JPH08115813A - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JPH08115813A
JPH08115813A JP24955994A JP24955994A JPH08115813A JP H08115813 A JPH08115813 A JP H08115813A JP 24955994 A JP24955994 A JP 24955994A JP 24955994 A JP24955994 A JP 24955994A JP H08115813 A JPH08115813 A JP H08115813A
Authority
JP
Japan
Prior art keywords
fiber
coil
superconducting coil
wound
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24955994A
Other languages
Japanese (ja)
Inventor
Toshihiro Kashima
俊弘 鹿島
Atsuhiko Yamanaka
淳彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP24955994A priority Critical patent/JPH08115813A/en
Publication of JPH08115813A publication Critical patent/JPH08115813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE: To provide a superconducting coil in which a strain characteristic from room temperature up to a cryogenic temperature state is not changed by a repetitive heat cycle by a method wherein a reinforcing fiber roving comprised by combining organic fibers having a negative coefficient of thermal expansion and glass fibers are wound on a spool at a specific angle against the axial direction of the coil, and the wound product is integrally molded with resin. CONSTITUTION: In a superconducting coil for a cryogenic temperature, in which a superconducting wire is wound on a cylindrical or piller-shaped spool, a reinforcing fiber roving comprised of combination of organic fibers having a negative coefficient of thermal expansion and glass fibers are wound on a spool at an angle of ±40-90 deg. against the axial direction of the coil, and the wound product i integrally molded with resin to obtain a superconducting coil comprised of a fiber-reinforced plastic. In the superconducting coil, the volume ratio of the organic fiber to the glass fiber is (90:10) to (30:70). Thereby, it is possible to obtain the superconducting coil in which the number of training operation is small, whose maximum current value is high and stable and whose performance is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極低温に冷却して用いら
れる超電導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil which is cooled to an extremely low temperature and used.

【0002】[0002]

【従来の技術】超電導コイル装置は超電導導体を巻枠に
巻回し、層間にスペーサを介して形成されるか外周面に
彫られたラセン溝に沿って超電導導体を巻回した層コイ
ル要素を順次同心的に複数層重ねて構成される。従来こ
の巻枠としてはアルミニウム等の金属又はガラス繊維強
化プラスチックが用いられる。
2. Description of the Related Art In a superconducting coil device, a superconducting conductor is wound on a winding frame, and layer coil elements in which the superconducting conductor is wound along a spiral groove formed between layers with a spacer or engraved on the outer peripheral surface are sequentially formed. Concentric layers are formed. Conventionally, a metal such as aluminum or glass fiber reinforced plastic is used as the reel.

【0003】[0003]

【発明が解決しようとする課題】超電導コイルの用途は
多岐に亙るが、いずれも超電導線の電流密度を高くする
ことが、コイル自体の性能を上げるためには極めて重要
である。そして、これは巻枠に巻回した超電導線の安定
性に大きく依存する。超電導線を巻枠に巻回した状態で
の物理的安定性は超電導コイル自体の電気的な安定性と
深く関わっている。通常巻枠としてはステンレス、アル
ミニウム等の金属又はガラス繊維強化プラスチック(G
FRP)が用いられるが、これらは室温で巻回して液体
窒素(LNT)又は液体ヘリウム温度(LHeT)迄冷
却した時、いずれも巻枠の周方向に大きく収縮し、軸方
向に小さく収縮する。一方超電導線は、極低温で励磁し
た時、周方向には、ローレンツ力に由来する反発力によ
り膨張し、巻線は、巻枠から離れる方向に動くことにな
る。また軸方向には極低温になると超電導線の垂直方向
の正膨張に由来する大きな収縮のため巻枠軸方向の小さ
な収縮以上に寸法変化することになる。この両者の動き
が相まって超電導線間にミクロな相互の動きが生じ、表
面の摩擦発熱に伴う擾乱が生じ超電導コイルはクエンチ
に至る。またステンレス、アルミ枠の場合は導電性であ
るため、特に交流では渦電流に伴うジュール発熱が生ず
るため不安定となる。
Although the superconducting coil has a wide variety of applications, increasing the current density of the superconducting wire is extremely important for improving the performance of the coil itself. And, this largely depends on the stability of the superconducting wire wound around the bobbin. The physical stability of the superconducting wire wound around the bobbin is closely related to the electrical stability of the superconducting coil itself. Usually, the reel is made of metal such as stainless steel or aluminum, or glass fiber reinforced plastic (G
FRP) is used, but when they are wound at room temperature and cooled to liquid nitrogen (LNT) or liquid helium temperature (LHeT), they both largely contract in the circumferential direction of the reel and slightly contract in the axial direction. On the other hand, when the superconducting wire is excited at an extremely low temperature, it expands in the circumferential direction due to the repulsive force resulting from the Lorentz force, and the winding moves in the direction away from the winding frame. Further, when the temperature becomes extremely low in the axial direction, the size of the superconducting wire changes more than the small amount in the axial direction of the winding frame due to the large contraction caused by the positive expansion in the vertical direction. These two movements are combined to cause microscopic mutual movements between the superconducting wires, causing a disturbance due to frictional heat generation on the surface, and the superconducting coil is quenched. Further, in the case of stainless steel or aluminum frame, since it is conductive, Joule heat is generated due to eddy current, especially in an alternating current, so that it becomes unstable.

【0004】またコイル性能を上げるためには大口径、
長尺化して超電導線の長さを確保した状態で使う必要が
ある。一方、極低温測定はLHeTで使うためには、薄
肉化しコイルボビン自体の熱容量を小さくすることが、
冷却効率を上げるうえで重要となる。一方コイルは、巻
枠に超電導線を巻回する際、あらかじめ一定のテンショ
ンをかけ超電導線の動きを抑制する必要がある。そし
て、このテンションはある限度まではテンションが高い
程、線材の抑制効果は高く、耐クエンチ性も高いという
ことができる。これと巻枠の大口径薄肉化の技術動向を
勘案すると巻枠自体の剛性が高いことが重要である。こ
の巻枠を構成する材料として低い圧縮強度及び弾性率の
材料を用いると、コイル作成時の高いプリテンションの
ために、経時的に変形したり室温から極低温状態までの
歪特性が繰返しのヒートサイクルにより変化しコイル特
性が変わるという不都合が生ずることとなる。この発明
は以上の問題点を解消するためになされたものであり、
高性能且つ安定な超電導コイルを得ることを目的とす
る。
In order to improve the coil performance, a large diameter,
It is necessary to make the superconducting wire long and secure the length of the superconducting wire. On the other hand, in order to use the cryogenic measurement with LHeT, it is necessary to reduce the thickness of the coil bobbin itself to reduce the heat capacity,
It is important for improving cooling efficiency. On the other hand, for the coil, when the superconducting wire is wound around the winding frame, it is necessary to apply a certain tension in advance to suppress the movement of the superconducting wire. It can be said that the higher the tension is to a certain limit, the higher the effect of suppressing the wire rod and the higher the quenching resistance. Considering this and the technological trend of large diameter thinning of the reel, it is important that the reel itself has high rigidity. If a material with low compressive strength and elastic modulus is used as the material forming this reel, it will be deformed over time due to high pre-tension during coil making, and the strain characteristics from room temperature to cryogenic temperature will be repeated. This causes a disadvantage that the coil characteristics change depending on the cycle and the coil characteristics change. The present invention has been made to solve the above problems,
The purpose is to obtain a high-performance and stable superconducting coil.

【0005】[0005]

【課題を解決するための手段】本発明は筒又は柱状の巻
枠に超電導線を巻回した極低温用超電導コイルにおいて
前記巻枠が、繊維材料として負の膨張率を持つ有機繊維
とガラス繊維の組み合せからなり、これと樹脂とを一体
成形してなる繊維強化プラスチックよりなることを特徴
とする超電導コイルである。
DISCLOSURE OF THE INVENTION The present invention relates to a cryogenic superconducting coil in which a superconducting wire is wound around a cylindrical or columnar winding frame, in which the winding frame has a negative expansion coefficient of organic fiber and glass fiber. The superconducting coil is characterized in that it is made of a combination of the above and is made of a fiber reinforced plastic obtained by integrally molding the resin and the resin.

【0006】本発明に用いられる負膨張の有機繊維とし
ては、高強力、高弾性率繊維であり、ポリエチレン、ア
ラミド、ポリアリレート(全芳香族ポリエステル)、P
BZポリマー(ポリベンツビスオキサゾール、ポリベン
ツビスチアゾールなど)の繊維が挙げられるが、ポリエ
チレン繊維が特に好ましい。これらの繊維はいずれも低
温になるにつれて膨張するという特異な性質を持つとと
もに、ガラス繊維に比べてはるかに低比重であるため、
高比強度、高比弾性率であり且つ軽い補強繊維を得るこ
とができる。
The negative expansion organic fibers used in the present invention are high-strength and high-modulus fibers such as polyethylene, aramid, polyarylate (wholly aromatic polyester), P
Fibers of BZ polymer (polybenzbisoxazole, polybenzbisthiazole, etc.) may be mentioned, with polyethylene fibers being particularly preferred. All of these fibers have the peculiar property that they expand as the temperature decreases, and because they have a much lower specific gravity than glass fibers,
It is possible to obtain a reinforcing fiber having a high specific strength, a high specific elastic modulus and a light weight.

【0007】一方これらの有機繊維はいずれも圧縮、曲
げ、特性が金属、セラミックス系等の無機繊維に比べて
極端に低いという共通の欠点を有する。しかし、一般に
無機系繊維は圧縮、曲げ特性には優れるがいずれも正膨
張の特性しか示さない。無機繊維の内、カーボン繊維は
小さな負膨張性を持ち、圧縮、曲げ特性に優れ、また比
重も小さく好ましいが、絶縁性能に問題があり、コイル
の巻枠として使用するには制約がある。これに対して、
ガラス繊維は正膨張の特性しか示さないが、圧縮、曲げ
特性に優れ、絶縁性能もよい。欠点である正膨張性につ
いては負膨張特性を持つ上記有機繊維と適宜混合使用す
ることで必要な要求性能を満たすことは可能である。今
一つガラス繊維と混合使用することの意義は、一般に有
機繊維はマトリックス樹脂との接着性が低い。これに対
してガラス繊維は、樹脂とのなじみがよく繊維/マトリ
ックス界面の接着性に由来する層間せん断強度が高い。
これは、室温から低温にした時の熱衝撃によるマイクロ
クラック等の発生の可能性を下げ、安定な成形品を得る
こととなる。
On the other hand, all of these organic fibers have a common drawback that they are extremely low in compression, bending and properties as compared with inorganic fibers such as metal and ceramics. However, in general, inorganic fibers are excellent in compression and bending characteristics, but both show only positive expansion characteristics. Among the inorganic fibers, carbon fiber has a small negative expansion property, is excellent in compression and bending characteristics, and has a small specific gravity, which is preferable, but it has a problem in insulation performance and is limited in use as a winding frame of a coil. On the contrary,
Although glass fiber shows only positive expansion characteristics, it has excellent compression and bending characteristics and good insulation performance. Regarding the positive swelling property, which is a drawback, it is possible to satisfy the required performance requirements by appropriately mixing and using the organic fiber having the negative swelling property. The significance of mixing and using another glass fiber is that organic fibers generally have low adhesiveness with matrix resins. On the other hand, the glass fiber is well compatible with the resin and has high interlaminar shear strength derived from the adhesiveness at the fiber / matrix interface.
This reduces the possibility of occurrence of microcracks and the like due to thermal shock when the temperature is lowered from room temperature, and a stable molded product is obtained.

【0008】ここにガラス繊維はEガラス、Sガラス、
Fガラス等広い範囲のものが使用出来るが特にS−ガラ
ス、F−ガラスが好ましい。有機系繊維とガラス繊維の
混合割合は、体積比で90/10〜30/70好ましく
は80/20〜35/75の範囲が好ましい。ガラス繊
維が10%より少ないと圧縮特性の改善効果が小さく、
また、有機系繊維が30%より少ないと負膨張性が小さ
くなる。
Here, the glass fibers are E glass, S glass,
A wide range of materials such as F glass can be used, but S-glass and F-glass are particularly preferred. The mixing ratio of the organic fiber and the glass fiber is 90/10 to 30/70, preferably 80/20 to 35/75 in terms of volume ratio. If the glass fiber content is less than 10%, the effect of improving the compression characteristics is small,
Further, when the organic fiber content is less than 30%, the negative expansion property becomes small.

【0009】次に寸法変化について詳述する。これらの
有機系繊維は、いずれも負膨張率(室温から温度を下げ
ると伸長する)を有するという特異な性質を持つ。これ
に対してガラス繊維は正膨張率を有する。一方マトリッ
クス樹脂は正膨張を示すが、有機繊維とガラス繊維の混
合繊維よりなる繊維強化プラスチック(FRP)は両者
の混合割合により連続的に変化する。図1は高強力、高
弾性率ポリエチレン繊維(DF)とT−ガラス(GF)
を用いた一方向強化FRPの繊維方向の熱膨張率を示
す。この例ではDFが40vol%以上で負膨張となる
ことが分る。またDF/GF混合繊維を巻回して円筒又
は円柱を作成することも可能である。
Next, the dimensional change will be described in detail. All of these organic fibers have the unique property of having a negative expansion coefficient (extending when the temperature is lowered from room temperature). On the other hand, glass fiber has a positive expansion coefficient. On the other hand, the matrix resin exhibits a positive expansion, but the fiber reinforced plastic (FRP) made of a mixed fiber of organic fiber and glass fiber continuously changes depending on the mixing ratio of both. Figure 1 shows high strength, high modulus polyethylene fiber (DF) and T-glass (GF).
2 shows the coefficient of thermal expansion in the fiber direction of the unidirectionally reinforced FRP using. In this example, it can be seen that negative expansion occurs when DF is 40 vol% or more. It is also possible to wind a DF / GF mixed fiber to form a cylinder or a cylinder.

【0010】このときマトリックス樹脂は正膨張を示す
が、これら繊維のフィラメントを巻回して、成形した円
筒又は円柱は、DFとGFの混合比率を選ぶことにより
周方向に負膨張率を又軸方向には正膨張率を持たせるこ
とができる。ここで使用されるマトリックスとしてはエ
ポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル
樹脂、ウレタン樹脂、ウレタンアクリレート樹脂などが
使用できるが特に好ましいのはエポキシ樹脂である。こ
れらのマトリックス樹脂はいずれも正膨張を示すが、負
膨張を示すDFと正膨張を示すGF繊維を用いて、巻き
角度を変えてフィラメントを巻回して、成形した円筒又
は円柱の温度に伴う寸法変化は図2に示す様に巻き角度
に依存し、それを適当に選ぶことにより周方向に対して
負膨張率、又軸方向は正膨張とすることができる。そし
て、周方向の負膨張は繊維自身の持つ負膨張率よりはる
かに高い値となる。配向角は軸方向に対して±40〜9
0度が適当であるが、望ましくは±47〜±85度であ
る。角度が±40度未満では周方向の正膨張(低温にな
るに従い収縮する)が大きくなる。一方、GFRPの場
合はガラス繊維及びマトリックス樹脂とも正膨張である
ので巻き角度に無関係に、周方向には正膨張という通常
の材料に見られる特性しか得られない。従って本発明よ
りなる巻枠を用いた超電導コイルは、安定で、耐クエン
チ性が高く電流密度の大きな高性能コイルとすることが
できる。GFRPを超電導コイルの巻枠として使用する
場合、最大の問題点は周方向の大きな収縮に伴う超電導
線のゆるみによりコイルが容易にクエンチすることであ
る。
At this time, the matrix resin exhibits positive expansion, but the cylinder or column formed by winding the filaments of these fibers has a negative expansion coefficient in the circumferential direction and an axial direction by selecting the mixing ratio of DF and GF. Can have a positive expansion coefficient. As the matrix used here, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a urethane resin, a urethane acrylate resin or the like can be used, but an epoxy resin is particularly preferable. Although all of these matrix resins exhibit positive expansion, DF fibers exhibiting negative expansion and GF fibers exhibiting positive expansion are used, and the filament is wound by changing the winding angle, and the dimensions of the formed cylinder or cylinder with temperature increase. The change depends on the winding angle as shown in FIG. 2, and by appropriately selecting it, the negative expansion coefficient in the circumferential direction and the positive expansion in the axial direction can be obtained. The negative expansion in the circumferential direction is much higher than the negative expansion coefficient of the fiber itself. Orientation angle is ± 40-9 with respect to the axial direction
0 degree is suitable, but it is preferably ± 47 to ± 85 degrees. If the angle is less than ± 40 degrees, the positive expansion in the circumferential direction (contracting as the temperature becomes lower) increases. On the other hand, in the case of GFRP, since both glass fiber and matrix resin have positive expansion, only the characteristic of normal expansion, which is a characteristic of ordinary materials, can be obtained regardless of the winding angle. Therefore, the superconducting coil using the reel according to the present invention can be a high-performance coil that is stable, has high quench resistance, and has a large current density. When GFRP is used as a bobbin of a superconducting coil, the biggest problem is that the coil is easily quenched due to loosening of the superconducting wire accompanying a large contraction in the circumferential direction.

【0011】本発明では、ポリエチレン、アラミド、ポ
リアリレート、PBZポリマーなどの高強力、高弾性率
有機系負膨張繊維と、耐圧縮、曲げ特性に優れたガラス
繊維を組み合せると、繊維成形体の軸に対して±40度
から±90度の角度となる様に巻き樹脂と一体成形して
なる繊維強化プラスチックを巻枠とすることによりトレ
ーニング作業が容易で且つ最大電流値の高い、安定にし
て高性能な超電導コイルを提供するものである。有機繊
維とガラス繊維の混合方法としては1種以上の有機繊維
とガラス繊維を糸条単位で均一混合して巻回する方法、
有機繊維とガラス繊維をフィラメント単位で均一混合し
た糸条を巻回する方法、有機繊維とガラス繊維を交互に
積層して巻回する方法などいずれの方法をとることも可
能である。最も有効な方法は有機繊維とガラス繊維をフ
ィラメント又は糸条で均一混合して巻回する方法であ
る。この場合、混合割合の変更は有機繊維とガラス繊維
のフィラメント数を変えるか、又は両者の巻回本数比
率、例えば有機繊維2本毎にガラス繊維1本の割合で巻
回する等により適宜設定することができる。成形法とし
ては、本繊維を糸状またはテープ状のものにマトリック
樹脂を含浸させながら、マンドレルに巻き付けるフィラ
メントワインディング法又はテープワインディング法な
どが挙げられる。
In the present invention, when a high-strength, high-modulus organic negative expansion fiber such as polyethylene, aramid, polyarylate, or PBZ polymer is combined with a glass fiber excellent in compression resistance and bending characteristics, a fiber molded product is obtained. Training work is easy, and the maximum current value is high and stable by using a fiber reinforced plastic integrally molded with winding resin so that the angle is ± 40 degrees to ± 90 degrees with respect to the axis. It is intended to provide a high-performance superconducting coil. As a method of mixing the organic fiber and the glass fiber, a method of uniformly mixing one or more kinds of the organic fiber and the glass fiber in a yarn unit and winding the mixture,
Any method such as a method of winding a yarn in which organic fibers and glass fibers are uniformly mixed in a filament unit, a method of alternately laminating organic fibers and glass fibers, and a method of winding are possible. The most effective method is to uniformly mix the organic fiber and the glass fiber with a filament or a yarn and wind them. In this case, the mixing ratio is appropriately set by changing the number of filaments of the organic fiber and the glass fiber, or the ratio of the number of windings of both, for example, the ratio of one glass fiber for every two organic fibers. be able to. Examples of the molding method include a filament winding method or a tape winding method in which the present fiber is wound around a mandrel while being impregnated with a matrix resin in a thread or tape shape.

【0012】上記複合材中の繊維とマトリックス樹脂の
混合比率は、繊維の体積分子率(Vf)として35〜8
5%が好ましく、より好ましいのは40〜70%であ
る。繊維Vfが35%より少ないと繊維の補強効果が発
現せず、85%を超えるとマトリックス樹脂が含浸しに
くくなり複合材料としての機械的特性が悪化するため好
ましくない。
The mixing ratio of the fibers and the matrix resin in the above composite material is 35 to 8 as the volume molecular weight (Vf) of the fibers.
5% is preferable, and 40 to 70% is more preferable. When the fiber Vf is less than 35%, the reinforcing effect of the fiber does not appear, and when it exceeds 85%, it is difficult to impregnate the matrix resin and the mechanical properties of the composite material deteriorate, which is not preferable.

【0013】[0013]

【実施例】本発明の負膨張繊維よりなる円筒繊維強化プ
ラスチック(FRP)は、以下の様に行った。有機系負
膨張繊維としては、高強力ポリエチレン繊維(東洋紡、
ダイニーマSK60)、アラミド繊維(日本アラミド繊
維、トワロンHM)、ポリアリレート繊維(クラレ、ベ
クトン)、ポリベンツビスオキサゾール繊維等を用い、
これらとガラス繊維(日東紡、T)をロービング同志で
均一混合又は交互積層により種々の円筒FRPをフィラ
メントワインディング法により作成した。マトリックス
としてはエポキシ樹脂を使用し以下の割合により、均一
混合樹脂ドープを作成した。 エピコート−827(油化シェル) 100 エピキュア−YH−300(油化シェル) 80 EMI−24(油化シェル) 1 次に各種繊維にエポキシ樹脂を含浸させながらマンドレ
ルに巻き付け、円筒状とした。次にこれをマンドレル上
に保持したまま100℃×2hr、その後130℃×3
hrにて硬化成形し繊維体積含有率65%、外径100
mm×長さ500mm、肉厚13mmの成形体を得た。
この様にして得られた各円筒に、GFRPよりなるフラ
ンジを接着し、コイル用巻枠を得た。これに1.2mm
φの超電導体をテンション10kgにて、1層巻回した
後、超電導コイルを完成させた。これらの評価結果を表
1に示す。
EXAMPLE A cylindrical fiber reinforced plastic (FRP) comprising negative expansion fibers of the present invention was prepared as follows. As the organic negative expansion fiber, high-strength polyethylene fiber (Toyobo,
Dyneema SK60), aramid fiber (Japanese aramid fiber, Twaron HM), polyarylate fiber (Kuraray, Becton), polybenzbisoxazole fiber, etc.,
Various cylindrical FRPs were prepared by filament winding method by uniformly mixing or alternately laminating these and glass fibers (Nitto Boseki, T) with each other. Epoxy resin was used as the matrix, and a uniform mixed resin dope was prepared in the following proportions. Epicoat-827 (oiled shell) 100 Epicure-YH-300 (oiled shell) 80 EMI-24 (oiled shell) 1 Next, various fibers were impregnated with an epoxy resin and wound around a mandrel to form a cylindrical shape. Next, while keeping it on the mandrel, 100 ° C x 2 hr, then 130 ° C x 3
Curing and molding with hr, fiber volume content 65%, outer diameter 100
A molded body having a size of mm × length of 500 mm and a wall thickness of 13 mm was obtained.
A flange made of GFRP was adhered to each of the cylinders thus obtained to obtain a coil winding frame. 1.2mm to this
After winding one layer of a φ superconductor with a tension of 10 kg, a superconducting coil was completed. The results of these evaluations are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】(熱膨張率)巻き枠の外周面及び内周面に
ストレインゲージをはり付け後、液体He中に浸積し円
周方向の寸法変化を測定した。測定位置は内、外周とも
両端部を10cmあけ等間隔(120cm)に5点測定
して平均値を求めた。 (クエンチ電流)超電導コイル装置を液体He中に浸積
して、1万時間連続運転した後のコイルのクエンチ電流
を測定した。結果は繰り返しのトレーニングにより到達
した最大電流密度とその時のトレーニング回数により示
す。この時使用された超電導性の臨界電流値は1850
Aである。 (圧縮特性)各パイプからx(パイプ断面から満て接線
方向)、y(パイプの長手方向)、z(x、y軸に対し
90°の方向)方向の長さが5、10、5mmの直方体
を切り出しx方向に1mm/minの速度で室温にて圧
縮特性を測定した。これより、圧縮強度及び圧縮弾性率
を算出した。
(Coefficient of thermal expansion) Strain gauges were attached to the outer peripheral surface and the inner peripheral surface of the reel, and then immersed in liquid He to measure the dimensional change in the circumferential direction. Both the inner and outer sides of the measurement position were 10 cm apart at both ends, and five points were measured at equal intervals (120 cm) to obtain an average value. (Quench current) The superconducting coil device was immersed in liquid He, and the quench current of the coil after continuous operation for 10,000 hours was measured. The results are shown by the maximum current density reached by repeated training and the number of trainings at that time. The superconducting critical current value used at this time was 1850.
A. (Compression characteristic) Length from each pipe in the x (full tangential direction from the pipe cross section), y (longitudinal direction of the pipe), and z (90 ° to the x and y axes) direction is 5, 10, 5 mm. The rectangular parallelepiped was cut out and the compression characteristics were measured at room temperature at a speed of 1 mm / min in the x direction. From this, the compressive strength and the compressive elastic modulus were calculated.

【0016】[0016]

【発明の効果】本発明によるとトレーニング回数が少
く、最大電流値が高く、安定且つ高性能な超電導コイル
を提供することを可能にした。
According to the present invention, it is possible to provide a stable and high-performance superconducting coil in which the number of trainings is small, the maximum current value is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】高強力高弾性率ポリエチレン繊維(DF)とガ
ラス繊維(GF)との混合割合とその一方向強化FRP
の繊維方向の熱膨張係数の関係を示す図。
FIG. 1 is a mixture ratio of high-strength and high-modulus polyethylene fiber (DF) and glass fiber (GF) and its unidirectionally reinforced FRP.
The figure which shows the relationship of the thermal expansion coefficient of the fiber direction.

【図2】種々繊維を用いた成形品の巻き角度と熱膨張係
数との関係を示す図。
FIG. 2 is a diagram showing a relationship between a winding angle and a coefficient of thermal expansion of a molded product using various fibers.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 筒又は柱状の巻枠に超電導線を巻回した
極低温用超電導コイルにおいて、前記巻枠が負の膨張率
を有する有機繊維とガラス繊維の組み合せからなる補強
繊維のロービングを、コイルの軸方向に対して±40〜
90度の角度で巻回してこれと樹脂とを一体成形した繊
維強化プラスチックからなることを特徴とする超電導コ
イル。
1. A cryogenic superconducting coil in which a superconducting wire is wound around a cylindrical or columnar winding frame, wherein the winding frame comprises a roving of a reinforcing fiber made of a combination of an organic fiber having a negative expansion coefficient and a glass fiber, ± 40 to the coil axis
A superconducting coil, which is made of fiber-reinforced plastic which is wound at an angle of 90 degrees and is integrally molded with resin.
【請求項2】 有機繊維とガラス繊維の場合割合が体積
比で90:10〜30:70であることを特徴とする請
求項1記載の超電導コイル。
2. The superconducting coil according to claim 1, wherein the volume ratio of the organic fiber to the glass fiber is 90:10 to 30:70.
JP24955994A 1994-10-14 1994-10-14 Superconducting coil Pending JPH08115813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24955994A JPH08115813A (en) 1994-10-14 1994-10-14 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24955994A JPH08115813A (en) 1994-10-14 1994-10-14 Superconducting coil

Publications (1)

Publication Number Publication Date
JPH08115813A true JPH08115813A (en) 1996-05-07

Family

ID=17194805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24955994A Pending JPH08115813A (en) 1994-10-14 1994-10-14 Superconducting coil

Country Status (1)

Country Link
JP (1) JPH08115813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651380A1 (en) * 1996-12-11 1998-06-18 Karlsruhe Forschzent Superconducting magnet e.g. for generators and transformers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651380A1 (en) * 1996-12-11 1998-06-18 Karlsruhe Forschzent Superconducting magnet e.g. for generators and transformers
DE19651380C2 (en) * 1996-12-11 1999-04-01 Karlsruhe Forschzent Superconducting magnet

Similar Documents

Publication Publication Date Title
JP3009311B2 (en) Fiber-reinforced resin coil spring and method of manufacturing the same
US6592979B1 (en) Hybrid matrix fiber composites
JP2888664B2 (en) Optical tube made of CFRP
US5916682A (en) Carbon fiber reinforced composite material
KR100298101B1 (en) Fiber Reinforced Composite Material
JPH08115813A (en) Superconducting coil
JPH08195311A (en) Superconducting coil
JPH07335427A (en) Superconductive coil
JP3582602B2 (en) Cryogenic container
JPH06318514A (en) Superconducting coil device
JPH06224026A (en) Superconducting coil device
JP2001326117A (en) High-temperature superconducting coil
JP3582601B2 (en) Cryogenic container
JPH06218828A (en) Fiber reinforced plastic material for very low temperature
JP3601608B2 (en) Cryogenic fiber reinforced plastic material
JP3218628B2 (en) Cryogenic fiber reinforced plastic composite
JP2001060508A (en) Superconducting dipole magnet
JP3362874B2 (en) Permanent current switch
JPH10177913A (en) Supeconductive coil
JP2002031277A (en) Composite transport pipe with continuous length
Knight The technique of filament winding
JPH0541546A (en) Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application
JPH05138796A (en) Laminated pipe
JPH06211993A (en) Fiber-reinforced plastic material for cryogenic temperature
JPH02113170A (en) Piston pin

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040819