JPH08128890A - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPH08128890A
JPH08128890A JP26953994A JP26953994A JPH08128890A JP H08128890 A JPH08128890 A JP H08128890A JP 26953994 A JP26953994 A JP 26953994A JP 26953994 A JP26953994 A JP 26953994A JP H08128890 A JPH08128890 A JP H08128890A
Authority
JP
Japan
Prior art keywords
infrared sensor
optical filter
resin
sensor according
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26953994A
Other languages
Japanese (ja)
Inventor
Tomohiro Tsuruta
智広 鶴田
Hiromi Tokunaga
裕美 徳永
Hiroharu Nishimura
弘治 西村
Koichi Watanabe
浩一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26953994A priority Critical patent/JPH08128890A/en
Publication of JPH08128890A publication Critical patent/JPH08128890A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an infrared sensor wherein the occurrence of noise by an outside electromagnetic wave is small and whose effective manufacture can be performed at low cost. CONSTITUTION: At least a part of a thermoplastic resin 29 having conduction making a purpose of an electromagnetic shield and at least a part of a cross section of an optical filter 27 composed of an interference film formed on both the faces of a silicon plate are bonded by epoxy resin which makes main structure of bisphenol A. As a result, a resistance value between an outer resin and an optical filter is small, and a piece difference by samples can be reduced. Material cost can be reduced and a process of painting-hardening of a conductive bonding agent can be eliminated because the conductive bonding agent is not completely used. An infrared sensor having stable shield performance at a low price is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人体検知や防災用の災
検知あるいは温度計測等に用いられる赤外線センサに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor used for human body detection, disaster detection for disaster prevention, temperature measurement and the like.

【0002】[0002]

【従来の技術】従来より、自動ドア、トイレの自動水洗
装置、照明機器、空調機器、セキュリティー機器等の人
体検知や防災用の災検知あるいは温度計測等に赤外線セ
ンサが広く用いられている。以下、従来の赤外線センサ
について説明する。
2. Description of the Related Art Conventionally, infrared sensors have been widely used for human body detection of automatic doors, automatic flushing devices for toilets, lighting equipment, air conditioning equipment, security equipment, disaster detection for disaster prevention, temperature measurement, and the like. The conventional infrared sensor will be described below.

【0003】図10は従来の焦電型赤外線センサの側断
面図である。図10において、外部導出ピン1を貫通さ
せた絶縁性の回路基板2に電界効果型トランジスタ(以
下FETと略す)3、抵抗4、及び赤外線検出素子5を
固着し、その回路基板2を外部導出ピン1に取り付け
る。そして赤外線導入孔6aを有する金属ケース6をハ
ーメチックベース7にシールする。金属ケース6の赤外
線導入孔6aには所望の波長領域のみを透過するシリコ
ン板の両面に形成された干渉膜からなる光学フィルター
8が設けられるが、光学フィルター8の表面8aは電気
的な導通が得られにくいため切断面8bの一部を導電性
接着剤9により接続する。金属ケース6と光学フィルタ
ー8を導通させることにより、光学フィルター部の電磁
シールド効果の向上を図っている。さらに気密性を高め
るために光学フィルター外縁に沿って、導電性接着剤を
覆うかたちで絶縁性の接着剤10が塗布してある。
FIG. 10 is a side sectional view of a conventional pyroelectric infrared sensor. In FIG. 10, a field effect transistor (hereinafter abbreviated as FET) 3, a resistor 4, and an infrared detection element 5 are fixed to an insulating circuit board 2 that penetrates an external lead-out pin 1, and the circuit board 2 is led out to the outside. Attach to pin 1. Then, the metal case 6 having the infrared introducing hole 6a is sealed to the hermetic base 7. The infrared introducing hole 6a of the metal case 6 is provided with an optical filter 8 composed of an interference film formed on both surfaces of a silicon plate that transmits only a desired wavelength region. The surface 8a of the optical filter 8 has no electrical conduction. Since it is difficult to obtain, a part of the cut surface 8b is connected with the conductive adhesive 9. By electrically connecting the metal case 6 and the optical filter 8, the electromagnetic shield effect of the optical filter portion is improved. In order to further enhance the airtightness, an insulating adhesive 10 is applied along the outer edge of the optical filter so as to cover the conductive adhesive.

【0004】図11は他の従来の焦電型赤外線センサの
側断面図である。焦電型赤外線センサはパッケージコス
トの低減、工法上の簡便さを目的に提案されたものであ
る。図11において外部導出ピンと内部回路基板を兼ね
るリードフレーム11とこのリードフレーム11に電気
的、機械的に接続されている抵抗12とFET13が絶
縁性樹脂14で一体モールドされ、さらにこれらを電磁
シールドを目的とした導電性を有する外装樹脂15にて
モールドしたケースを用い、素子出力取り出し端子16
に導電性接着剤を用い赤外線検出素子を接続した後、シ
リコン板の両面に形成された干渉膜からなる光学フィル
ター17のうちその表面17aを絶縁性樹脂14に絶縁
性の接着剤で、その切断面17bを導電性を有する外装
樹脂15に導電性樹脂を用い接続されている。
FIG. 11 is a side sectional view of another conventional pyroelectric infrared sensor. The pyroelectric infrared sensor was proposed for the purpose of reducing the package cost and simplifying the construction method. In FIG. 11, a lead frame 11 that also serves as an external lead-out pin and an internal circuit board, a resistor 12 and an FET 13 that are electrically and mechanically connected to the lead frame 11 are integrally molded with an insulating resin 14, and are further electromagnetically shielded. An element output take-out terminal 16 is used by using a case molded with the intended exterior resin 15 having conductivity.
After connecting the infrared detecting element with a conductive adhesive, the surface 17a of the optical filter 17 made of the interference film formed on both surfaces of the silicon plate is cut with the insulating resin 14 by the insulating adhesive. The surface 17b is connected to the exterior resin 15 having conductivity using a conductive resin.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、光学フィルターと外装物との安定な導通を
得るために多量の導電性接着剤が必要であり、これが材
料コストの増大につながり、また絶縁性接着剤も塗着、
硬化させるための余分な工程が必要であり、さらには絶
縁性接着剤と導電性接着剤が接触反応するため十分な導
通が得られないものが発生し、電磁シールド効果に大き
なバラツキを有するという問題点を有していた。
However, in the above-mentioned conventional structure, a large amount of conductive adhesive is required to obtain stable conduction between the optical filter and the outer package, which leads to an increase in material cost. Insulating adhesive is also applied,
An extra step for curing is required, and further, the insulating adhesive and the conductive adhesive are contact-reacted with each other, which may cause insufficient conduction, resulting in a large variation in the electromagnetic shielding effect. Had a point.

【0006】本発明は前記従来の問題点を解決するもの
で、低コスト且つ少ない工程で安定な電磁シールド効果
を有する赤外線センサを提供することを目的としてい
る。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an infrared sensor having a stable electromagnetic shield effect at low cost and in a small number of steps.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、電磁シールドを目的とした導電性を有する熱可塑性
外装成形樹脂の少なくとも一部と、シリコン板とその両
面に形成された干渉膜からなる光学フィルターの切断面
の少なくとも一部を、ビスフェノール−Aを主構造とす
るエポキシ接着剤にて接着した。
To achieve this object, at least a part of a thermoplastic exterior molding resin having conductivity for the purpose of electromagnetic shielding, a silicon plate and an interference film formed on both surfaces thereof are used. At least a part of the cut surface of the optical filter was bonded with an epoxy adhesive containing bisphenol-A as a main structure.

【0008】[0008]

【作用】上記構成によって、外装樹脂と光学フィルター
間の電気抵抗が小さく、且つ安定化するため安定した電
磁シールド効果が得られる。また導電性接着剤を全く使
用しないため材料コストを削減でき、導電性接着剤塗着
〜硬化の工程も削減することが可能となる。
With the above construction, the electric resistance between the exterior resin and the optical filter is small and stable, so that a stable electromagnetic shield effect can be obtained. Further, since the conductive adhesive is not used at all, the material cost can be reduced, and the steps of applying and curing the conductive adhesive can be reduced.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の第一実施例における赤外線センサ
の回路図で、図1において18は赤外線検出素子、19
は赤外線検出素子18に並列に設けられた抵抗で、抵抗
19は電流安定のために設けられる。20はFETであ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of an infrared sensor according to the first embodiment of the present invention. In FIG.
Is a resistor provided in parallel with the infrared detection element 18, and the resistor 19 is provided for current stabilization. 20 is an FET.

【0010】図2は本発明の第一実施例における赤外線
センサの部分斜視図、図3および図4は同斜視図、図5
は同側断面図である。図2において、21はリードフレ
ームで、リードフレーム21は、一対の基体21aと、
一対の基体21aに渡って設けられた連結部21b,2
1cと、一対の基体21aからそれぞれ延設された延設
部21d,21eより構成されている。
FIG. 2 is a partial perspective view of an infrared sensor according to the first embodiment of the present invention, FIGS. 3 and 4 are the same perspective views, and FIG.
FIG. In FIG. 2, 21 is a lead frame, and the lead frame 21 includes a pair of bases 21a,
Connecting portions 21b, 2 provided across the pair of bases 21a
1c and extended portions 21d and 21e extended from a pair of bases 21a, respectively.

【0011】また連結部21bと連結部21cにはそれ
ぞれ互いに向き合う方向に突出した素子取り付け部21
f,21gが設けられており、さらに素子取り付け部2
1f,21gにはそれぞれ同一方向に立設された接合部
21h,21iが設けられている。抵抗19は素子取り
付け部21gと連結部21bの双方に半田等で接合され
ており、またFET20は連結部21cの素子取り付け
部21gを形成している部分と、延設部21d,21e
にそれぞれ同様に半田等で接合されている。
The connecting portions 21b and 21c each have an element mounting portion 21 projecting in a direction facing each other.
f and 21g are provided, and the element mounting portion 2 is further provided.
1f and 21g are provided with joints 21h and 21i standing upright in the same direction. The resistor 19 is joined to both the element mounting portion 21g and the connecting portion 21b by soldering or the like, and the FET 20 includes the portion forming the element mounting portion 21g of the connecting portion 21c and the extending portions 21d and 21e.
Are similarly joined to each other with solder or the like.

【0012】次に図2に示す点線に沿ってリードフレー
ム21を切断する。すなわち、連結部21bの両端部を
切断し、更に連結部21cはその中央部のみを残すよう
に切断し、さらに延設部21d,21eのそれぞれの両
端部を切断する。この様に不要部分を切断した半完成品
の電子部品を搭載した部分を耐候性等を有する材料によ
り覆う。この作業は例えば図3に示す様な形状にトラン
スファー成型機により絶縁性樹脂23で一体成形する。
このときリードフレーム21の一部である外部導出リー
ド24a,24b、及び赤外線検出素子18に接続され
る一対の出力端子22は絶縁性樹脂23により被服しな
い。また素子が挿入される凹部26が形成される。
Next, the lead frame 21 is cut along the dotted line shown in FIG. That is, both ends of the connecting portion 21b are cut, the connecting portion 21c is cut so that only the central portion of the connecting portion 21c is left, and both end portions of the extending portions 21d and 21e are cut. In this way, the portion on which the semi-finished electronic component mounted with the unnecessary portion cut is mounted is covered with a material having weather resistance or the like. This work is integrally molded with the insulating resin 23 by a transfer molding machine into a shape as shown in FIG. 3, for example.
At this time, the pair of output terminals 22 connected to the external lead-out leads 24 a and 24 b, which are a part of the lead frame 21, and the infrared detection element 18 are not covered with the insulating resin 23. Further, a concave portion 26 into which the element is inserted is formed.

【0013】この時外部導出リード24cは図2に示す
連結部21bを切断して構成されたものであり、更に外
部導出リード24a,24bはそれぞれ延設部21c,
21dを切断して構成されている。また一対の出力端子
22は、それぞれ図2に示す半完成品の接合部21h,
21iと同じである。また外部導出リード24a,24
b,24cのうちドレインリードとなる外部導出リード
24a及びソースリードとなる外部導出リード24bに
は根本に成形段25がそれぞれ設けられている。
At this time, the external lead-out lead 24c is formed by cutting the connecting portion 21b shown in FIG. 2, and the external lead-out leads 24a and 24b are extended portions 21c and 21c, respectively.
It is configured by cutting 21d. The pair of output terminals 22 are connected to the semi-finished product joints 21h,
21i. In addition, external lead-outs 24a, 24
Of the b and 24c, a molding step 25 is provided at the root of each of the external lead 24a serving as a drain lead and the external lead 24b serving as a source lead.

【0014】次に絶縁性樹脂23の上に更に射出成型機
を用いて絶縁性樹脂23の外周部を導電性を有する熱可
塑性樹脂29で被覆する(図4)。導電性を有する熱可
塑性樹脂29としてはポリカーボネートを主成分とし
て、これに導電性を有するカーボン繊維を含有するとと
もに比抵抗が10-1Ωcmの樹脂等の材料を使用した。
図4に導電性を有する熱可塑性樹脂29を形成した後の
形状を示す。この際、導電性を有する熱可塑性樹脂29
に外部導出リード24a,24bを接触させると出力が
得られないので、導電性を有する熱可塑性樹脂29が外
部導出リード24a,24bに接触しない様構成しなけ
ればならない。尚2つの外部導出リード24cはアース
端子となり、導電性を有する熱可塑性樹脂29と電気的
に導通している。また導電性を有する熱可塑性樹脂29
は凹部26に設けられておらず、凹部26の外縁より大
きめのフィルター挿入枠30が設けられている。
Next, the outer peripheral portion of the insulating resin 23 is coated with the conductive thermoplastic resin 29 on the insulating resin 23 using an injection molding machine (FIG. 4). As the conductive thermoplastic resin 29, a material such as a resin containing polycarbonate as a main component and having conductive carbon fiber and having a specific resistance of 10 -1 Ωcm was used.
FIG. 4 shows a shape after the conductive thermoplastic resin 29 is formed. At this time, the thermoplastic resin 29 having conductivity
No output is obtained when the external lead-out leads 24a, 24b are brought into contact with the external lead-out leads 24a, 24b. Therefore, the thermoplastic resin 29 having conductivity must be constructed so as not to come into contact with the external lead-out leads 24a, 24b. The two external lead-outs 24c serve as ground terminals and are electrically connected to the thermoplastic resin 29 having conductivity. Further, a thermoplastic resin 29 having conductivity
Is not provided in the recess 26, but a filter insertion frame 30 larger than the outer edge of the recess 26 is provided.

【0015】次に図5の側断面図において赤外線検出素
子18を凹部26内において、出力端子22に導電性接
着剤を用いて電気的、機械的に接続し、シリコン板とそ
の両面に形成された干渉膜からなる光学フィルター27
の底面27bと絶縁性樹脂23の上面23bを、また光
学フィルター27の切断面27aと導電性を有する熱可
塑性樹脂29に設けられたフィルターの内面29aをビ
スフェノール−Aを主成分とするエポキシ接着剤で接着
して赤外線センサを得る。
Next, in the side sectional view of FIG. 5, the infrared detecting element 18 is electrically and mechanically connected to the output terminal 22 in the recess 26 by using a conductive adhesive, and is formed on the silicon plate and both surfaces thereof. Optical filter 27 consisting of an interference film
Bottom surface 27b of the resin and the upper surface 23b of the insulating resin 23, and the cut surface 27a of the optical filter 27 and the inner surface 29a of the filter provided on the thermoplastic resin 29 having conductivity are epoxy adhesives containing bisphenol-A as a main component. Adhere with to obtain an infrared sensor.

【0016】尚、導電性を有する熱可塑性樹脂29とし
てABS、ポリスチレン等の樹脂に銅やステンレス等の
繊維を含有されたものが使用可能であるが、これらの金
属繊維を用いたものでは、薄い形状の成形が困難なう
え、導電性を有する熱可塑性樹脂29と光学フィルター
27間の導通がカーボン繊維を使用したものに比べ悪い
ためあまり好ましくない。
The conductive thermoplastic resin 29 may be made of a resin such as ABS or polystyrene containing fibers such as copper and stainless steel. However, the resin containing these metal fibers is thin. The shape is difficult to form, and the conduction between the conductive thermoplastic resin 29 and the optical filter 27 is worse than that using the carbon fiber, which is not preferable.

【0017】以上の工法により10個の赤外線センサを
製作し、光学フィルター27と外部導出アース端子との
間の抵抗値を測定し、平均値:Xと標準偏差:σn を算
出した。尚、光学フィルター27表面からは直接導通が
得られないため、光学フィルター27表面の絶縁性干渉
膜を切削除去したうえで、光学フィルター27中央部
と、アース端子先端部の間で抵抗値を測定した。得られ
た結果を(表1)に示す。比較として図10に示した従
来例による赤外線センサを比較例1、図11に示した赤
外線センサを比較例2とし、同様の方法で光学フィルタ
ー27、アース端子間の抵抗値を測定して結果を(表
1)に示す。
Ten infrared sensors were manufactured by the above method, the resistance value between the optical filter 27 and the external lead-out terminal was measured, and the average value: X and the standard deviation: σ n were calculated. Since electrical conductivity cannot be directly obtained from the surface of the optical filter 27, the insulating interference film on the surface of the optical filter 27 is cut and removed, and then the resistance value is measured between the central portion of the optical filter 27 and the tip of the ground terminal. did. The obtained results are shown in (Table 1). For comparison, the infrared sensor according to the conventional example shown in FIG. 10 is used as Comparative Example 1 and the infrared sensor shown in FIG. 11 is used as Comparative Example 2, and the resistance value between the optical filter 27 and the ground terminal is measured by the same method to obtain the result. It shows in (Table 1).

【0018】[0018]

【表1】 [Table 1]

【0019】(表1)から明らかなように本実施例によ
る赤外線センサは光学フィルター27とアース端子間の
抵抗が従来のセンサに比べ小さく、且つ極めて試料によ
る固体差が小さい。このことはセンサの機能として安定
したフィルター部のシールド性が得られることを意味し
ている。
As is clear from (Table 1), the infrared sensor according to the present embodiment has a smaller resistance between the optical filter 27 and the ground terminal than the conventional sensor, and has a very small difference between the samples. This means that a stable shielding property of the filter portion can be obtained as a function of the sensor.

【0020】尚、本発明で導電性接着剤を使用せずに安
定且つ十分な光学フィルター27とアース間の導通が得
られるのは、ビスフェノール−Aを主成分とするエポキ
シ接着剤が反応硬化時に、熱可塑性樹脂表面を侵し内部
の導電性材料がエポキシ接着剤側に取り込まれること
で、接着界面の安定した導通が得られるものである。
In the present invention, stable and sufficient electrical continuity between the optical filter 27 and the ground can be obtained without using a conductive adhesive when the epoxy adhesive containing bisphenol-A as a main component is reacted and cured. As a result of the fact that the surface of the thermoplastic resin is attacked and the conductive material inside is taken into the epoxy adhesive side, stable conduction at the adhesive interface can be obtained.

【0021】図6および図7は本発明の第二実施例にお
ける赤外線センサの側断面図である。図6において、ハ
ーメチックベース31の外部導出ピン31aを貫通させ
た絶縁性の基板32にFET33、抵抗34を半田付け
し、赤外線検出素子35を導電性接着剤にて電気的、機
械的に接続する。その基板32を外部導出ピン31aに
半田付けし、センサベースとする。
6 and 7 are side sectional views of an infrared sensor according to the second embodiment of the present invention. In FIG. 6, the FET 33 and the resistor 34 are soldered to the insulative substrate 32 that penetrates the external lead-out pin 31a of the hermetic base 31, and the infrared detection element 35 is electrically and mechanically connected by a conductive adhesive. . The board 32 is soldered to the external lead-out pin 31a to form a sensor base.

【0022】図7において導電性を有する熱可塑性樹脂
36には光の導入孔を形成しており、熱可塑性樹脂36
の導入孔に面した部分36aと光学フィルター37の切
断面37aをビスフェノール−Aを主成分とするエポキ
シ接着剤で接着しセンサキャップとする。さらに図6に
おけるハーメチックベース31の外縁部31bと図7に
おける導電性を有する熱可塑性樹脂36の底部36bを
ビスフェノール−Aを主成分とするエポキシ接着剤で接
着し赤外線センサを得る。以上の工法により10個の赤
外線センサを製作し、光学フィルター37と外部導出ア
ース端子との間の抵抗値を実施例1と同様の方法で測定
し、結果を(表1)に示す。第一実施例と同様、(表
1)から明らかなように本実施例による赤外線センサは
光学フィルター37とアース端子間の抵抗が従来のセン
サに比べ小さく、且つ極めて試料による個体差が小さ
い。
In FIG. 7, a light introducing hole is formed in the thermoplastic resin 36 having conductivity, and the thermoplastic resin 36
The portion 36a facing the introduction hole of 1 and the cut surface 37a of the optical filter 37 are bonded with an epoxy adhesive containing bisphenol-A as a main component to form a sensor cap. Further, the outer edge portion 31b of the hermetic base 31 in FIG. 6 and the bottom portion 36b of the conductive thermoplastic resin 36 in FIG. 7 are bonded with an epoxy adhesive containing bisphenol-A as a main component to obtain an infrared sensor. Ten infrared sensors were manufactured by the above method, and the resistance value between the optical filter 37 and the externally derived ground terminal was measured by the same method as in Example 1, and the results are shown in (Table 1). Similar to the first embodiment, as is clear from (Table 1), the infrared sensor according to this embodiment has a smaller resistance between the optical filter 37 and the ground terminal than the conventional sensor, and the individual difference due to the sample is extremely small.

【0023】図8は本発明の第三実施例における赤外線
センサの側断面図である。図8において導電性を有する
熱可塑性樹脂36には光の導入孔、及び受光面に光学フ
ィルター37を挿入する凹部を形成しており、凹部の外
周面36aと光学フィルター37の切断面37aを、ま
た熱可塑性樹脂36の凹部の低面36bと光学フィルタ
ー37の底面37bをビスフェノール−Aを主成分とす
るエポキシ接着剤で接着しセンサキャップとする。さら
に図6におけるハーメチックベース31の外縁部31b
と図8における導電性を有する熱可塑性樹脂36の底部
36bをビスフェノール−Aを主成分とするエポキシ接
着剤で接着し赤外線センサを得る。
FIG. 8 is a side sectional view of an infrared sensor according to the third embodiment of the present invention. In FIG. 8, the thermoplastic resin 36 having conductivity is provided with a light introducing hole and a recess for inserting the optical filter 37 in the light receiving surface. The outer peripheral surface 36a of the recess and the cut surface 37a of the optical filter 37 are Further, the lower surface 36b of the concave portion of the thermoplastic resin 36 and the bottom surface 37b of the optical filter 37 are bonded with an epoxy adhesive containing bisphenol-A as a main component to form a sensor cap. Further, the outer edge portion 31b of the hermetic base 31 in FIG.
Then, the bottom portion 36b of the thermoplastic resin 36 having conductivity shown in FIG. 8 is bonded with an epoxy adhesive containing bisphenol-A as a main component to obtain an infrared sensor.

【0024】以上の工法により10個の赤外線センサを
製作し、光学フィルター37と外部導出アース端子との
間の抵抗値を実施例1と同様の方法で測定し、結果を
(表1)に示す。第一実施例と同様、(表1)から明ら
かなように本実施例による赤外線センサは光学フィルタ
ー37とアース端子間の抵抗が従来のセンサに比べ小さ
く、且つ極めて試料による個体差が小さい。
Ten infrared sensors were manufactured by the above method, and the resistance value between the optical filter 37 and the external lead-out terminal was measured by the same method as in Example 1, and the results are shown in (Table 1). . Similar to the first embodiment, as is clear from (Table 1), the infrared sensor according to this embodiment has a smaller resistance between the optical filter 37 and the ground terminal than the conventional sensor, and the individual difference due to the sample is extremely small.

【0025】図9は本発明の第四実施例における赤外線
センサの側断面図である。図9において導電性を有する
熱可塑性樹脂36には光の導入孔、及び受光面の裏面に
光学フィルター37を挿入する凹部を形成しており、凹
部の外周面36aと光学フィルター37の切断面37a
を、また熱可塑性樹脂36の凹部の底面36bと光学フ
ィルター37の底面37bをビスフェノール−Aを主成
分とするエポキシ接着剤で接着しセンサキャップとす
る。さらに図6におけるハーメチックベース31の外縁
部31bと図9における導電性を有する熱可塑性樹脂3
6の底部36bをビスフェノール−Aを主成分とするエ
ポキシ接着剤で接着し赤外線センサを得る。
FIG. 9 is a side sectional view of an infrared sensor according to the fourth embodiment of the present invention. In FIG. 9, a thermoplastic resin 36 having conductivity is provided with a light introducing hole and a recess for inserting the optical filter 37 on the back surface of the light receiving surface. The outer peripheral surface 36a of the recess and the cut surface 37a of the optical filter 37 are formed.
And the bottom surface 36b of the concave portion of the thermoplastic resin 36 and the bottom surface 37b of the optical filter 37 are bonded with an epoxy adhesive containing bisphenol-A as a main component to form a sensor cap. Further, the outer edge portion 31b of the hermetic base 31 shown in FIG. 6 and the thermoplastic resin 3 having conductivity shown in FIG.
The bottom portion 36b of 6 is bonded with an epoxy adhesive containing bisphenol-A as a main component to obtain an infrared sensor.

【0026】以上の工法により10個の赤外線センサを
製作し、光学フィルターと外部導出アース端子との間に
抵抗値を実施例1と同様の方法で測定し、結果を(表
1)に示す。第一実施例と同様、(表1)から明らかな
ように本実施例による赤外線センサは光学フィルターと
アース端子間の抵抗が従来のセンサに比べ小さく、且つ
極めて試料による個体差が小さい。
Ten infrared sensors were manufactured by the above method, and the resistance value between the optical filter and the external lead-out ground terminal was measured by the same method as in Example 1, and the results are shown in (Table 1). Similar to the first embodiment, as is clear from (Table 1), the infrared sensor according to this embodiment has a smaller resistance between the optical filter and the ground terminal than the conventional sensor, and the individual difference due to the sample is extremely small.

【0027】[0027]

【発明の効果】以上説明したように本発明は、電磁シー
ルドを目的とした導電性を有する熱可塑性外装成形樹脂
の少なくとも一部と、シリコン板とその両面に形成され
た干渉膜からなる光学フィルターの切断面の少なくとも
一部をビスフェノール−Aを主構造とするエポキシ樹脂
にて接着することによって、外装樹脂と光学フィルター
間の抵抗値が小さく、且つ試料による個体差を低減でき
る。また導電性の接着剤を全く使用しないため材料コス
トを削減でき、導電性接着剤塗着〜硬化の工程も削除す
ることが可能となり、低価格で安定したシールド性能を
有する赤外線センサを得る。
As described above, the present invention is an optical filter comprising at least a part of a conductive thermoplastic exterior molding resin for the purpose of electromagnetic shielding, a silicon plate and an interference film formed on both surfaces thereof. By bonding at least a part of the cut surface with an epoxy resin having bisphenol-A as a main structure, the resistance value between the exterior resin and the optical filter is small, and individual differences due to the sample can be reduced. Further, since the conductive adhesive is not used at all, the material cost can be reduced, and the steps of applying and curing the conductive adhesive can be eliminated, and an infrared sensor having a stable shield performance at a low price can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例における赤外線センサの回
路図
FIG. 1 is a circuit diagram of an infrared sensor according to a first embodiment of the present invention.

【図2】本発明の第一実施例における赤外線センサの部
分斜視図
FIG. 2 is a partial perspective view of an infrared sensor according to the first embodiment of the present invention.

【図3】本発明の第一実施例における赤外線センサの斜
視図
FIG. 3 is a perspective view of an infrared sensor according to the first embodiment of the present invention.

【図4】本発明の第一実施例における赤外線センサの斜
視図
FIG. 4 is a perspective view of an infrared sensor according to the first embodiment of the present invention.

【図5】本発明の第一実施例における赤外線センサの側
断面図
FIG. 5 is a side sectional view of the infrared sensor according to the first embodiment of the present invention.

【図6】本発明の第二実施例における赤外線センサの側
断面図
FIG. 6 is a side sectional view of an infrared sensor according to a second embodiment of the present invention.

【図7】本発明の第二実施例における赤外線センサの側
断面図
FIG. 7 is a side sectional view of an infrared sensor according to a second embodiment of the present invention.

【図8】本発明の第三実施例における赤外線センサの側
断面図
FIG. 8 is a side sectional view of an infrared sensor according to a third embodiment of the present invention.

【図9】本発明の第四実施例における赤外線センサの側
断面図
FIG. 9 is a side sectional view of an infrared sensor according to a fourth embodiment of the present invention.

【図10】従来の焦電型赤外線センサの側断面図FIG. 10 is a side sectional view of a conventional pyroelectric infrared sensor.

【図11】他の従来の焦電型赤外線センサの側断面図FIG. 11 is a side sectional view of another conventional pyroelectric infrared sensor.

【符号の説明】[Explanation of symbols]

18 赤外線検出素子 21 リードフレーム 23 絶縁性樹脂 27,37 光学フィルター 27a,37a 切断面 29,36 熱可塑性樹脂 31 ハーメチックベース 32 基板 18 Infrared detecting element 21 Lead frame 23 Insulating resin 27, 37 Optical filter 27a, 37a Cut surface 29, 36 Thermoplastic resin 31 Hermetic base 32 Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 浩一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Watanabe 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】電磁シールドのための導電性を有する熱可
塑性外装成形樹脂の少なくとも一部と、シリコン板とそ
の両面に形成された干渉膜からなる光学フィルターの切
断面の少なくとも一部を、ビスフェノール−Aを主構造
とするエポキシ樹脂にて接着してなることを特徴とする
赤外線センサ。
1. At least a part of a conductive thermoplastic exterior molding resin for electromagnetic shielding, and at least a part of a cut surface of an optical filter composed of a silicon plate and an interference film formed on both surfaces thereof are covered with bisphenol. An infrared sensor characterized by being bonded with an epoxy resin having a main structure of -A.
【請求項2】前記熱可塑性外装成形樹脂として、ポリカ
ーボネイト中に炭素繊維が分散した材料を使用すること
を特徴とする請求項1記載の赤外線センサ。
2. The infrared sensor according to claim 1, wherein a material in which carbon fibers are dispersed in polycarbonate is used as the thermoplastic exterior molding resin.
【請求項3】赤外線検出素子を除く回路部品のうち少な
くとも1つ以上と、これらを電気的、機械的に接続し外
部導出するリードの一部を一体モールドした絶縁性樹脂
部と、この絶縁性樹脂部の少なくとも一部をさらにモー
ルドする導電性を有する熱可塑性外装成形樹脂からなる
リード付きケースを有し、このケースの内部に内蔵され
る赤外線検出素子、及びシリコン板の両面に形成された
干渉膜からなる光学フィルターで構成される赤外線セン
サであって、前記光学フィルターの干渉膜面を絶縁性樹
脂部に、前記光学フィルターの切断面を導電性を有する
外装成形樹脂に、それぞれビスフェノール−Aを主構造
とするエポキシ樹脂にて接着してなることを特徴とする
請求項1記載の赤外線センサ。
3. At least one or more of the circuit components excluding the infrared detecting element, an insulating resin portion integrally molded with a part of a lead electrically and mechanically connecting them and leading out to the outside, and this insulating property. The case has a lead case made of a conductive thermoplastic exterior molding resin that further molds at least a part of the resin part, the infrared detection element built into this case, and the interference formed on both sides of the silicon plate. An infrared sensor composed of an optical filter made of a film, wherein an interference film surface of the optical filter is an insulating resin portion, a cut surface of the optical filter is an exterior molding resin having conductivity, and bisphenol-A is respectively added. The infrared sensor according to claim 1, wherein the infrared sensor is bonded with an epoxy resin as a main structure.
【請求項4】前記熱可塑性外装成形樹脂として、ポリカ
ーボネイト中に炭素繊維が分散した材料を使用すること
を特徴とする請求項3記載の赤外線センサ。
4. The infrared sensor according to claim 3, wherein a material in which carbon fibers are dispersed in polycarbonate is used as the thermoplastic exterior molding resin.
【請求項5】絶縁性樹脂材料としてエポキシ樹脂を使用
することを特徴とする請求項3記載の赤外線センサ。
5. The infrared sensor according to claim 3, wherein an epoxy resin is used as the insulating resin material.
【請求項6】赤外線検出素子と回路部品及びこれらを機
械的に接続し、電気的に導出するためのリード付きのセ
ンサーベースと、これとは別に構造体に接続される一部
に光の導入穴を設けた導電性を有する熱可塑性成形樹脂
ケース、及びシリコン板の両面に形成された干渉膜から
なる光学フィルターで構成され、前記光の導入穴の内面
と前記光学フィルターの切断面をビスフェノース−Aを
主構造とするエポキシ樹脂にて接着してなることを特徴
とする請求項1記載の赤外線センサ。
6. An infrared detection element and a circuit component, and a sensor base with leads for mechanically connecting and electrically leading them, and light introduction to a part separately connected to the structure. A thermoplastic molded resin case having a hole having conductivity, and an optical filter composed of an interference film formed on both surfaces of a silicon plate, and a bisphenose-shaped inner surface of the light introduction hole and a cut surface of the optical filter. The infrared sensor according to claim 1, wherein the infrared sensor is bonded with an epoxy resin having A as a main structure.
【請求項7】前記熱可塑性成形樹脂ケースとして、ポリ
カーボネイト中に炭素繊維が分散した材料を使用するこ
とを特徴とする請求項6記載の赤外線センサ。
7. The infrared sensor according to claim 6, wherein a material in which carbon fibers are dispersed in polycarbonate is used as the thermoplastic molded resin case.
【請求項8】赤外線検出素子と回路部品及びこれらを機
械的に接続し、電気的に導出するためのリード付きのセ
ンサーベースと、これとは別に構造体に接続される一部
に光の導入穴を設けた導電性を有する熱可塑性成形樹脂
ケース、及びシリコン板の両面に形成された干渉膜から
成る光学フィルターで構成され、前記熱可塑性成形樹脂
ケースの受光面に凹部が形成され、ここに光学フィルタ
ーをビスフェノール−Aを主構造とするエポキシ樹脂に
て接着してなることを特徴とする請求項1記載の赤外線
センサ。
8. An infrared detection element and a circuit component, a sensor base with leads for mechanically connecting and electrically leading them, and a part of the base separately connected to the structure for introducing light. A thermoplastic molding resin case having a hole provided with conductivity, and an optical filter composed of an interference film formed on both surfaces of a silicon plate, and a concave portion is formed on the light-receiving surface of the thermoplastic molding resin case. The infrared sensor according to claim 1, wherein the optical filter is bonded with an epoxy resin having bisphenol-A as a main structure.
【請求項9】前記熱可塑性成形樹脂ケースとして、ポリ
カーボネイト中に炭素繊維が分散した材料を使用するこ
とを特徴とする請求項8記載の赤外線センサ。
9. The infrared sensor according to claim 8, wherein a material in which carbon fibers are dispersed in polycarbonate is used as the thermoplastic molded resin case.
【請求項10】赤外線検出素子と回路部品及びこれらを
機械的に接続し、電気的に導出するためのリード付きの
センサーベースと、これとは別に構造体に接続される一
部に光の導入穴を設けた導電性を有する熱可塑性成形樹
脂ケース、及びシリコン板の両面に形成された干渉膜か
らなる光学フィルターで構成され、前記熱可塑性成形樹
脂ケースの受光面対向側に凹部が形成され、ここに光学
フィルターをビスフェノール−Aを主構造とするエポキ
シ樹脂にて接着してなることを特徴とする請求項1記載
の赤外線センサ。
10. An infrared detection element and a circuit component, and a sensor base with leads for mechanically connecting and electrically leading them, and light introduction to a part separately connected to the structure. A thermoplastic molding resin case having conductivity provided with a hole, and an optical filter consisting of an interference film formed on both sides of a silicon plate, a recess is formed on the light receiving surface facing side of the thermoplastic molding resin case, The infrared sensor according to claim 1, wherein an optical filter is bonded thereto with an epoxy resin having bisphenol-A as a main structure.
【請求項11】前記熱可塑性成形樹脂ケースとして、ポ
リカーボネイト中に炭素繊維が分散した材料を使用する
ことを特徴とする請求項10記載の赤外線センサ。
11. The infrared sensor according to claim 10, wherein a material in which carbon fibers are dispersed in polycarbonate is used as the thermoplastic molded resin case.
JP26953994A 1994-11-02 1994-11-02 Infrared sensor Pending JPH08128890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26953994A JPH08128890A (en) 1994-11-02 1994-11-02 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26953994A JPH08128890A (en) 1994-11-02 1994-11-02 Infrared sensor

Publications (1)

Publication Number Publication Date
JPH08128890A true JPH08128890A (en) 1996-05-21

Family

ID=17473795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26953994A Pending JPH08128890A (en) 1994-11-02 1994-11-02 Infrared sensor

Country Status (1)

Country Link
JP (1) JPH08128890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054250A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Infrared detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054250A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Infrared detector

Similar Documents

Publication Publication Date Title
US4139726A (en) Packaged microcircuit and method for assembly thereof
EP0474469B1 (en) Multi-layer lead frame for a semiconductor device
JPS63306651A (en) Power semiconductor device and its manufacture
JPH0319703B2 (en)
JP3191540B2 (en) Infrared sensor
JP3099382B2 (en) Small oscillator
JPH08128890A (en) Infrared sensor
JP2901356B2 (en) Hybrid integrated circuit
JPH066559Y2 (en) Shield structure for electronic components
JPH1051034A (en) Surface-mount electronic component, its manufacture, method for mounting the component on circuit board, and circuit board mounting the component
JPH0989680A (en) Printed circuit board for electronic clinical thermometer, electronic clinical thermometer using the same and manufacture thereof
JPH0888103A (en) Surface-mounted electronic component
JPH09214002A (en) Surface packaged led device and its fabrication method
JP4213820B2 (en) Electronic components
JPH0442937Y2 (en)
JPH04360576A (en) Solid-state image sensing device
JP2603384Y2 (en) Pyroelectric infrared detector
JP4235417B2 (en) Surface mount type electronic component and manufacturing method thereof
JPH0122260Y2 (en)
JPH054295Y2 (en)
JPH043500Y2 (en)
CA1069320A (en) Electronic watch with cover plate integrally molded to a circuit base plate
JP2001255204A (en) Pyroelectric infrared sensor
JPS605630Y2 (en) surface acoustic wave device
JP4213818B2 (en) Electronic components