JPH02113170A - Piston pin - Google Patents

Piston pin

Info

Publication number
JPH02113170A
JPH02113170A JP26685788A JP26685788A JPH02113170A JP H02113170 A JPH02113170 A JP H02113170A JP 26685788 A JP26685788 A JP 26685788A JP 26685788 A JP26685788 A JP 26685788A JP H02113170 A JPH02113170 A JP H02113170A
Authority
JP
Japan
Prior art keywords
piston pin
layer
winding angle
carbon fiber
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26685788A
Other languages
Japanese (ja)
Other versions
JP2514836B2 (en
Inventor
Hideo Fukuda
英男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP26685788A priority Critical patent/JP2514836B2/en
Publication of JPH02113170A publication Critical patent/JPH02113170A/en
Application granted granted Critical
Publication of JP2514836B2 publication Critical patent/JP2514836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a piston pin which is excellent in strength and rigidity and reduced in weight by forming a pipe main body by an inner layer and an outer layer respectively having specified winding angles, and forming an outer surface layer by material with hardness higher than that of carbon fiber reinforced resin. CONSTITUTION:Carbon fiber impregnated with epoxy resin is wound round a core bar with a winding angle of + or -40 deg.-+ or -90 deg. to form an inner layer, and an outer layer 2 with a winding angle of + or -20 deg.-+ or -30 deg. is formed on the outside of the inner layer. After that, the core bar and the inner and outer layers are heated, hardened and polished, and a hard chrome plating layer 3 is formed on the outer surface thereof. Accordingly, a piston pin can be excellent in strength, rigidity, dimensional stability and sliding characteristic and reduced in weight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽微化効果を最大にし且つ繊維配向を愚適化
した炭素繊維強化樹脂製ピストンピンにiする。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides a piston pin made of carbon fiber reinforced resin that maximizes the miniaturization effect and optimizes fiber orientation.

ピストンピンは、内燃機関においてピストンピンとコネ
クティングロッドとを接続するものである。
A piston pin connects a piston pin and a connecting rod in an internal combustion engine.

〔従来技術及び問題点〕[Prior art and problems]

ピストンピンは、負荷時の変形が少ないように、高い剛
性が要求されていると同時←高い強度も必式である。一
方、ピストンピンは、高温で使用されることから、繰り
返される熱負荷下での寸法安定性にも優れていなければ
ならない上に、ビンの外周面が摺動されることから、摺
動特性にも優れていることが必要である。
Piston pins are required to have high rigidity so that there is little deformation under load, and at the same time, high strength is also required. On the other hand, since piston pins are used at high temperatures, they must have excellent dimensional stability under repeated thermal loads, and since the outer circumferential surface of the bottle slides, they must have good sliding characteristics. It is also necessary to be excellent.

こうした諸要求を満たすべく、従来より種々の提案がさ
れている。例えば、特開昭59−80564号公報や特
開昭60−711164号公報では、繊維強化金属製ピ
ストンピンにおける強化IINの配向角について提案さ
れているが、この材質は繊維強化金属であるために炭素
mH強化樹脂に比べ密度が高く、更に軽微化を高めるた
めには炭素繊維強化樹脂よりなる高剛性、高強度、高温
下での寸法安定性、vE動特性を全てバランスよく具備
したピストンピンを得ることが必要であった。
Various proposals have been made to meet these demands. For example, in JP-A-59-80564 and JP-A-60-711164, the orientation angle of reinforced IIN in a fiber-reinforced metal piston pin is proposed, but since this material is a fiber-reinforced metal, It has a higher density than carbon mH-reinforced resin, and in order to further reduce the weight, we use a piston pin made of carbon fiber-reinforced resin that has high rigidity, high strength, dimensional stability under high temperatures, and vE dynamic characteristics in a well-balanced manner. It was necessary to obtain it.

炭素繊維強化樹脂よりなるピストンピンについては、既
に特開昭57−10747号公報、実開昭54−150
709号公報、実開昭55−17952号公報等が提案
されているものの、前記各特性を具備し軽量化効果を高
めるべき繊維配向角を含めた当該パイプの構成を明確に
提案するには至っていなかった。
Piston pins made of carbon fiber reinforced resin have already been disclosed in Japanese Unexamined Patent Publication No. 57-10747 and Utility Model Application No. 54-150.
Although publications such as Publication No. 709 and Japanese Utility Model Application Publication No. 55-17952 have been proposed, no clear proposals have been made on the structure of the pipe, including the fiber orientation angle, which should have the above-mentioned characteristics and enhance the weight reduction effect. It wasn't.

C発明の目的) 内燃機関のピストンピンが軽くなれば、その慣性モーメ
ントが減少することから、内燃機関全体の重量軽減が大
きく実現でき、性能が向上することは知られている。こ
の内燃機関の性能向上に加えて、例えば車両などの場合
、内燃機関が軽くなると、これを保持する構造物のIl
員化も可能なり、その結果、車両の性能向上へと結びつ
く。従って、内燃機関のピストンピンの軽量化は、非常
に重要である。
C) Object of the Invention) It is known that if the piston pin of an internal combustion engine becomes lighter, its moment of inertia will be reduced, which will greatly reduce the weight of the entire internal combustion engine and improve its performance. In addition to this improvement in the performance of internal combustion engines, in the case of vehicles, for example, as the internal combustion engine becomes lighter, the structure that holds it becomes lighter.
This also makes it possible to increase the number of employees, which in turn leads to improved vehicle performance. Therefore, reducing the weight of piston pins for internal combustion engines is very important.

以上を背景として、炭素繊維強化樹脂の高い比強度及び
高い比剛性を利用し、これをピストンピンに用いること
が種々検討されている中で、本発明は、最も大きく軽量
化効果を実現できる炭素1iui強化樹脂製ピストンピ
ンの構成を得ること、即ち、炭素繊維の最適な配向によ
って、ピストンピンとして必要な特性を向上することを
目的とするものである。
Against this background, while various studies have been made to utilize the high specific strength and high specific rigidity of carbon fiber reinforced resins for use in piston pins, the present invention is based on carbon fiber reinforced resin that can achieve the greatest weight reduction effect. The purpose of this invention is to obtain a structure of a piston pin made of a 1iui reinforced resin, that is, to improve the characteristics necessary for a piston pin by optimizing the orientation of carbon fibers.

〔発明の構成及び作用〕[Structure and operation of the invention]

本発明は下記の通りである。 The present invention is as follows.

パイプ本体と外表面層とから構成されたパイプにおいて
、パイプ本体が、炭素繊維強化樹脂からなり且つ巻き角
度±40’〜±90’の内層と巻き角度±20’〜±3
0°の外層とから構成され、パイプ外表面層が、当該炭
素繊維強化樹脂よりも高い硬度を有する材料からなるこ
とを特徴とするピストンピン。
In a pipe composed of a pipe body and an outer surface layer, the pipe body is made of carbon fiber reinforced resin and has an inner layer with a winding angle of ±40' to ±90' and a winding angle of ±20' to ±3.
1. A piston pin characterized in that the pipe outer surface layer is made of a material having a higher hardness than the carbon fiber reinforced resin.

本発明において巻き角度とは、パイプの軸芯に平行な当
該パイプの外周面上の直線と強化繊維方向がなす鋭角の
角度をいう。
In the present invention, the winding angle refers to an acute angle between a straight line on the outer circumferential surface of the pipe parallel to the axis of the pipe and the reinforcing fiber direction.

本発明は、ピストンピンとして必要な特性、即ら、高剛
性、高強度、高温下での寸法安定性、衝動特性を全て具
備したピストンピンを提供するものである。高剛性、高
強度を実現するための強化JIHの巻き角度は±20’
〜±30’であることが必要であり、また、衝動特性を
向上するためには、炭素繊維強化樹脂よりなるパイプ外
表面を、硬質材料で被覆することが必要である。
The present invention provides a piston pin that has all the characteristics necessary for a piston pin, that is, high rigidity, high strength, dimensional stability at high temperatures, and impulse characteristics. The winding angle of reinforced JIH is ±20' to achieve high rigidity and strength.
~±30', and in order to improve the impulse characteristics, it is necessary to cover the outer surface of the pipe made of carbon fiber reinforced resin with a hard material.

ここでいう硬質材料とは、硬質金属やセラミックス等で
ある。また、被覆するには薄肉のa4管を外挿してもよ
いし、メツキ又は溶射なども可能である。ただし、この
とき炭素m維強化樹脂よりなるパイプの強化4JAM方
向を適切に選択しないと、炭素繊維強化樹脂は室温ない
し180℃のピストンピンにかかる熱サイクル負荷に対
して収縮をきたし、外表面の硬質材からの剥離や、又は
ピストンピンとビン受けとの間にすき間を生じ、支障を
きたしてしまう。この剥離等を防ぐために本発明では、
強化繊維の巻き角度が±40”〜±90’の層を内層と
し、巻き角度が±20〜±30゛の層を外層とすること
によって、高剛性、高強度、高温下における寸法安定性
、衝動特性に優れたピストンピンを得ることができるの
である。そして、更に述べるならば、この巻き角度が±
40゛〜±90’の層を内側に設け、そして、高剛性、
高強度を与えるところの巻き角度が±20°〜±30゛
の層を外側に設けた場合には、曲げ変形時のパイプの偏
平化が防止されるとともに、パイプ全体に高剛性、高強
度が与えられることになる。このとき、外層の角度が±
20°未満では主として強度が不足し、±30゜を超え
ると主として剛性が不足するので、外層の巻き角度は±
20゛〜±30’である必要がある。
The hard materials mentioned here include hard metals, ceramics, and the like. Further, for covering, a thin A4 pipe may be inserted, or plating or thermal spraying may be used. However, if the reinforcing direction of the pipe made of carbon fiber-reinforced resin is not selected appropriately, the carbon fiber-reinforced resin will shrink under the thermal cycle load applied to the piston pin at room temperature to 180°C, causing the outer surface to deteriorate. This may cause problems such as separation from the hard material or a gap between the piston pin and the bottle holder. In order to prevent this peeling etc., in the present invention,
By using the reinforcing fiber layer with a winding angle of ±40" to ±90' as the inner layer and the layer with a winding angle of ±20 to ±30" as the outer layer, high rigidity, high strength, and dimensional stability under high temperatures are achieved. This makes it possible to obtain a piston pin with excellent impulse characteristics.Moreover, if this winding angle is ±
A layer of 40゛~±90' is provided inside, and high rigidity,
If a layer with a winding angle of ±20° to ±30°, which provides high strength, is provided on the outside, it will prevent the pipe from becoming flattened during bending deformation, and the entire pipe will have high rigidity and strength. It will be given to you. At this time, the angle of the outer layer is ±
If it is less than 20°, the strength will mainly be insufficient, and if it exceeds ±30°, the rigidity will mainly be insufficient, so the winding angle of the outer layer should be ±
It needs to be between 20' and ±30'.

同時に内層の巻き角度が±40°未満では熱サイクル後
の寸法安定性が不十分であり、また、内外層の構成類を
逆にすると、変形物に多くのクラックが発生してしまう
などの問題が起きるので、本発明の如く、巻き角度hC
±40°〜±90’の内層と巻き角度が±20”〜±3
0°の外層とから構Js、する必要がある。
At the same time, if the winding angle of the inner layer is less than ±40°, the dimensional stability after thermal cycling will be insufficient, and if the composition of the inner and outer layers is reversed, many cracks will occur in the deformed product. occurs, so as in the present invention, the winding angle hC
Inner layer from ±40° to ±90' and winding angle from ±20" to ±3
It is necessary to construct it from the outer layer of 0°.

本発明において、強化m維は炭素tINであって、これ
は高比弾性、高比強度の点からこのものに限定されるの
である。高弾性系の炭素繊維を用いれば、より高い剛性
が得られることはいうまでもなく、必要に応じて、弾性
率、強度の異なる炭素繊維を使いわけると、更に効果的
である。
In the present invention, the reinforcing m-fiber is carbon tIN, which is limited to this material in view of its high specific elasticity and high specific strength. It goes without saying that higher rigidity can be obtained by using high modulus carbon fibers, and it is even more effective to use carbon fibers with different elastic modulus and strength, if necessary.

繊維で強化される71〜リツクス樹脂は、エポキシ樹脂
、フェノール樹脂、ビスマレイミド樹脂等である。
The fiber-reinforced 71-lix resins include epoxy resins, phenolic resins, bismaleimide resins, and the like.

本発明の炭素IIN強化樹脂製パイプは通常のFRP成
形方法、例えばフィラメントワインディング法、又はプ
リプレグシートをマンドレルに巻き付けるローリング法
等で容易に得ることができる。
The carbon IIN reinforced resin pipe of the present invention can be easily obtained by a normal FRP molding method, such as a filament winding method or a rolling method in which a prepreg sheet is wound around a mandrel.

本発明を図面によって説明する。The present invention will be explained with reference to the drawings.

第1図に示した如く、パイプの軸芯に平行な当該パイプ
の外周面上の直線と強化繊維方向がイクル負荷後の寸法
安定性を得るために巻き角度を±40”〜±90°とし
た内層と、第2図蜘■に示した如く主として強度、剛性
を高めるために巻き角度を±20°〜±301 とした
外層とから構成され、第21玉に示した如くその外表面
が、主として衝動特性を向上させるために炭素繊維強化
樹脂よりも高い硬度を有ケる材料からなることを特徴と
するピストンピンである。
As shown in Fig. 1, the winding angle is set between ±40” and ±90° in order to obtain dimensional stability between the straight line on the outer peripheral surface of the pipe parallel to the axis of the pipe and the direction of the reinforcing fibers after cycle loading. As shown in Fig. 2, the outer layer has a winding angle of ±20° to ±301° to increase strength and rigidity, and its outer surface is This piston pin is characterized in that it is made of a material that has higher hardness than carbon fiber reinforced resin, mainly to improve impulse characteristics.

〔実施例及び比較例〕[Examples and comparative examples]

実施例1 ピストンピンを下記のようにしてフィラメントワインデ
ィング法にて製作した。即ち、直径7.5mmの芯金に
、予めエポキシ樹脂を含浸した炭素$11ffl(東邦
レーヨン社製ベスファイトoHT A −7−6000
)を巻き回した。このときの巻き角度は第1図に示した
通りである。巻き角度θの正負の符号は反時計回り方向
を正とした。巻き角度θが±70°になるように、且つ
、その外径がφ14IIIlになるまで巻き回した侵、
巻き角度θが±20°になるように、且つ、外径がφ2
1mmになるまで巻き回した。これを加熱硬化後、脱型
し、次いで、研磨し、パイプの外表面を硬質クロムメツ
キ層で構成した後、当該パイプの外径をφ20111I
@になるようにした。そして、これを70mmの長さに
切断し、第2図に示したピストンピンを(qた。第2図
中、1は、強化繊維の巻き角度θが±70゛で構成され
た層、2は、強化繊維の巻き角度θが±20°で構成さ
れた層、3は、炭素繊維強化樹脂製パイプの外表面層を
構成する硬質クロムメツキ層を示す。
Example 1 A piston pin was manufactured by the filament winding method as described below. That is, a core metal with a diameter of 7.5 mm was made of $11ffl of carbon pre-impregnated with epoxy resin (Besphite oHT A-7-6000 manufactured by Toho Rayon Co., Ltd.).
) was rolled around. The winding angle at this time is as shown in FIG. The sign of the winding angle θ is positive in the counterclockwise direction. The wire was wound so that the winding angle θ was ±70° and the outer diameter was φ14III.
The winding angle θ should be ±20°, and the outer diameter should be φ2.
It was wound until it became 1 mm. After heating and curing, the mold was demolded, and then polished to form a hard chrome plating layer on the outer surface of the pipe.
I changed it to @. Then, this was cut into a length of 70 mm to form the piston pin shown in Fig. 2 (q). 3 shows a layer composed of reinforcing fibers with a winding angle θ of ±20°, and 3 shows a hard chrome plating layer forming the outer surface layer of the carbon fiber reinforced resin pipe.

実施例2 実施例1と同じ方法で巻き角度θが±10°になるよう
に、予めエポキシ樹脂を含浸した炭素線N(東邦レーヨ
ン社製ベスファイトo)−ITA7−6000)をその
外径がφ14mmになるまで巻き回した後、巻き角度θ
が±20°になるように、且つ、外径がφ2111IW
になるまで、予めエポキシ樹脂を含浸した炭素ieiM
(東邦レーヨン社製ベス7フイト@HMS−40−60
00> を巻キ回シタ。
Example 2 Using the same method as in Example 1, a carbon wire N (Besphite O manufactured by Toho Rayon Co., Ltd. - ITA7-6000) impregnated with epoxy resin was prepared so that the winding angle θ was ±10°. After winding until it becomes φ14mm, the winding angle θ
so that the angle is ±20°, and the outer diameter is φ2111IW.
Carbon ieiM pre-impregnated with epoxy resin until
(Bess 7 foot made by Toho Rayon Co., Ltd. @HMS-40-60
00> Wind it up.

その後の操作は実施例1と同様にしてピストンピンを1
qた。
The subsequent operation is the same as in Example 1, and the piston pin is
It was.

比較例1 を成形し、その侵の操作は実施例1と同様にしてピスト
ンピンを得た。
Comparative Example 1 was molded and the erosion operation was carried out in the same manner as in Example 1 to obtain a piston pin.

比較例2 比較例1と同じ方法で強化繊維の巻き角度θが、Oo、
±10°、±30′、±40°、±50゜±70°、±
90°になるパイプを成形し、その後の操作は実施例1
と同様にしてピストンピンを得た。
Comparative Example 2 Using the same method as Comparative Example 1, the winding angle θ of the reinforcing fibers was changed to Oo,
±10°, ±30', ±40°, ±50°±70°, ±
A pipe with a 90° angle is formed, and the subsequent operations are as in Example 1.
A piston pin was obtained in the same manner.

特性の測定及び評価 以上のようにして得たピストンピンを、強化繊維の巻き
角度と関係の深い曲げ特性と熱サイクル後の寸法安定性
について評価した。先ず、第3図に示した如き方法で、
曲げ試験を行なうことによって、ピストンピンの強度、
剛性を評価した。測定して結果を第4図、第5図に示し
た。強度は、曲げ破壊荷重の大きい強化繊維の巻き角度
θが±20°〜±50°のとき大きく、剛性は単位長さ
の曲げたわみ(11IIm)を生じさせる荷重の大きい
±10°〜±30’のときが高い。
Measurement and Evaluation of Properties The piston pin obtained as described above was evaluated for its bending properties, which are closely related to the winding angle of the reinforcing fibers, and its dimensional stability after thermal cycling. First, by the method shown in Figure 3,
By conducting a bending test, the strength of the piston pin,
Rigidity was evaluated. The measurement results are shown in FIGS. 4 and 5. The strength is high when the winding angle θ of the reinforcing fibers, which has a large bending breaking load, is ±20° to ±50°, and the rigidity is large when the winding angle θ of the reinforcing fiber is ±20° to ±50°, which has a large bending failure load. It is high when

従って、強度、剛性を高めるためには、±20’〜±3
0”の範囲で強化繊維を配向させる必要のあることがわ
かる。一方、同様のピストンピンを高温下(180℃)
におき、当該パイプの外径の経時変化を調べた。尚、寸
法測定は室温で実つていることを示すものである。本発
明によるピストンピンは全ての特性に優れている。
Therefore, in order to increase strength and rigidity, ±20' to ±3
It can be seen that it is necessary to orient the reinforcing fibers in the range of
The change in the outer diameter of the pipe over time was investigated. In addition, the size measurement shows that the fruit is grown at room temperature. The piston pin according to the invention is excellent in all properties.

第  1 表 変化は小さい。しかし、これらは、先に述べた強度、剛
性が低く、ピストンピンには適さない。
Table 1 Changes are small. However, these have low strength and rigidity as mentioned above, and are not suitable for piston pins.

即ら、第4図から第6図までの結果より、実施例1及び
実施例2に示した本発明のピストンピンの如く、炭素繊
維強化樹脂製パイプにおいて、その強化IIMの巻き角
度θが±40゛〜±90”である内層と強化繊維の巻き
角度θが±20”〜±六 306で  層とから構成され、且つ、当該パイプの外
表面が、繊維強化樹脂よりも高い硬度の材料で構成され
るものが、ピストンピンに最も適していることが実証さ
れた。
That is, from the results shown in FIGS. 4 to 6, in carbon fiber reinforced resin pipes like the piston pins of the present invention shown in Examples 1 and 2, the winding angle θ of the reinforced IIM is ± The pipe is composed of an inner layer with a winding angle θ of 40" to ±90" and a layer with a reinforcing fiber winding angle θ of ±20" to ±6306, and the outer surface of the pipe is made of a material with higher hardness than the fiber-reinforced resin. It has been demonstrated that the configuration is most suitable for piston pins.

〔発明の効果〕〔Effect of the invention〕

以上説明したlfj各ピストンピンと各特性の関係を、
第1表にまとめて示した。表中、O印は、その特性に優
れていることを、X印は劣
The relationship between each lfj piston pin and each characteristic explained above is as follows:
They are summarized in Table 1. In the table, the O mark indicates that the property is excellent, and the X mark indicates that the property is poor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明でいう強化繊維の巻き角度θを示した
ものである。 第2図は、本発明のピストンピンの1例を示したもので
ある。図中1は、炭素繊維の巻き角度が±70°で構成
された層、2は、炭素繊維の巻き角度が±20°で#l
I成された層、3は、炭素繊維強化樹脂製パイプの外表
面層を構成する硬質クロムメツキ層を示す。 第3図は、ピストンピンの強度、剛性を評価するための
曲げ試験!置の略図を示したものである。図中4は供試
体を示す。 第4図は、第3図に示した方法で曲げ試験を行なった結
果の各ピストンピン毎の破壊荷重を示したものである。 図中、±20°/±70° (1)のものは実施例1で
得られたものを、±20°/±70°(2)のものは実
施例2で得られたものを示す。 第5図は、第3図に示した方法で曲げ試験を行なった結
果の、各ピストンピン毎の単位曲げたわみ長さ(1mm
)に対する荷重を示したものである。第4図と同様に図
中、±20°/±10゛(1)のものは実施例1で得ら
れたものを、±20゛/±70° (2)のものは実施
例2で得られたものを示している。第6図は、各ピスト
ンピンの高温下(180℃)での保持時間と、当該ビン
の外径変化の関係を示したものである。第4図及び第5
図と同様に図中、±20℃/±70℃(1)のものは実
施例1で得られたものを、±20℃/±10℃(2)の
ものは実施例2で得られたものを示している。 第6図 E3軟(8)
FIG. 1 shows the winding angle θ of the reinforcing fiber according to the present invention. FIG. 2 shows an example of the piston pin of the present invention. In the figure, 1 is a layer in which the carbon fiber winding angle is ±70°, and 2 is a layer in which the carbon fiber winding angle is ±20°.
The layer 3 shown in FIG. 1 is a hard chrome plating layer that constitutes the outer surface layer of the carbon fiber-reinforced resin pipe. Figure 3 is a bending test to evaluate the strength and rigidity of the piston pin! This is a schematic diagram of the installation. 4 in the figure indicates the specimen. FIG. 4 shows the breaking load for each piston pin as a result of a bending test conducted using the method shown in FIG. 3. In the figure, ±20°/±70° (1) indicates that obtained in Example 1, and ±20°/±70° (2) indicates that obtained in Example 2. Figure 5 shows the unit bending deflection length (1 mm) of each piston pin as a result of the bending test performed using the method shown in Figure 3.
) shows the load against. Similarly to Figure 4, in the figure, the values of ±20°/±10° (1) are those obtained in Example 1, and the values of ±20°/±70° (2) are those obtained in Example 2. It shows what was done. FIG. 6 shows the relationship between the holding time of each piston pin at high temperature (180° C.) and the change in the outer diameter of the bottle. Figures 4 and 5
Similarly to the figure, in the figure, ±20°C/±70°C (1) was obtained in Example 1, and ±20°C/±10°C (2) was obtained in Example 2. showing something. Figure 6 E3 soft (8)

Claims (1)

【特許請求の範囲】[Claims] パイプ本体と外表面層とから構成されたパイプにおいて
、パイプ本体が、炭素繊維強化樹脂からなり且つ巻き角
度±40°〜±90°の内層と巻き角度±20°〜±3
0°の外層とから構成され、パイプ外表面層が、当該炭
素繊維強化樹脂よりも高い硬度を有する材料からなるこ
とを特徴とするピストンピン。
In a pipe composed of a pipe body and an outer surface layer, the pipe body is made of carbon fiber reinforced resin and has an inner layer with a winding angle of ±40° to ±90° and a winding angle of ±20° to ±3.
1. A piston pin characterized in that the pipe outer surface layer is made of a material having a higher hardness than the carbon fiber reinforced resin.
JP26685788A 1988-10-22 1988-10-22 Piston pin Expired - Lifetime JP2514836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26685788A JP2514836B2 (en) 1988-10-22 1988-10-22 Piston pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26685788A JP2514836B2 (en) 1988-10-22 1988-10-22 Piston pin

Publications (2)

Publication Number Publication Date
JPH02113170A true JPH02113170A (en) 1990-04-25
JP2514836B2 JP2514836B2 (en) 1996-07-10

Family

ID=17436626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26685788A Expired - Lifetime JP2514836B2 (en) 1988-10-22 1988-10-22 Piston pin

Country Status (1)

Country Link
JP (1) JP2514836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8807199B2 (en) 2004-04-08 2014-08-19 Composite Metal Technology Ltd. Liquid pressure forming
KR20180009830A (en) * 2016-07-19 2018-01-30 현대자동차주식회사 Treating method of composite piston pin and surface treated piston pin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8807199B2 (en) 2004-04-08 2014-08-19 Composite Metal Technology Ltd. Liquid pressure forming
KR20180009830A (en) * 2016-07-19 2018-01-30 현대자동차주식회사 Treating method of composite piston pin and surface treated piston pin
KR101866039B1 (en) * 2016-07-19 2018-06-11 현대자동차주식회사 Treating method of composite piston pin and surface treated piston pin
US10400324B2 (en) 2016-07-19 2019-09-03 Hyundai Motor Company Method of treating composite piston pin and surface treated composite piston pin
DE102016123562B4 (en) 2016-07-19 2023-04-27 Hyundai Motor Company Process for treating a composite wrist pin and surface treated composite wrist pins

Also Published As

Publication number Publication date
JP2514836B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
KR101829127B1 (en) Manufacturing method of tank
US5143374A (en) Golf club shaft and process for manufacturing same
CA1096724A (en) Push rods and the like
JPH10693A (en) Cylindrical part made of fiber reinforced resin composite material and its production
JP2888664B2 (en) Optical tube made of CFRP
KR940003722B1 (en) Forming method for pressure container
JPH02113170A (en) Piston pin
CN109282137B (en) High-temperature and high-pressure resistant polyimide composite material gas cylinder and preparation method thereof
CN114043745B (en) Fiber winding method and system applied to combined revolving body with concave curved surface
JPS62110100A (en) Slide structure
US8066838B1 (en) Composite tubes and method of manufacturing same
JP2005040963A (en) Winding core
JPH07103226A (en) High speed rotating body
JPS629946A (en) Manufacture of pipe composed of carbon-fiber-reinforced plastics
CN106696305A (en) Manufacturing technology of carbon fiber loading rod and carbon fiber loading rod
Knight The technique of filament winding
JPS63125883A (en) Pipe made of fiber reinforced resin
JPH08115813A (en) Superconducting coil
JPH10177913A (en) Supeconductive coil
JP4228330B2 (en) Propeller shaft
JP2001163524A (en) Core for rolling sheet-like material
JPH05269227A (en) Golf shaft
JP2001326117A (en) High-temperature superconducting coil
JPH07335427A (en) Superconductive coil
JPH08195311A (en) Superconducting coil