JPH07335427A - Superconductive coil - Google Patents

Superconductive coil

Info

Publication number
JPH07335427A
JPH07335427A JP6130472A JP13047294A JPH07335427A JP H07335427 A JPH07335427 A JP H07335427A JP 6130472 A JP6130472 A JP 6130472A JP 13047294 A JP13047294 A JP 13047294A JP H07335427 A JPH07335427 A JP H07335427A
Authority
JP
Japan
Prior art keywords
fiber
resin
fibers
negative expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6130472A
Other languages
Japanese (ja)
Inventor
Toshihiro Kashima
俊弘 鹿島
Atsuhiko Yamanaka
淳彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP6130472A priority Critical patent/JPH07335427A/en
Publication of JPH07335427A publication Critical patent/JPH07335427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To manufacture a superconductive coil having high performance and stability by a method wherein the bobbin thereof is composed of an organic fiber having negative expansion coefficient as well as a fiber plastics integrally molded with a resin. CONSTITUTION:Within a superconductive coil wound around a tubular or columnar bobbin comprising a combination of an organic fiber having a negative expansion coefficient and a carbon fiber as well as a fiber reinforced plastics integrally molded with a resin. Otherwise, the organic fiber having the negative expansion coefficient is a high powerful, high elastic modulus polyethylene fiber or furthermore, the organic fiber and the carbon fiber are alternately wound around the bobbin making + or -40-90 deg. angle with the axial direction to be integrally molded with a resin. Through these procedures, the superconductive coil in the less training times and the maximum current value having the stability and high performance can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は極低温に冷却して用いら
れる超電導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil which is cooled to an extremely low temperature and used.

【0002】[0002]

【従来の技術】超電導コイル装置は超電導導体を巻枠に
巻回し、層間にスペーサを介して形成されるか外周面に
彫られたラセン溝に沿って超電導導体を巻回した層コイ
ル要素を順次同心的に複数層重ねて構成される。従来こ
の巻枠としてはアルミニウム等の金属又はガラス繊維強
化プラスチックが用いられる。
2. Description of the Related Art In a superconducting coil device, a superconducting conductor is wound around a winding frame, and layer coil elements in which the superconducting conductor is wound along a spiral groove formed between layers with a spacer or engraved on the outer peripheral surface are sequentially formed. Concentric layers are formed. Conventionally, a metal such as aluminum or glass fiber reinforced plastic is used as the reel.

【0003】[0003]

【発明が解決しようとする課題】超電導コイルの用途は
多岐に亙るが、いずれも超電導線の電流密度を高くする
ことが、コイル自体の性能を上げるためには極めて重要
である。そして、これは巻枠に巻回した超電導線の安定
性に大きく依存する。超電導線を巻枠に巻回した状態で
の物理的安定性は超電導コイル自体の電気的な安定性と
深く関わっている。通常巻枠としてはステンレス、アル
ミニウム等の金属又はガラス繊維強化プラスチック(G
FRP)が用いられるが、これらは室温で巻回して液体
窒素(LNT)又は液体ヘリウム温度(LHeT)迄冷
却した時、いずれも巻枠の周方向に大きく収縮し、軸方
向に小さく収縮する。一方超電導線は、極低温で励磁し
た時、周方向には、ローレンツ力に由来する反発力によ
り膨張し、巻線は、巻枠から離れる方向に動くことにな
る。また軸方向には極低温になると超電導線の垂直方向
の正膨張に由来する大きな収縮のため巻枠軸方向の小さ
な収縮以上に寸法変化することになる。この両者の動き
が相まって超電導線間にミクロな相互の動きが生じ、表
面の摩擦発熱に伴う擾乱が生じ超電導コイルはクエンチ
に至る。またステンレス、アルミ枠の場合は導電性であ
るため、特に交流では渦電流に伴うジュール発熱が生ず
るため不安定となる。
Although there are various uses of the superconducting coil, increasing the current density of the superconducting wire is extremely important for improving the performance of the coil itself. And, this largely depends on the stability of the superconducting wire wound around the bobbin. The physical stability of the superconducting wire wound around the bobbin is closely related to the electrical stability of the superconducting coil itself. Usually, the reel is made of metal such as stainless steel or aluminum, or glass fiber reinforced plastic (G
FRP) is used, but when they are wound at room temperature and cooled to liquid nitrogen (LNT) or liquid helium temperature (LHeT), both shrink greatly in the circumferential direction of the bobbin and shrink slightly in the axial direction. On the other hand, when the superconducting wire is excited at a very low temperature, the superconducting wire expands in the circumferential direction due to the repulsive force resulting from the Lorentz force, and the winding moves away from the winding frame. Further, when the temperature becomes extremely low in the axial direction, the size of the superconducting wire changes more than the small amount in the axial direction of the winding frame due to the large contraction caused by the positive expansion in the vertical direction. These two movements combine to cause microscopic mutual movements between the superconducting wires, causing a disturbance due to frictional heat generation on the surface and causing the superconducting coil to be quenched. Further, in the case of stainless steel or aluminum frame, since it is conductive, Joule heat is generated due to eddy current, especially in an alternating current, so that it becomes unstable.

【0004】またコイル性能を上げるためには大口径、
長尺化して超電導線の長さを確保した状態で使う必要が
ある。一方、極低温測定はLHeTで使うためには、薄
肉化しコイルボビン自体の熱容量を小さくすることが、
冷却効率を上げるうえで重要てなる。一方コイルは、巻
枠に超電導線を巻回する際、あらかじめ一定のテンショ
ンをかけ超電導線の動きを抑制する必要がある。そし
て、このテンションはある限度まではテンションが高い
程、線材の抑制効果は高く、耐クエンチ性も高いという
ことができる。これと巻枠の大口径薄肉化の技術動向を
勘案すると巻枠自体の剛性が高いことが重要である。こ
の巻枠を構成する材料として低い圧縮強度及び弾性率の
材料を用いると、コイル作成時の高いプリテンションの
ために、経時的に変形したり室温から極低温状態までの
歪特性が繰返しのヒートサイクルにより変化しコイル特
性が変わるという不都合が生ずることとなる。この発明
は以上の問題点を解消するためになされたものであり、
高性能且つ安定な超電導コイルを得ることを目的とす
る。
In order to improve the coil performance, a large diameter,
It is necessary to make the superconducting wire long and secure the length of the superconducting wire. On the other hand, in order to use the cryogenic measurement with LHeT, it is necessary to reduce the thickness of the coil bobbin itself and reduce the heat capacity of the coil bobbin itself.
It is important for improving cooling efficiency. On the other hand, for the coil, when the superconducting wire is wound around the winding frame, it is necessary to apply a certain tension in advance to suppress the movement of the superconducting wire. It can be said that the higher the tension is to a certain limit, the higher the effect of suppressing the wire rod and the higher the quenching resistance. Considering this and the technological trend of large diameter thinning of the reel, it is important that the reel itself has high rigidity. If a material with low compressive strength and elastic modulus is used as the material forming this reel, it will be deformed over time due to high pre-tension during coil making, and strain characteristics from room temperature to cryogenic temperature will be repeated. This causes a disadvantage that the coil characteristics change depending on the cycle and the coil characteristics change. The present invention has been made to solve the above problems,
The purpose is to obtain a high-performance and stable superconducting coil.

【0005】[0005]

【課題を解決するための手段】本発明は筒又は柱状の巻
枠に超電導線を巻回した極低温用超電導コイルにおいて
前記巻枠が、繊維材料として負の膨張率を持つ有機繊維
とカーボン繊維の組み合せからなり、これと樹脂とを一
体成形してなる繊維強化プラスチックよりなることを特
徴とする超電導コイルである。
DISCLOSURE OF THE INVENTION The present invention relates to a cryogenic superconducting coil in which a superconducting wire is wound around a cylindrical or columnar winding frame, wherein the winding frame has a negative expansion coefficient of an organic fiber and a carbon fiber. The superconducting coil is characterized in that it is made of a combination of the above and is made of a fiber reinforced plastic obtained by integrally molding the resin and the resin.

【0006】本発明に用いられる負膨張の有機繊維とし
ては、高強力、高弾性率繊維であり、ポリエチレン、ア
ラミド、ポリアリレート(全芳香族ポリエステル)、P
BZポリマー(ポリベンツビスオキサゾール、ポリベン
ツビスチアゾールなど)の繊維が挙げられるが、ポリエ
チレン繊維が特に好ましい。これらの繊維はいずれも低
温になるにつれて膨張するという特異な性質を持つとと
もに、ガラス繊維に比べてはるかに低比重であるため、
高比強度、高比弾性率であり且つ軽い補強繊維を得るこ
とができる。
The negative expansion organic fibers used in the present invention are high-strength, high-modulus fibers such as polyethylene, aramid, polyarylate (wholly aromatic polyester), and P.
Fibers of BZ polymer (polybenzbisoxazole, polybenzbisthiazole, etc.) may be mentioned, with polyethylene fibers being particularly preferred. All of these fibers have the peculiar property that they expand as the temperature decreases, and because they have a much lower specific gravity than glass fibers,
It is possible to obtain a reinforcing fiber having a high specific strength, a high specific elastic modulus and a light weight.

【0007】一方これらの有機繊維はいずれも圧縮、曲
げ、特性が金属、セラミクス系等の無機繊維に比べて極
端に低いという共通の欠点を有する。しかし、無機系繊
維は圧縮、曲げ特性には優れるがいずれも正膨張の特性
しか示さない。それに対して、カーボン繊維は小さな負
膨張性を持ち、且つ圧縮、曲げ特性に優れ、また比重も
小さな値を有する。 そこで本発明では、これら有機繊維
とカーボン繊維を組み合せた繊維強化プラスチックを用
いることにより有機繊維の負膨張性を損なわず、耐圧縮
性、曲げ特性に優れた巻枠を得ることが出来た。
On the other hand, all of these organic fibers have the common drawback that they have extremely low compression, bending, and properties as compared with inorganic fibers such as metal and ceramics. However, although the inorganic fibers are excellent in compression and bending properties, both show only positive expansion properties. On the other hand, carbon fiber has a small negative expansion property, is excellent in compression and bending characteristics, and has a small specific gravity. Therefore, in the present invention, by using a fiber reinforced plastic in which these organic fibers and carbon fibers are combined, it is possible to obtain a reel having excellent compression resistance and bending characteristics without impairing the negative expansion property of the organic fibers.

【0008】また巻枠としての多くの物性を満足させる
ためには2種以上の上記した有機負膨張繊維を混合する
ことも出来るし、一部、正膨張繊維を混合使用すること
も可能である。ここに正膨張繊維としてはガラス、アル
ミナ、シリカ、ジルコニア、チタニア、シリコンカーバ
イド、シリコンナイトライドなどのセラミクス繊維及び
アルミ、銅、ステンレス等の金属繊維を挙げることがで
きる。またカーボン繊維としてはPAN系、ピッチ系い
ずれでもよく、広い範囲のものを使用することができ
る。有機系負膨張繊維とカーボン繊維の混合割合は体積
比で80/20〜20/80、好ましくは70/30〜
30/70での範囲が好ましい。カーボン繊維が30よ
り少ないと圧縮特性の改善効果が小さく、また有機系繊
維が30より少ないと負膨張性が小さくなる。
Further, in order to satisfy many physical properties as a reel, it is possible to mix two or more kinds of the organic negative expansion fibers mentioned above, or it is possible to mix and use a part of the positive expansion fibers. . Examples of the positive expansion fibers include ceramic fibers such as glass, alumina, silica, zirconia, titania, silicon carbide and silicon nitride, and metal fibers such as aluminum, copper and stainless steel. The carbon fiber may be either PAN-based or pitch-based, and a wide range of carbon fibers can be used. The volume ratio of the organic negative expansion fiber to the carbon fiber is 80/20 to 20/80, preferably 70/30 to.
A range of 30/70 is preferred. If the amount of carbon fibers is less than 30, the effect of improving the compression characteristics will be small, and if the amount of organic fibers is less than 30, the negative expansion will be small.

【0009】次に寸法変化について詳述する。これらの
有機系負膨張繊維及び、カーボン繊維はいずれも負膨張
率(室温から温度を下げると伸長する)を有するという
特異な性質を持つ。但し有機系繊維とカーボン繊維では
その特性に大きな差があり、前者は大きな値を示すが、
後者は0に近い負膨張率である。
Next, the dimensional change will be described in detail. All of these organic negative expansion fibers and carbon fibers have a unique property that they have a negative expansion coefficient (expand when temperature is lowered from room temperature). However, there is a large difference in the characteristics between organic fibers and carbon fibers, the former shows a large value,
The latter has a negative expansion coefficient close to zero.

【0010】一方マトリクス樹脂は正膨張を示すが、こ
れら繊維のフィラメントを巻回して、成形した円筒又は
円柱は、周方向に大きな負膨張率を又軸方向には正膨張
率を持たせることができる。ここで使用されるマトリッ
クスとしてはエポキシ樹脂、不飽和ポリエステル樹脂、
ビニルエステル樹脂、ウレタン樹脂、ウレタンアクリレ
ート樹脂などが使用できるが特に好ましいのはエポキシ
樹脂である。これらのマトリクス樹脂はいずれも正膨張
を示すが、負膨張を示すこれらり繊維を用いて、巻き角
度を変えてフィラメントを巻回して、成形した円筒又は
円柱の温度に伴う寸法変化は図1に示す様に巻き角度に
依存し、それを適当に選ぶことにより周方向に対して大
きな負膨張率、又軸方向は正膨張とすることができる。
そして、周方向の負膨張は繊維自身の持つ負膨張率より
はるかに高い値となる。配向角は軸方向に対して±40
〜90度が適当であるが、望ましくは±47〜±85度
である。角度が±40度未満では周方向の正膨張(低温
になるに従い収縮する)が大きくなる。一方、GFRP
の場合はガラス繊維及びマトリクス樹脂とも正膨張であ
るので巻き角度に無関係に、周方向には正膨張という通
常の材料に見られる特性しか得られない。従って本発明
よりなる巻枠を用いた超電導コイルは、安定で、耐クエ
ンチ性が高く電流密度の大きな高性能コイルとすること
ができる。GFRPを超電導コイルの巻枠として使用す
る場合、最大の問題点は周方向の大きな収縮に伴う超電
導線のゆるみによりコイルが容易にクエンチすることで
ある。
On the other hand, the matrix resin exhibits a positive expansion, but a cylinder or a cylinder formed by winding filaments of these fibers can have a large negative expansion coefficient in the circumferential direction and a positive expansion coefficient in the axial direction. it can. The matrix used here is epoxy resin, unsaturated polyester resin,
Although vinyl ester resin, urethane resin, urethane acrylate resin and the like can be used, epoxy resin is particularly preferable. Each of these matrix resins shows positive expansion, but using these fibers showing negative expansion, the filaments are wound by changing the winding angle, and the dimensional change with temperature of a molded cylinder or cylinder is shown in FIG. As shown, depending on the winding angle, a large negative expansion coefficient in the circumferential direction and a positive expansion in the axial direction can be obtained by appropriately selecting it.
The negative expansion in the circumferential direction is much higher than the negative expansion coefficient of the fiber itself. Orientation angle is ± 40 with respect to the axial direction
A range of ˜90 degrees is suitable, but a range of ± 47 to ± 85 degrees is desirable. If the angle is less than ± 40 degrees, the positive expansion in the circumferential direction (contracting as the temperature becomes lower) increases. On the other hand, GFRP
In this case, since both the glass fiber and the matrix resin have positive expansion, only the characteristic of normal expansion, which is found in ordinary materials, can be obtained regardless of the winding angle. Therefore, the superconducting coil using the reel according to the present invention can be a high-performance coil that is stable, has high quench resistance, and has a large current density. When GFRP is used as a bobbin of a superconducting coil, the biggest problem is that the coil is easily quenched due to loosening of the superconducting wire accompanying a large contraction in the circumferential direction.

【0011】本発明では、ポリエチレン、アラミド、ポ
リアリレート、PBZポリマーなどの高強力、高弾性率
有機系負膨張繊維と、耐圧縮、曲げ特性に優れたカーボ
ン繊維を組み合せると、繊維成形体の軸に対して±40
度から±90度の角度となる様に巻き樹脂と一体成形し
てなる繊維強化プラスチックを巻枠とすることによりト
レーニング作業が容易で且つ最大電流値の高い、安定に
して高性能な超電導コイルを提供するものである。有機
繊維とカーボン繊維の混合方法としては1種以上の有機
繊維とカーボン繊維を糸条単位で均一混合して巻回する
方法、有機繊維とカーボン繊維をフィラメント単位で均
一混合した糸条を巻回する方法、有機繊維とカーボン繊
維を交互に積層して巻回する方法などいずれの方法をと
ることも可能である。最も有効な方法は有機繊維とカー
ボン繊維をフィラメント又は糸条で均一混合して巻回す
る方法である。この場合、混合割合の変更は有機繊維と
カーボン繊維のフィラメント数を変えるか、又は両者の
巻回本枚比率、例えば有機繊維2本毎にカーボン繊維1
本の割合で巻回する等により適宜設定することができ
る。成形法としては、本繊維を糸状またはテープ状のも
のにマトリック樹脂を含浸させながら、マンドレルに巻
き付けるフィラメントワインディング法又はテープワイ
ンディング法などが挙げられる。
In the present invention, when a high-strength, high-modulus organic negative expansion fiber such as polyethylene, aramid, polyarylate, or PBZ polymer is combined with a carbon fiber excellent in compression resistance and bending characteristics, a fiber molded product is obtained. ± 40 relative to the axis
A stable and high-performance superconducting coil that can be easily trained and has a high maximum current value by using a fiber reinforced plastic integrally molded with winding resin to form an angle of ± 90 degrees from the degree It is provided. As a method for mixing the organic fibers and the carbon fibers, one or more kinds of the organic fibers and the carbon fibers are uniformly mixed and wound in a yarn unit, and a yarn in which the organic fibers and the carbon fibers are uniformly mixed in a filament unit is wound. It is possible to use any method such as a method of winding, a method of alternately laminating organic fibers and carbon fibers and winding. The most effective method is to uniformly mix the organic fiber and the carbon fiber with a filament or a yarn and wind them. In this case, the mixing ratio may be changed by changing the number of filaments of the organic fibers and the carbon fibers, or the ratio of both wound fibers, for example, one carbon fiber for every two organic fibers.
It can be appropriately set by winding at a ratio of a book. Examples of the molding method include a filament winding method or a tape winding method in which the present fiber is wound around a mandrel while impregnating a thread-shaped or tape-shaped fiber with a matrix resin.

【0012】上記複合材中の繊維とマトリックス樹脂の
混合比率は、繊維の体積分子率(Vf)として35〜8
5%が好ましく、より好ましいのは40〜70%であ
る。繊維Vfが35%より少ないと繊維の補強効果が発
現せず、85%を超えるとマトリックス樹脂が含浸しに
くくなり複合材料としての機械的特性が悪化するため好
ましくない。
The mixing ratio of the fibers and the matrix resin in the above composite material is 35 to 8 as the volume molecular weight (Vf) of the fibers.
5% is preferable, and 40 to 70% is more preferable. If the fiber Vf is less than 35%, the reinforcing effect of the fiber will not be exhibited, and if it exceeds 85%, it is difficult to impregnate the matrix resin and the mechanical properties of the composite material deteriorate, which is not preferable.

【0013】[0013]

【実施例】本発明の負膨張繊維よりなる円筒繊維強化プ
ラスチック(FRP)は、以下の様に行った。有機系負
膨張繊維としては、高強力ポリエチレン繊維(東洋紡、
ダイニーマSK60)、アラミド繊維(日本アラミド繊
維、トワロンHM)、ポリアリレート繊維(クラレ、ベ
クトン)等を用い、これらとカーボン繊維(東レ、H
T)を、ロービング同志で均一混合又は交互積層により
実施例1〜5、また比較例として1〜4の合計8種類の
円筒FRPをフィラメントワインディング法により作成
した。マトリックスとしてはエポキシ樹脂を使用し以下
の割合により、均一混合樹脂ドープを作成した。 エピコート−827(油化シエル) 100 エピキュアーYH−300(油化シエル) 80 EMI−24(油化シエル) 1 次に各種繊維にエポキシ樹脂を含浸させながらマンドレ
ルに巻き付け、円筒状とした。次にこれをマンドレル上
に保持したまま100℃×2hr、その後130℃×3
hrにて硬化成形し繊維体積含有率65%、外径100
mm×長さ500mm、肉厚13mmの成形体を得た。
この様にして得られた各円筒に、GFRPよりなるフラ
ンジを接着し、コイル用巻枠を得た。これに1.2mm
φの超電電導体をテンション10kgにて、1層巻回し
た後、超電導コイルを完成させた。これらの評価結果を
表1に示す。
EXAMPLE A cylindrical fiber reinforced plastic (FRP) comprising negative expansion fibers of the present invention was prepared as follows. As the organic negative expansion fiber, high-strength polyethylene fiber (Toyobo,
Dyneema SK60), aramid fiber (Japanese aramid fiber, Twaron HM), polyarylate fiber (Kuraray, Becton), etc., and carbon fiber (Toray, H
T) was prepared by uniformly mixing or alternately laminating the rovings with each other, and a total of eight types of cylindrical FRPs of Examples 1 to 5 and Comparative Examples 1 to 4 were prepared by the filament winding method. Epoxy resin was used as the matrix, and a uniform mixed resin dope was prepared in the following proportions. Epicoat-827 (Oilized shell) 100 Epicure YH-300 (Oilized shell) 80 EMI-24 (Oilized shell) 1 Next, various fibers were impregnated with an epoxy resin and wound around a mandrel to form a cylindrical shape. Next, while keeping it on the mandrel, 100 ° C x 2 hr, then 130 ° C x 3
Curing and molding with hr, fiber volume content 65%, outer diameter 100
A molded body having a size of mm × length of 500 mm and a wall thickness of 13 mm was obtained.
A flange made of GFRP was adhered to each of the cylinders thus obtained to obtain a coil winding frame. 1.2mm to this
A superconducting coil of φ was wound by one layer with a tension of 10 kg, and then a superconducting coil was completed. The results of these evaluations are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】(熱膨張率)巻き枠の外周面にストレイン
ゲージをはり付け後、液体N2中に浸積し円周方向及び
軸方向の寸法変化を測定した。 (クエンチ電流)超電導コイル装置を液体He中に浸積
して、1万時間連続運転した後のコイルのクエンチ電流
を測定した。結果は繰り返しのトレーニングにより到達
した最大電流密度とその時のトレーニング回数により示
す。この時使用された超電導性の臨界電流値は1850
Aである。 (圧縮特性)各パイプからx(パイプ断面から見て接線
方向)、y(パイプの長手方向)、z(x、y軸に対し
90°の方向)方向の長さが5、10、5mmの直方体
を切り出しx方向に1mm/minの速度で室温にて圧
縮特性を測定した。これより、圧縮強度及び圧縮弾性率
を算出した。
(Coefficient of thermal expansion) After attaching a strain gauge to the outer peripheral surface of the reel, the strain gauge was immersed in the liquid N2 and the dimensional changes in the circumferential direction and the axial direction were measured. (Quench current) The superconducting coil device was immersed in liquid He, and the quench current of the coil after continuous operation for 10,000 hours was measured. The results are shown by the maximum current density reached by repeated training and the number of trainings at that time. The superconducting critical current value used at this time was 1850.
It is A. (Compression characteristics) Length from each pipe in the x (tangential direction when viewed from the cross section of the pipe), y (longitudinal direction of the pipe), z (direction 90 ° to the x and y axes) direction is 5, 10, 5 mm. The rectangular parallelepiped was cut out and the compression characteristics were measured at room temperature at a speed of 1 mm / min in the x direction. From this, the compressive strength and the compressive elastic modulus were calculated.

【0016】[0016]

【発明の効果】本発明によるとトレーニング回数が少
く、最大電流値が高く、安定且つ高性能な超電導コイル
を提供することを可能にした。
According to the present invention, it is possible to provide a stable and high-performance superconducting coil with a small number of trainings, a high maximum current value.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種繊維における巻角度と熱膨張率との関係を
示す図。
FIG. 1 is a diagram showing a relationship between a winding angle and a coefficient of thermal expansion in various fibers.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 7310−4F B29C 67/14 X Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location 7310-4F B29C 67/14 X

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 筒又は柱状の巻枠に超電導線を巻回し
た、極低温用超電導コイルにおいて前記巻枠が負の膨張
率を有する有機繊維とカーボン繊維の組み合せからな
り、これと樹脂とを一体成形してなる繊維強化プラスチ
ックよりなることを特徴とする超電導コイル。
1. In a superconducting coil for cryogenic use, wherein a superconducting wire is wound around a cylindrical or columnar winding frame, the winding frame is made of a combination of organic fibers and carbon fibers having a negative expansion coefficient, and this is combined with a resin. A superconducting coil made of fiber-reinforced plastic integrally molded.
【請求項2】 負の膨張率を有する有機繊維が高強力、
高弾性率ポリエチレン繊維であることを特徴とする請求
項1記載の超電導コイル。
2. An organic fiber having a negative expansion coefficient has high tenacity,
The superconducting coil according to claim 1, which is a high elastic modulus polyethylene fiber.
【請求項3】 巻枠が負の膨張率を有する有機繊維とカ
ーボン繊維とが交互にコイルの軸方向に対して±40〜
90度の角度で巻回して、これと樹脂とを一体成形して
なることを特徴とする請求項1記載の超電導コイル。
3. An organic fiber and a carbon fiber whose winding frame has a negative expansion coefficient are alternately ± 40 to the axial direction of the coil.
The superconducting coil according to claim 1, wherein the superconducting coil is wound at an angle of 90 degrees, and the resin and the resin are integrally molded.
JP6130472A 1994-06-13 1994-06-13 Superconductive coil Pending JPH07335427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6130472A JPH07335427A (en) 1994-06-13 1994-06-13 Superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6130472A JPH07335427A (en) 1994-06-13 1994-06-13 Superconductive coil

Publications (1)

Publication Number Publication Date
JPH07335427A true JPH07335427A (en) 1995-12-22

Family

ID=15035066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6130472A Pending JPH07335427A (en) 1994-06-13 1994-06-13 Superconductive coil

Country Status (1)

Country Link
JP (1) JPH07335427A (en)

Similar Documents

Publication Publication Date Title
US6592979B1 (en) Hybrid matrix fiber composites
JPH06182882A (en) Structural member made of fiber-reinforced thermoplastic material and its production
JP2888664B2 (en) Optical tube made of CFRP
JPH0764035B2 (en) Solid or hollow fiber reinforced plastic
KR100298101B1 (en) Fiber Reinforced Composite Material
JPH07335427A (en) Superconductive coil
JPH08195311A (en) Superconducting coil
JPH06320536A (en) Long fiber reinforced synthetic resin strand or pellet
JPH08115813A (en) Superconducting coil
JPH06318514A (en) Superconducting coil device
JP3582602B2 (en) Cryogenic container
JPH06224026A (en) Superconducting coil device
JP3362874B2 (en) Permanent current switch
JP3601608B2 (en) Cryogenic fiber reinforced plastic material
JP2001060508A (en) Superconducting dipole magnet
JP3218628B2 (en) Cryogenic fiber reinforced plastic composite
JPH10177913A (en) Supeconductive coil
JPH081817A (en) Sleeve for fiber-reinforced thermoplastic resin tubular molding and tubular molding
JPH06211993A (en) Fiber-reinforced plastic material for cryogenic temperature
JPH0541546A (en) Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application
JP3036170B2 (en) Mount for skid system
JP2000199840A (en) Aramid fiber reinforced curable resin wire-shaped material, its production and spacer for optical fiber cable consisting of this wire-shaped body as tension member
Knight The technique of filament winding
JP2002031277A (en) Composite transport pipe with continuous length
JPH06126846A (en) Fiber reinforced plastic material for extremely low temperature use