리 방법 및 그 장치
US4460470A (en) Process and apparatus for the biological purification of phosphate-containing wastewater
KR20010034549A (ko) 서지 무산소 혼합의 순차적 배치 반응기 시스템
JP2973761B2 (ja) 有機性排液の好気性処理方法
KR101010053B1 (ko) 하수 처리 장치
JP2003033780A (ja) 排水処理方法
JP2661093B2 (ja) 活性汚泥法による廃水処理方法
JP2972992B2 (ja) 有機質廃液の曝気槽とその曝気槽を用いた曝気処理装置
CA1114964A (en) Plant for the treatment of waste water by the activated-sludge process
JPH08155482A (ja) 有機性排液の好気性処理方法
JP3551526B2 (ja) 有機性排液の好気性処理方法
JP3407405B2 (ja) 有機性排液の好気性処理方法および装置
JP3900796B2 (ja) 有機性廃水の処理方法及びその処理装置
JPH09206781A (ja) 有機性汚水の処理方法及び処理装置
JPH09117800A (ja) 有機性排液の生物処理方法
JP2003010877A (ja) 下水の活性汚泥処理方法および装置
JP2000117279A (ja) 水処理方法
JPH0318958B2 (ja)
JPH08103786A (ja) 有機性排液の好気性処理方法
JPH11333494A (ja) 排水の生物学的窒素除去方法および装置
JP4617572B2 (ja) 窒素含有排水の処理方法
JPH08215695A (ja) 有機性排液の好気性処理方法
JP3414007B2 (ja) 有機性排液の好気性処理方法
JP2001212593A (ja) 上向流嫌気性処理装置における後処理方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees