JPH0541546A - Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application - Google Patents

Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application

Info

Publication number
JPH0541546A
JPH0541546A JP3178207A JP17820791A JPH0541546A JP H0541546 A JPH0541546 A JP H0541546A JP 3178207 A JP3178207 A JP 3178207A JP 17820791 A JP17820791 A JP 17820791A JP H0541546 A JPH0541546 A JP H0541546A
Authority
JP
Japan
Prior art keywords
cylinder
fiber
reinforced resin
inner cylinder
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3178207A
Other languages
Japanese (ja)
Inventor
Hitoshi Murotani
均 室谷
Yasuo Shinohara
泰雄 篠原
Koji Yamatsuta
浩治 山蔦
Yoshifumi Nakanou
佳史 中納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP3178207A priority Critical patent/JPH0541546A/en
Publication of JPH0541546A publication Critical patent/JPH0541546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To enable the manufacture of FRP-made one piece molding multiple cylinder having excellent insulation performance and strength by laying out a plurality of cylinders in different sizes and molding adjacent cylinders at their one ends or central parts. CONSTITUTION:The present invention relates to a fiber reinforced plastics (FRP)-made one piece molding multiple cylinder which is proper to thermal support structure. More specifically, when the molding of a portion equivalent to an inner cylinder is finished, an auxiliary die 18 is fixed with an inner molding die 17 with a key 20. This die 17 is rotated so as to wind up a portion 25 which bonds the end of the cylinder with resin-impregnated reinforced fiber from the tip of the auxiliary die 18 and further wind up the outer peripheral art of the auxiliary die 18, thereby forming an intermediate cylinder 23. Then, a portion 26 which bonds the other end of the cylinder is wound up from the tip of an auxiliary die 19, thereby forming an outer cylinder 24. Then, when the auxiliary dies 18, 19 and keys 20 and 21 are removed and the inner molding die 17 is pulled out, there is available a FRP type triplex cylinder which is molded in one piece. This construction makes it possible to manufacture with a reasonable process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は断熱支持構造に適した繊
維強化樹脂(以下、FRPと称することがある)製一体
成形多重筒、その製造方法及びそれを用いた低温容器の
断熱支持構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin (sometimes referred to as FRP hereinafter) integrally molded multi-layer cylinder suitable for a heat insulating support structure, a method for manufacturing the same, and a heat insulating support structure for a cryogenic container using the same. ..

【0002】[0002]

【従来の技術】低温を保持するための容器、特に極低温
を保持するための容器、例えば液体ヘリウムを貯蔵する
ための断熱容器は、液体ヘリウムの蒸発量を最小限にす
るために、優れた断熱特性を有し、内部への熱侵入をで
きるだけ少なくすることが要求される。浮上式鉄道に用
いる超電導磁石用の断熱容器では、超電導磁石の生ずる
電磁力あるいは自重を外側の常温雰囲気(常温部)側に
伝達する必要がある。そのために、超電導コイルを内蔵
した液体ヘリウム内槽と常温部の間に強力な支持力を有
しかつ断熱性に優れた支持構造を形成する。
2. Description of the Related Art Containers for holding low temperature, particularly, containers for holding cryogenic temperature, for example, insulated containers for storing liquid helium are excellent in order to minimize evaporation of liquid helium. It is required to have heat insulating properties and minimize heat invasion into the interior. In a heat insulating container for a superconducting magnet used in a levitation railway, it is necessary to transfer the electromagnetic force or the self-weight generated by the superconducting magnet to the outside at room temperature atmosphere (room temperature part) side. Therefore, a supporting structure having a strong supporting force and excellent heat insulating property is formed between the liquid helium inner tank containing the superconducting coil and the room temperature part.

【0003】このような極低温容器の断熱支持構造とし
ては、多重筒構造とすることによって熱伝導パスを長く
し、熱ロスを少なくする方式が知られている。例えば、
FRPのパイプを数個同心円状に配置し、パイプの一端
を内側のパイプと接続し、他の一端を外側のパイプと接
続したおり返し形のもの、あるいは、同心円状に配置さ
れた隣接する円筒同士の接合を該円筒の中央部と両端部
で行うものを交互組合わせて一体化したものが知られて
いる。(特公昭56−48040号公報、特開昭59−
98570号公報及び特公昭62−22442号公報)
そしてこれらの断熱支持構造においては、FRP製の同
心円状円筒の一体化は、接着剤やねじによる接合により
行われている。(特公昭62−22442号公報)
As a heat insulating support structure for such a cryogenic container, there is known a system in which a heat conduction path is lengthened and a heat loss is reduced by adopting a multi-cylinder structure. For example,
Several FRP pipes are arranged concentrically, one end of the pipe is connected to the inner pipe, and the other end is connected to the outer pipe, which is a barbed type or adjacent concentric cylinders. It is known that the cylinders are joined together alternately at the central portion and at both end portions of the cylinder and integrated. (JP-B-56-48040, JP-A-59-
98570 and Japanese Patent Publication No. 62-22442).
In these heat insulating support structures, the FRP concentric cylinders are integrated by bonding with an adhesive or screws. (Japanese Patent Publication No. 62-22442)

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来の方法において隣接する円筒の端部を交互に接合し
て一体化する操作はかなり難しく、得られた接合の強度
も必ずしも充分なものではなかった。具体的な問題とし
て、接合前に円筒表面を平滑にするための機械加工が必
須であり、また、同心円状に重ねて配置された円筒の端
面で接着剤を用いて接続しようとしても充分に圧力をか
けることが難しく、接着強度が出にくい等の問題があっ
た。本発明は上記の課題を解決しようとするものであ
る。すなわち、本発明は優れた断熱性能と強度を有する
FRP製一体成形多重筒、その製造方法及びそれを用い
た一体成形断熱支持構造を提供するものである。
However, in the above-mentioned conventional method, it is rather difficult to alternately join and integrate the ends of adjacent cylinders, and the strength of the obtained joining is not always sufficient. It was As a concrete problem, it is necessary to perform machining to smooth the surface of the cylinder before joining, and even if it is attempted to connect with the adhesive at the end faces of the cylinders that are concentrically overlapped with each other, sufficient pressure is applied. There was a problem that it was difficult to apply, and it was difficult to obtain adhesive strength. The present invention is intended to solve the above problems. That is, the present invention provides an FRP integrally molded multi-cylinder having excellent heat insulation performance and strength, a manufacturing method thereof, and an integrally molded heat insulating support structure using the same.

【0005】[0005]

【課題を解決するための手段】本発明は次に記すとおり
のものである。すなわち、1.複数個の径の異なる筒が
重ねて配置され、隣接する筒同士がその片端部又は中間
部で一体成形された構造を有することを特徴とする繊維
強化樹脂製多重筒。
The present invention is as described below. That is, 1. A fiber-reinforced resin multi-cylinder having a structure in which a plurality of cylinders having different diameters are arranged in an overlapping manner, and adjacent cylinders are integrally molded at one end portion or an intermediate portion thereof.

【0006】そして、その製造方法として、2.(1)
内筒成形用金型の表面に繊維強化樹脂層を形成し内筒を
成形する工程、(2)該内筒成形用金型の表面に成形さ
れている該内筒を、その片端部又は中間部の一部分を残
して覆う筒状の補助金型を、該内筒成形用金型の片端又
は両端に固定して設置する工程、並びに、(3)繊維強
化樹脂層を該補助金型の表面及び該補助金型に覆われて
いない該内筒の表面に形成して外筒を成形する工程、を
有することを特徴とする、複数個の径の異なる筒が重ね
て配置され、隣接する筒同士がその片端部又は中間部に
おいて一体化された構造を有する繊維強化樹脂製多重筒
の製造方法。
As a manufacturing method thereof, 2. (1)
A step of forming a fiber reinforced resin layer on the surface of the inner cylinder molding die to mold the inner cylinder, (2) the inner cylinder molded on the surface of the inner cylinder molding die, one end portion or an intermediate portion thereof. A step of installing a tubular auxiliary mold that covers a part of the inner part while fixing it to one end or both ends of the inner cylinder forming mold, and (3) a fiber-reinforced resin layer on the surface of the auxiliary mold And a step of forming an outer cylinder by forming it on the surface of the inner cylinder which is not covered by the auxiliary mold, and a plurality of cylinders having different diameters are arranged in an overlapping manner, and adjacent cylinders are arranged. A method for manufacturing a fiber-reinforced resin multi-cylinder having a structure in which one end portion or an intermediate portion is integrated.

【0007】さらには、本発明のFRP製多重筒の用途
として、3.複数個の径の異なる筒が重ねて配置され、
隣接する筒同士がその片端部及び/又は中間部で一体成
形された構造を有する繊維強化樹脂製多重筒から成るこ
とを特徴とする低温容器の断熱支持構造、に関するもの
である。
Further, as an application of the FRP multi-cylinder of the present invention, 3. Multiple cylinders with different diameters are stacked and arranged,
The present invention relates to a heat insulating support structure for a cryogenic container, characterized in that adjacent cylinders are multiple cylinders made of fiber reinforced resin having a structure in which one end portion and / or an intermediate portion thereof are integrally molded.

【0008】本発明はその実施に際して、複数個の径の
異なる筒の断面形状、筒の数、あるいはそれらの組合
せ、隣接する筒同士がFRPにて一体成形され接合され
ている接合部の位置及び接合部長さ、FRPに用いる樹
脂の種類及び強化繊維の種類、並びにFRP層の成形方
法、FRP層の厚みとその積層構成等の選択により使用
目的に応じた様々な態様をとることができる。
In carrying out the present invention, the cross-sectional shape of a plurality of cylinders having different diameters, the number of cylinders, or a combination thereof, the position of the joint portion where adjacent cylinders are integrally molded by FRP and joined, and Various modes can be adopted depending on the purpose of use by selecting the length of the joint portion, the type of resin and the type of reinforcing fiber used for the FRP, the method for forming the FRP layer, the thickness of the FRP layer and the laminated structure thereof.

【0009】本発明において筒の断面形状としては、真
円形、楕円形、正方形や長方形等の多角形あるいはそれ
らの任意の組合せを選ぶことができる。成形体の強度や
成形加工や金型製作の面から真円形及び/又は楕円形の
組合せがより好ましい。筒の数は、少なくとも2個以上
であり、使用目的に応じて適宜選ぶことができる。本発
明で筒の径とは、真円形において内径、楕円形において
はその長径、多角形においては内側の対辺間距離をい
う。多重筒の重ね方としては同心状に重ねることが好ま
しいが、偏心したものを用いることもできる。
In the present invention, the cross-sectional shape of the cylinder may be a perfect circle, an ellipse, a polygon such as a square or a rectangle, or any combination thereof. A combination of a perfect circle and / or an ellipse is more preferable from the viewpoint of the strength of the molded body, the molding process, and the die manufacturing. The number of cylinders is at least two and can be appropriately selected according to the purpose of use. In the present invention, the diameter of a cylinder refers to the inner diameter in a true circle, the major diameter in an ellipse, and the inner distance between opposite sides in a polygon. It is preferable that the multiple cylinders are stacked concentrically, but an eccentric stack may be used.

【0010】FRPにより一体成形され接合されている
接合部の位置についても、端部又は中間部で用途や必要
とされる成形体の強度に応じて伝意に選ぶことができ
る。伝熱のパスを長くとり、断熱効果を高めるために
は、3個以上の筒で構成され、両端部で交互に接合され
ている一体成形体を用いることができる(実施例2の態
様)。一体成形体の軸方向に対し直角方向に圧縮力が働
く断熱支持構造に適用する場合には筒の中央部にて接合
された一体成形体を用いることが好ましい(実施例1の
態様)。また必要に応じて片端部及び中央部の接合の組
合せを用いることもできる。さらには中央部に限らず両
端部の任意の中間という意味での中間部での接合も可能
である。接合部の長さも断熱効果及び強度を勘案して適
宜選択することができる。
The position of the joint that is integrally molded and joined by FRP can also be selected at the end or in the middle depending on the application and the required strength of the molded body. In order to lengthen the path of heat transfer and enhance the heat insulating effect, an integrally molded body composed of three or more cylinders and alternately joined at both ends can be used (aspect of Example 2). When applied to a heat insulating support structure in which a compressive force acts in a direction perpendicular to the axial direction of the integrally formed body, it is preferable to use the integrally formed body joined at the center of the cylinder (aspect 1 of the first embodiment). Also, a combination of one end portion and the central portion can be used if necessary. Further, the joining is not limited to the central portion, but can be joined at an intermediate portion in the sense of an arbitrary intermediate between both end portions. The length of the joint portion can be appropriately selected in consideration of the heat insulating effect and the strength.

【0011】本発明で用いる強化繊維は、アルミナ質繊
維、アルミナ質繊維以外のセラミック繊維、ガラス繊
維、炭素繊維、アラミド繊維等が挙げられる。極低温用
途については、炭素繊維が熱伝導率が低いので好まし
く、液体窒素温度域から室温域ではガラス繊維が熱伝導
率が低いので好ましい。特に常温から極低温まで断熱性
能が優れているのは、アルミナ質繊維である。たとえ
ば、炭素繊維は極低温域ではガラス繊維より熱伝導率が
低いが、室温域では逆にガラス繊維の方が炭素繊維より
熱伝導率が低くなる。そのため熱の貫入量を最小にする
には、ガラス繊維強化樹脂と炭素繊維強化樹脂を併用し
た複雑な構造をとる必要があった。しかし、アルミナ質
繊維は、極低温域から室温域にわたる広い温度範囲で、
ガラス繊維および炭素繊維のそれぞれの低い方とほぼ同
一の熱伝導率を示すので、全体をアルミナ質繊維強化樹
脂(以下、ALFRPと称することがある。)からなる
単一の材料で作ることができる。
The reinforcing fibers used in the present invention include alumina fibers, ceramic fibers other than alumina fibers, glass fibers, carbon fibers, aramid fibers and the like. For very low temperature applications, carbon fiber is preferable because it has low thermal conductivity, and glass fiber is preferable because it has low thermal conductivity in the temperature range from liquid nitrogen to room temperature. Alumina fibers have particularly excellent heat insulation performance from room temperature to extremely low temperatures. For example, carbon fiber has a lower thermal conductivity than glass fiber in an extremely low temperature region, but glass fiber has a lower thermal conductivity than carbon fiber in a room temperature region. Therefore, in order to minimize the amount of heat penetration, it is necessary to take a complicated structure in which glass fiber reinforced resin and carbon fiber reinforced resin are used in combination. However, the alumina fiber has a wide temperature range from a very low temperature to a room temperature,
Since the glass fiber and the carbon fiber have almost the same thermal conductivity as the lower one, the whole can be made of a single material made of an alumina fiber reinforced resin (hereinafter, sometimes referred to as ALFRP). ..

【0012】本発明に用いられるアルミナ質繊維の組成
はアルミナ含有量が約60重量%以上、シリカ含有量が
約40重量%以下、好ましくはアルミナ72重量%以
上、シリカ28重量%以下、さらに好ましくはアルミナ
75〜98重量%、シリカ25〜2重量%のものがよ
い。またシリカ含有量のうち繊維全重量に対して10重
量%以下、好ましくは5重量%以下の範囲でこれをリチ
ウム、ベリリウム、ホウ素、ナトリウム、マグネシウ
ム、リン、カリウム、カルシウム、チタン、クロム、マ
ンガン、イットリウム、ジルコニウム、ランタン、タン
グステン、バリウムの一種または二種以上の酸化物で置
き換えてもよい。
The composition of the alumina fiber used in the present invention has an alumina content of about 60% by weight or more and a silica content of about 40% by weight or less, preferably 72% by weight or more of alumina and 28% by weight or less of silica, more preferably Is preferably 75 to 98% by weight of alumina and 25 to 2% by weight of silica. In the silica content, the content of lithium, beryllium, boron, sodium, magnesium, phosphorus, potassium, calcium, titanium, chromium, manganese is preferably 10% by weight or less, preferably 5% by weight or less, based on the total weight of the fiber. It may be replaced by one or more oxides of yttrium, zirconium, lanthanum, tungsten, barium.

【0013】本発明に用いられる繊維の形態として、一
般的な高強度の特徴を生かす場合には長い繊維で用いる
方が好ましい。長繊維のときにはロービング、織物とし
て用いるのがよい。また、円筒の端部接合部にせん断力
がかかるような場合にはマットが好ましい。アルミナ質
繊維としては、アルテックス(住友化学工業(株)
製)、アルセン(電気化学工業(株)製)、Nexte
l(3M社製)、アルマックス(三井鉱山(株)製)、
FP Fiber(Du Pont社製)等を挙げるこ
とができる(いずれも商品名)。これらの中で好ましい
アルミナ質繊維は、アルテックス(住友化学工業(株)
製)及びアルセン(電気化学工業(株)製)である。
As the form of the fiber used in the present invention, it is preferable to use a long fiber in order to take advantage of general high strength characteristics. When it is a long fiber, it is preferably used as roving or as a woven fabric. A mat is preferable when a shearing force is applied to the end joints of the cylinder. As an alumina fiber, Artex (Sumitomo Chemical Co., Ltd.)
Made), Arcen (made by Denki Kagaku Kogyo Co., Ltd.), Nexte
l (manufactured by 3M Company), Almax (manufactured by Mitsui Mining Co., Ltd.),
FP Fiber (manufactured by Du Pont) and the like can be mentioned (all are trade names). Among these, preferred alumina fibers are ALTEX (Sumitomo Chemical Co., Ltd.).
Manufactured by Denki Kagaku Kogyo Co., Ltd.).

【0014】該アルミナ質繊維の強度、弾性率は繊維径
を10μmないし15μmとすればそれぞれ150kg
/mm2 、20t/mm2 以上の値を示すものが好まし
い。例えば、アルミナ含有量85重量%、シリカ含有量
15重量%の組成からなる径10μmないし15μmの
アルミナ質繊維である前記アルテックスは引張強度18
0kg/mm2 以上、引張弾性率21t/mm2 以上の
値を示す。また該アルミナ質繊維のX線的構造において
α−アルミナの反射を実質的に示さないものが望まし
い。一般に無機繊維は高温において繊維内に繊維を形成
する無機物の結晶粒子が成長し、これら結晶粒子間の粒
界破壊のために繊維強度が著しく低下する。この事情は
該アルミナ質繊維において本発明者らの検討の結果によ
れば、そのX線解析像にα−アルミナの反射が現れるこ
とによって特徴づけられる。従って、本発明に用いられ
るアルミナ質繊維はそのX線解析像にα−アルミナの反
射が現れないように製造されたものが好ましい。アルテ
ックスは数100Å程度の非常に微細な微結晶より構成
されているため、熱伝導率が普通のアルミナ繊維より小
さく、従って本発明の目的には最適な材料である。
The strength and elastic modulus of the alumina fiber are 150 kg when the fiber diameter is 10 μm to 15 μm.
/ Mm 2 , and those having a value of 20 t / mm 2 or more are preferable. For example, the Altex, which is an alumina fiber having a diameter of 10 μm to 15 μm and having a composition of alumina content 85% by weight and silica content 15% by weight, has a tensile strength of 18
A value of 0 kg / mm 2 or more and a tensile elastic modulus of 21 t / mm 2 or more is shown. Further, it is desirable that the X-ray structure of the alumina fiber does not substantially show the reflection of α-alumina. Generally, in inorganic fibers, the crystal grains of the inorganic substance forming the fibers grow in the fiber at a high temperature, and the fiber strength is remarkably lowered due to the grain boundary destruction between these crystal grains. This circumstance is characterized by the reflection of α-alumina in the X-ray analysis image of the alumina fiber according to the results of studies by the present inventors. Therefore, the alumina fiber used in the present invention is preferably manufactured so that the reflection of α-alumina does not appear in the X-ray analysis image. Since ARTEX is composed of very fine crystallites of about several hundred liters, it has a thermal conductivity smaller than that of ordinary alumina fiber, and is therefore an optimum material for the purpose of the present invention.

【0015】また本発明のマトリックスに用いられる合
成樹脂類としては、一般にフィラメントワィンディング
法、ハンドレイアップ法等による繊維強化複合材料の製
造に用いられている公知の合成樹脂が使用される。例示
すると、エポキシ樹脂、フェノール樹脂、アルキッド樹
脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹
脂、芳香族ポリアミド樹脂、ポリアミド−イミド樹脂、
ビニルエステル樹脂、ポリエステル−イミド樹脂、ポリ
イミド樹脂、ポリベンゾチアゾール樹脂、ケイ素樹脂な
どの熱硬化性樹脂、ポリエチレン、ポリプロピレン、ポ
リメチルメタアクリレート、ポリスチレン(いわゆるハ
イ・インパクト・ポリスチレンも含む)、ポリ塩化ビニ
ール、弗素樹脂、ABS樹脂、スチレン−アクリロニト
リル共重合体、ポリアミド(ナイロン6,6・6,6・
10,6・11,6・12など)、ポリアセタール、ポ
リスルホン、ポリカーボネート、ポリフェニレンオキサ
イド、ポリエーテルエーテルケトン、ポリエーテルケト
ン、ポリアミドイミド、ポリスルホン、ポリエーテルス
ルホン、芳香族ポリエステルなどの熱可塑性樹脂を挙げ
ることができる。好ましい熱硬化性樹脂組成物としては
エポキシ樹脂、不飽和ポリエステル樹脂およびビニルエ
ステル樹脂が挙げられる。また好ましい熱可塑性樹脂と
しては、ポリエーテルエーテルケトン、ポリエーテルス
ルホンおよびポリアミドイミド樹脂が挙げられる。また
断熱支持構造用途において、支持材の熱輻射を低減する
為にメッキ用エポキシ樹脂を用いて、成形後にメッキや
蒸着を施すことも有効である。
As the synthetic resins used in the matrix of the present invention, known synthetic resins generally used in the production of fiber reinforced composite materials by the filament winding method, the hand layup method and the like are used. For example, epoxy resin, phenol resin, alkyd resin, urea resin, melamine resin, unsaturated polyester resin, aromatic polyamide resin, polyamide-imide resin,
Thermosetting resin such as vinyl ester resin, polyester-imide resin, polyimide resin, polybenzothiazole resin, silicon resin, polyethylene, polypropylene, polymethylmethacrylate, polystyrene (including so-called high impact polystyrene), polyvinyl chloride , Fluorine resin, ABS resin, styrene-acrylonitrile copolymer, polyamide (nylon 6,6,6,6.
10, 6, 11, 6, 12, etc.), thermoplastic resins such as polyacetal, polysulfone, polycarbonate, polyphenylene oxide, polyetheretherketone, polyetherketone, polyamideimide, polysulfone, polyethersulfone, and aromatic polyester. You can Preferred thermosetting resin compositions include epoxy resins, unsaturated polyester resins and vinyl ester resins. Preferred thermoplastic resins include polyetheretherketone, polyethersulfone and polyamideimide resins. Further, in the use of a heat insulating support structure, it is also effective to use an epoxy resin for plating in order to reduce the heat radiation of the support material and perform plating or vapor deposition after molding.

【0016】本発明においてFRP層を成形する方法と
しては、フィラメントワインディング法又はハンドレイ
アップ法、すなわちプリプレグを金型表面等に巻き付け
る方法等を適用することができる。なかでも操作性の面
からフィラメントワインディング法は好ましいものであ
る。強化繊維の巻きつけの角度と巻きつけの厚み及び積
層構成とする場合のそれらの組合わせ並びに積層数は目
的とする成形体の形状や強度に応じて適宜選択すること
が可能である。
In the present invention, as a method for molding the FRP layer, a filament winding method or a hand layup method, that is, a method of winding a prepreg around a mold surface or the like can be applied. Of these, the filament winding method is preferable from the viewpoint of operability. The winding angle of the reinforcing fiber, the winding thickness, the combination thereof in the case of a laminated structure, and the number of laminated layers can be appropriately selected according to the shape and strength of the target molded body.

【0017】FRPの巻きつけ終了後、用いた樹脂が常
温硬化型樹脂の場合は、所定時間放置後、加熱硬化型の
場合は、所定温度で所定時間保持した後に金型を引き抜
き、本発明の一体成形体の成形が完了する。加熱硬化の
方式は加熱炉、オートクレーブ、あるいはホットプレス
等周知のものを用いることができる。
After the completion of winding the FRP, if the resin used is a room temperature curable resin, it is left for a predetermined time, and if it is a heat curable resin, it is held at a predetermined temperature for a predetermined time, and then the mold is pulled out. The molding of the integrally molded body is completed. As a method of heat curing, a known one such as a heating furnace, an autoclave, or a hot press can be used.

【0018】本発明において用いる補助金型はその外周
に端部から中央部に向けて内向きに角度0.5°以上の
テーパーを付けることが好ましい。テーパーを付けない
場合又は0.5°未満のテーパーでは樹脂の硬化後補助
金型を引き抜きにくい。本発明において用いる内筒成形
用金型及び補助金型の材質については、熱膨張率が異な
る2種の金属を用いることが好ましい。すなわち、内筒
成形用金型には補助金型より熱膨張率の大きい金属を用
いた場合、加熱硬化型樹脂の硬化の際に、内筒成形用金
型の膨張がより大きいので成形される筒部に圧力がかか
り、繊維に対して樹脂の含浸を良くする。また金型を離
脱させる際にも冷却すると内筒成形用金型の方がより大
きく収縮するので金型が抜け易く好ましい。具体的に
は、例えば内筒成形用金型にアルミニウム、外筒形成用
補助金型に鋼を用いることができる。
It is preferable that the auxiliary mold used in the present invention is provided with a taper on the outer periphery of the auxiliary mold inward from the end toward the center at an angle of 0.5 ° or more. When the taper is not attached or when the taper is less than 0.5 °, it is difficult to pull out the auxiliary mold after curing the resin. As for the materials of the inner cylinder molding die and the auxiliary die used in the present invention, it is preferable to use two kinds of metals having different thermal expansion coefficients. That is, when a metal having a coefficient of thermal expansion larger than that of the auxiliary mold is used for the inner cylinder molding die, the inner cylinder molding die expands more during the curing of the heat-curable resin, so that the molding is performed. Pressure is applied to the tubular portion, and the fibers are better impregnated with the resin. Also, when the mold is removed, if the inner mold is cooled when it is cooled, the inner cylinder mold shrinks more. Specifically, for example, aluminum can be used for the inner cylinder forming die and steel can be used for the outer cylinder forming auxiliary die.

【0019】本発明の断熱支持構造は、前記した本発明
のFRP製一体成形多重筒を単独で、又は複数個組み合
わせて製造することができる。例えば、径の異なる二種
類のFRP製一体成形二重筒を二個重ねて四重筒とす
る。断熱支持構造のサイズ、形状、機械的強度あるいは
断熱性能等具体仕様は用途に応じて適宜設計し得る。本
発明の断熱支持構造は、低温を保持するための容器、と
くに極低温を保持するための容器、例えば液体ヘリウム
貯蔵用の断熱容器に用い、優れた断熱特性と強度を示す
ので、浮上式鉄道、電力貯蔵(SMES)、医療用(M
RI等)等の超電導磁石用の断熱容器の断熱支持構造に
用いることができる。
The heat insulating support structure of the present invention can be manufactured by using the FRP integrally molded multi-cylinder of the present invention described above alone or in combination. For example, two types of FRP integrally molded double cylinders having different diameters are stacked to form a quadruple cylinder. Specific specifications such as the size, shape, mechanical strength, and heat insulating performance of the heat insulating support structure can be appropriately designed according to the application. INDUSTRIAL APPLICABILITY The heat insulating support structure of the present invention is used for a container for holding a low temperature, particularly a container for holding an extremely low temperature, for example, a heat insulating container for storing liquid helium, and shows excellent heat insulating properties and strength. , Power storage (SMES), medical (M
It can be used for a heat insulating support structure of a heat insulating container for superconducting magnets such as RI.

【0020】[0020]

【実施例】以下に図面に基づいて本発明を具体的に例示
する。 実施例1 図1にフィラメントワインディングに用いる金型の一部
切裁断面図を示す。円筒形のアルミニウム製の内筒成形
用金型(金型はマンドレルとも称す)(14)の両端に
鋼製補助金型(15)をボルト(16)で固定した状態
を示している。まず、補助金型(15)、ボルト(1
6)を除いた状態で、回転する内筒成形用金型14にエ
ポキシ樹脂を含浸させたアルミナ質繊維を巻きつけ、内
筒に相当する部分を形成する。用いたアルミナ質繊維及
びエポキシ樹脂は次のとおりのものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. Example 1 FIG. 1 shows a partially cut sectional view of a mold used for filament winding. The figure shows a state in which a steel auxiliary mold (15) is fixed by bolts (16) to both ends of a cylindrical aluminum inner cylinder molding mold (the mold is also referred to as a mandrel) (14). First, the auxiliary mold (15) and the bolt (1
Excluding 6), the rotating inner-cylinder molding die 14 is wrapped with an alumina fiber impregnated with an epoxy resin to form a portion corresponding to the inner cylinder. The alumina fibers and epoxy resin used are as follows.

【0021】A.アルミナ質繊維 “アルテックス”SX−11−1K(住友化学工業
(株)製:繊維径15μm) B.エポキシ樹脂組成物 ビスフェノールF(1) ────54重量部 トリグリシジル−4−アミノ−m−クレゾール(2) ────23重量部 ネオペンチルグリコールジグリシジルエーテル(3) ────23重量部 m−フェニレンジアミン/ジアミノジフェニルメタン(60/40)(4) ── ───28重量部 (注) (1)エピクロン(登録商標)830 大日本インキ化
学工業(株)製 (2)スミエポキシ(登録商標)ELM−100 住友
化学工業(株)製 (3)共栄社油脂化学工業(株)製 1500NP (4)TONOX(登録商標)60/40 ユニロイヤ
ル(株)製
A. Alumina fiber “Altex” SX-11-1K (Sumitomo Chemical Co., Ltd .: fiber diameter 15 μm) B. Epoxy resin composition Bisphenol F (1) ──── 54 parts by weight Triglycidyl-4-amino-m-cresol (2) ──── 23 parts by weight Neopentyl glycol diglycidyl ether (3) ────-23 Parts by weight m-phenylenediamine / diaminodiphenylmethane (60/40) (4) ────── 28 parts by weight (Note) (1) Epiclon (registered trademark) 830 manufactured by Dainippon Ink and Chemicals, Inc. (2) Sumiepoxy (Registered trademark) ELM-100 manufactured by Sumitomo Chemical Co., Ltd. (3) Kyoeisha Oil and Fat Chemical Co., Ltd. 1500NP (4) TONOX (registered trademark) 60/40 manufactured by Uniroyal Co., Ltd.

【0022】つづいて、内筒成形用金型(14)を停止
して、補助金型(15)をボルト(16)で内筒成形用
金型(14)の両端に固定する。再び金型(14)を回
転して、補助金型(15)の上に前記の樹脂を含浸させ
た強化繊維を巻きつけてゆく。補助金型に覆われていな
い中央部は直接に前記円筒の表面に巻きつけられること
になる。かくして外筒と接合部が成形される。補助金型
(15)の外周には端部から中央部に向けて内向きに角
度1°のテーパーがつけられている。所定温度にて所定
時間放置した後、ボルト(16)をはずし補助金型(1
5)を引き抜くと中央部にてFRPの一体成形により連
結されているFRP製二重円筒が得られる。その二重円
筒の断面図を図2に示した。
Subsequently, the inner cylinder forming mold (14) is stopped, and the auxiliary mold (15) is fixed to both ends of the inner cylinder forming mold (14) with bolts (16). The mold (14) is rotated again, and the reinforcing fibers impregnated with the resin are wound around the auxiliary mold (15). The central part, which is not covered by the auxiliary mold, is directly wound around the surface of the cylinder. Thus, the outer cylinder and the joint are molded. The auxiliary die (15) is tapered inward from the end toward the center at an angle of 1 °. After leaving it for a specified time at a specified temperature, remove the bolt (16) and then use the auxiliary mold (1
When 5) is pulled out, a double cylinder made of FRP is obtained, which is connected at the central portion by integral molding of FRP. A sectional view of the double cylinder is shown in FIG.

【0023】図3は、図2のFRP製二重円筒を用いた
低温容器の断熱支持構造の断面図である。これは、本発
明の隣接する外筒(1)、内筒(2)が中央部(3)で
一体化したFRP製二重円筒と、隣接する外筒(4)、
内筒(5)が中央部(6)で一体化したFRP製二重円
筒とを接続治具(7)で接合した四重円筒からなる断熱
支持構造を示す。該断熱支持構造は低温容器側壁(8)
と常温の取付部側壁(9)とを接続固定している。それ
ぞれとの固定方法は溶接、ピン接合等周知の方法が用い
られる。
FIG. 3 is a sectional view of a heat insulating support structure for a cryogenic container using the FRP double cylinder shown in FIG. This is the FRP double cylinder in which the adjacent outer cylinder (1) and inner cylinder (2) of the present invention are integrated in the central portion (3), and the adjacent outer cylinder (4),
The heat insulation support structure which consists of the quadruple cylinder which the inner cylinder (5) joined with the FRP double cylinder integrated by the central part (6) with the connection jig (7) is shown. The heat insulating support structure is a cryocontainer side wall (8)
The side wall (9) of the mounting portion at room temperature is connected and fixed. A well-known method such as welding or pin joining is used as a fixing method for each.

【0024】図4は、浮上式鉄道に用いる超電導コイル
用の断熱構造を示すもので、図3における断熱支持構造
を用いた極低温容器の断熱構造の概略の側面図であっ
て、超電導コイルの入った極低温容器(12)と台車取
付部(11)を、断熱支持構造(10)が固定している
ものである。ここでは、補助車輪等は省略して台車の一
部(13)を図示している。
FIG. 4 shows a heat insulating structure for a superconducting coil used in a levitation railway, and is a schematic side view of a heat insulating structure of a cryogenic container using the heat insulating support structure in FIG. The cryogenic container (12) and the dolly mounting part (11) are fixed by the heat insulating support structure (10). Here, auxiliary wheels and the like are omitted and a part (13) of the carriage is shown.

【0025】実施例2 図5は本発明をフィラメントワインディング法で製造す
るときに用いる金型(マンドレルとも称す)一式を示す
ものである。円筒状で片端面がドーム形状の金型(1
7)に補助金型(18)及び同(19)を各々キー(2
0)及び(21)で固定した状態を示している。内筒を
形成するための金型は片端面がドーム形状であることが
好ましい。ドーム形状の部分を樹脂を含浸させた強化繊
維で巻き付ける場合には、ピン等を用いての強化繊維の
折り返しをする必要がないため工程上有利であり、成形
後に不要部分の切断除去作業もなくなり経済的にも優れ
ている。また、軸方向の荷重に対しても安定した強度を
発揮できる。
Example 2 FIG. 5 shows a set of molds (also called mandrels) used when the present invention is manufactured by the filament winding method. Cylindrical mold with one end surface of dome shape (1
7) Insert the auxiliary mold (18) and the auxiliary mold (19) into the keys (2
The fixed state is shown in 0) and (21). The mold for forming the inner cylinder preferably has a dome shape on one end surface. When wrapping the dome-shaped part with resin-impregnated reinforcing fibers, it is not necessary to fold the reinforcing fibers using pins, etc., which is advantageous in the process, and the work of cutting and removing unnecessary parts after molding is eliminated. It is economically superior. In addition, it is possible to exert stable strength against a load in the axial direction.

【0026】本発明の一体成形FRP製多重筒の製造方
法においては、まず補助金型(18)、同(19)及び
キー(20)、(21)を除いた状態で、回転する内筒
成形用金型(17)に実施例1と同様の樹脂を含浸させ
た強化繊維を巻き付ける。そして、内筒に相当する部分
まで成形ができたら、金型(17)の回転を停止して、
補助金型(18)をキー(20)で内筒成形用金型(1
7)に固定して、再び同金型(17)を回転して、樹脂
を含浸させた強化繊維にて図6における円筒の端部を結
合する部分(25)を補助金型(18)の先端から巻き
付け、更に補助金型(18)の外周を巻き付け、中間筒
(23)を成形する。次に金型の回転を停止して、補助
金型(19)をキー(21)で内筒成形用金型(17)
に固定して、樹脂を含浸させた強化繊維にて図6におけ
る円筒のもう一方の端部で結合する部分(26)を補助
金型(19)の先端から巻き付け、更に補助金型(1
9)の外周を巻き付け、外筒(24)を成形する。所定
温度で所定時間保持した後、補助金型(18),(1
9)及びキー(20),(21)をはずし、内筒成形用
金型(17)を引き抜くと、隣接する円筒の端部で交互
に結合して一体成形されたFRP製三重円筒が得られ
る。
In the method for manufacturing the integrally molded FRP multi-cylinder of the present invention, first, the inner cylinder molding is rotated with the auxiliary molds (18), (19) and the keys (20), (21) removed. The reinforcing fiber impregnated with the same resin as in Example 1 is wound around the mold (17). Then, when the part corresponding to the inner cylinder can be molded, the rotation of the mold (17) is stopped,
Press the auxiliary mold (18) with the key (20) to mold the inner cylinder mold (1
7), the mold (17) is rotated again, and the portion (25) that joins the ends of the cylinder in FIG. 6 with the resin-impregnated reinforcing fiber is fixed to the auxiliary mold (18). The intermediate cylinder (23) is formed by winding from the tip and further winding the outer periphery of the auxiliary mold (18). Next, the rotation of the mold is stopped, and the auxiliary mold (19) is pressed with the key (21) to mold the inner cylinder (17).
Then, the portion (26) to be joined at the other end of the cylinder in FIG. 6 with the reinforcing fiber impregnated with the resin is wound from the tip of the auxiliary die (19), and the auxiliary die (1
The outer periphery of (9) is wound to form the outer cylinder (24). After holding at a predetermined temperature for a predetermined time, the auxiliary molds (18), (1
9) and the keys (20) and (21) are removed, and the inner cylinder molding die (17) is pulled out to obtain an integrally molded FRP triple cylinder which is alternately coupled at the ends of adjacent cylinders. ..

【0027】図8は、図6の本発明のFRP製一体成形
三重円筒を用いた低温容器の断熱支持構造の断面図の一
例を示す。該断熱支持構造は低温容器側取付け部(3
2)と、常温側の取付け部(33)とに取り付けボルト
(28)、取り付け座(29)及び取り付けナット(3
0)並びに取り付け治具(31)により接続固定されて
いる。取り付け部での固定方法は溶接、ボルト接合、ピ
ン接合等周知の方法を用いることができる。
FIG. 8 shows an example of a cross-sectional view of a heat insulating support structure for a cryogenic container using the FRP integrally molded triple cylinder of the present invention shown in FIG. The heat insulating support structure is attached to the low temperature container side attachment portion (3
2) and the mounting portion (33) on the room temperature side, mounting bolt (28), mounting seat (29) and mounting nut (3)
0) and the attachment jig (31). Well-known methods such as welding, bolt joining, and pin joining can be used as the fixing method at the attachment portion.

【0028】図7は、本発明の実施例2のFRP製一体
成形三重円筒の変形の1つである。
FIG. 7 shows one modification of the FRP integrally molded triple cylinder according to the second embodiment of the present invention.

【0029】[0029]

【発明の効果】本発明の製造方法によれば、機械的強度
及び断熱効果の優れた様々の形状を有するFRP製の一
体成形多重筒を、合理的なプロセスで製作することが可
能となり、その工業的意義は大きい。とくに、アルミナ
質繊維強化樹脂から成る極低温容器の一体成形断熱支持
構造は優れた引張強度、曲げ強度、及びそれぞれの剛
性、優れた層間剪断強度及び極低温域から常温域にわた
る優れた断熱特性を有するものである。
According to the manufacturing method of the present invention, it becomes possible to manufacture an FRP integrally molded multi-cylinder having various shapes excellent in mechanical strength and heat insulation effect by a rational process. Industrial significance is great. In particular, the integrally molded heat-insulating support structure of a cryogenic container made of alumina fiber reinforced resin has excellent tensile strength, bending strength, and respective rigidity, excellent interlaminar shear strength, and excellent heat insulation properties from the low temperature range to the normal temperature range. I have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の、隣合う円筒同士が中央部にて一体化
されているFRP製二重円筒の成形用の金型一式の一部
切裁断面図。
FIG. 1 is a partially cut cross-sectional view of a set of molds for molding a double-cylinder made of FRP in which adjacent cylinders are integrated at a central portion of the present invention.

【図2】本発明の、隣合う円筒同士が中央部にて一体化
されているFRP製二重円筒の一部切裁断面図。
FIG. 2 is a partially cut cross-sectional view of an FRP double cylinder of the present invention in which adjacent cylinders are integrated at a central portion.

【図3】本発明の、径の異なる、一体化されているFR
P製二重円筒を2つ組み合わせて四重円筒とした極低温
容器の断熱支持構造の断面図。
FIG. 3 is an integrated FR of different diameters according to the present invention.
Sectional drawing of the heat insulation support structure of the cryogenic container made into the quadruple cylinder by combining two P double cylinders.

【図4】本発明の前記極低温容器の断熱支持構造を用い
て成る浮上式鉄道の断熱構造の側面図。
FIG. 4 is a side view of a heat insulating structure of a levitation railway which uses the heat insulating support structure for the cryogenic container of the present invention.

【図5】本発明の、隣合う円筒同士が端部にて交互に一
体化されているFRP製三重円筒の成形用の金型一式の
断面図。
FIG. 5 is a cross-sectional view of a set of molds for molding a FRP triple cylinder of the present invention in which adjacent cylinders are alternately integrated at their ends.

【図6】本発明の、隣合う円筒同士が端部にて交互に一
体化されているFRP製三重円筒の断面図。
FIG. 6 is a cross-sectional view of an FRP triple cylinder of the present invention in which adjacent cylinders are alternately integrated at their ends.

【図7】図6の本発明のFRP製三重円筒の変形の断面
図。
7 is a cross-sectional view of a modification of the FRP triple cylinder of the present invention in FIG.

【図8】本発明の隣合う円筒同士が端部にて交互に一体
化されているFRP製三重円筒を用いた極低温容器の断
熱支持構造の断面図。
FIG. 8 is a cross-sectional view of a heat insulating support structure for a cryogenic container using an FRP triple cylinder in which adjacent cylinders of the present invention are alternately integrated at their ends.

【符号の説明】[Explanation of symbols]

1,4────FPR製一体成形二重円筒の外筒部 2,5────FPR製一体成形二重円筒の内筒部 3,6────FPR製一体成形二重円筒の中央部 7────接続治具 8────極低温容器壁 9────取付け部側壁 10────FRP製一体成形多重筒(断熱支持材) 11────台車取付部 12────超伝導コイルの入った極低温容器 13────台車の一部 14────内筒成形用円筒型金型 15────補助金型(外筒用) 16────ボルト 17────内筒成形用の片端部がドーム形状の円筒金
型 18,19────補助金型(中間筒、外筒用) 20,21────キー(補助金型取付け用) 22────FRP製一体成形三重円筒の内筒部 23────FRP製一体成形三重円筒の中間筒部 24────FRP製一体成形三重円筒の外筒部 25,26────同三重円筒の結合する、隣接する円
筒の端部 27────同三重円筒の内筒の片端部のドーム形状部 28────取り付け用ボルト 29────取り付け座 30────取り付け用ナット 31────取り付け治具 32────低温容器側取付け部 33────常温側取付け部 図1〜図4及び符号1〜16は実施例1に、図5〜図8
及び符号17〜33は実施例2に対応するものである。
1,4 ───FPR integrally molded double cylinder outer cylinder 2,5 ───FPR integrally molded double cylinder inner cylinder 3,6 ───FPR integrally molded double cylinder Central part of 7 ──── Connection jig 8 ────Cryogenic container wall 9 ────Mounting part side wall 10 ────FRP monolithic multi-layer cylinder (insulation support material) 11 ─── Mounting part 12 ────Cryogenic container containing superconducting coil 13 ────Part of trolley 14 ────Cylinder mold for inner cylinder molding 15 ────Auxiliary mold (for outer cylinder) ) 16 ──── Bolt 17 ──── Cylindrical mold with one end for forming inner cylinder 18, 19 ──── Auxiliary mold (for intermediate cylinder and outer cylinder) 20, 21 ── ─ Key (for mounting auxiliary mold) 22 ──── Inner cylinder part of FRP integrally molded triple cylinder 23 ──── Intermediate cylinder part of FRP integrally molded triple cylinder 24 ──── Outer cylinder part of integrally molded triple cylinder made of RP 25,26 ─────────────────────────────────────── ─────────────────────────── ───────── ────────────── ────────── ─────────── ──────── ──── ─── Mounting bolt 29 ──── Mounting seat 30 ──── Mounting nut 31 ──── Mounting jig 32 ──── Low temperature container side mounting portion 33 ──── Room temperature side mounting portion Fig. 1 4 and reference numerals 1 to 16 correspond to the first embodiment, and FIGS.
Reference numerals 17 to 33 correspond to those in the second embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中納 佳史 茨城県つくば市北原6 住友化学工業株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshifumi Nakano 6 Kitahara, Tsukuba, Ibaraki Sumitomo Chemical Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】複数個の径の異なる筒が重ねて配置され、
隣接する筒同士がその片端部又は中間部で一体成形され
た構造を有することを特徴とする繊維強化樹脂製多重
筒。
1. A plurality of cylinders having different diameters are stacked and arranged.
A fiber-reinforced resin multi-cylinder having a structure in which adjacent cylinders are integrally molded at one end or an intermediate part thereof.
【請求項2】複数個の径の異なる円筒を同心円状に重ね
て配置し、隣接する円筒同士がその中央部にて一体成形
された構造を有することを特徴とする繊維強化樹脂製多
重筒。
2. A fiber-reinforced resin multi-layer cylinder having a structure in which a plurality of cylinders having different diameters are concentrically overlapped with each other, and adjacent cylinders are integrally molded at their central portions.
【請求項3】複数個の径の異なる円筒を同心円状に重ね
て配置し、隣接する円筒同士がその片端部にて一体成形
された構造を有することを特徴とする繊維強化樹脂製多
重筒。
3. A fiber-reinforced resin multi-cylinder having a structure in which a plurality of cylinders having different diameters are concentrically overlapped with each other and adjacent cylinders are integrally molded at one end thereof.
【請求項4】繊維強化樹脂がアルミナ質繊維強化樹脂で
ある請求項1,2又は3記載の繊維強化樹脂製多重筒。
4. The fiber-reinforced resin multiple cylinder according to claim 1, wherein the fiber-reinforced resin is an alumina fiber-reinforced resin.
【請求項5】(1)内筒成形用金型の表面に繊維強化樹
脂層を形成し内筒を成形する工程、(2)該内筒成形用
金型の表面に成形されている該内筒を、その片端部又は
中間部の一部分を残して覆う筒状の補助金型を、該内筒
成形用金型の片端又は両端に固定して設置する工程、並
びに、(3)繊維強化樹脂層を該補助金型の表面及び該
補助金型に覆われていない該内筒の表面に形成して外筒
を成形する工程、を有することを特徴とする、請求項1
記載の繊維強化樹脂製多重筒の製造方法。
5. A step of (1) forming a fiber reinforced resin layer on the surface of an inner cylinder molding die to mold the inner cylinder, and (2) a step of molding the inner cylinder molding die on the surface thereof. A step of fixing a cylindrical auxiliary mold for covering the cylinder while leaving a part of one end or a middle part thereof fixed to one end or both ends of the inner cylinder molding mold, and (3) fiber reinforced resin Forming a layer on the surface of the auxiliary mold and on the surface of the inner cylinder not covered by the auxiliary mold to form an outer cylinder.
A method for manufacturing a fiber-reinforced resin multi-cylinder described.
【請求項6】(1)円筒状内筒成形用金型の表面に繊維
強化樹脂層を形成し内筒を成形する工程、(2)該内筒
成形用金型の表面に成形されている該内筒を、その中央
部の一部分を残して覆う円筒状補助金型を、該円筒成形
用金型の両端に固定して設置する工程、並びに、(3)
繊維強化樹脂層を該補助金型の表面及び該補助金型に覆
われていない該内筒の表面に形成して外筒を成形する工
程、を有することを特徴とする請求項2記載の繊維強化
樹脂製多重筒の製造方法。
6. (1) A step of forming a fiber reinforced resin layer on the surface of a cylindrical inner cylinder molding die to mold the inner cylinder, (2) molding on the surface of the inner cylinder molding die. A step of installing a cylindrical auxiliary mold that covers the inner cylinder while leaving a part of the central part thereof fixed to both ends of the cylindrical molding mold; and (3)
3. The fiber according to claim 2, further comprising a step of forming a fiber reinforced resin layer on the surface of the auxiliary mold and on the surface of the inner cylinder not covered by the auxiliary mold to mold an outer cylinder. A method for manufacturing a reinforced resin multi-cylinder.
【請求項7】(1)円筒状内筒成形用金型の表面に繊維
強化樹脂層を形成し内筒を成形する工程、(2)該内筒
成形用金型の表面に成形されている該内筒を、その端部
を残して覆う円筒状補助金型を、該内筒成形用金型の片
端に固定して設置する工程、並びに、(3)繊維強化樹
脂層を該補助金型の表面及び該補助金型に覆われていな
い該内筒の表面に形成して外筒を成形する工程、を有す
ることを特徴とする請求項3記載の繊維強化樹脂製多重
筒の製造方法。
7. A step of (1) forming a fiber reinforced resin layer on the surface of a cylindrical inner cylinder molding die to mold the inner cylinder, and (2) molding the surface of the inner cylinder molding die. A step of installing a cylindrical auxiliary mold that covers the inner cylinder while leaving the end portion thereof fixed to one end of the inner cylinder molding die, and (3) the fiber-reinforced resin layer to the auxiliary mold. 4. The method for producing a fiber-reinforced resin multiple cylinder according to claim 3, further comprising the step of forming the outer cylinder by forming the outer cylinder on the surface of the inner cylinder and the surface of the inner cylinder not covered by the auxiliary mold.
【請求項8】繊維強化樹脂層の形成をフィラメントワイ
ンディング法にて行う請求項5、6又は7記載の繊維強
化樹脂製多重筒の製造方法。
8. The method for producing a fiber-reinforced resin multiple cylinder according to claim 5, 6 or 7, wherein the fiber-reinforced resin layer is formed by a filament winding method.
【請求項9】繊維強化樹脂がアルミナ質繊維強化樹脂か
らなる請求項5、6、7又は8記載の繊維強化樹脂製多
重筒の製造方法。
9. The method for producing a fiber-reinforced resin multi-cylinder according to claim 5, 6, 7 or 8, wherein the fiber-reinforced resin comprises an alumina fiber-reinforced resin.
【請求項10】複数個の径の異なる筒が重ねて配置さ
れ、隣接する筒同士がその片端部及び/又は中間部で一
体成形された構造を有する繊維強化樹脂製多重筒から成
ることを特徴とする低温容器の断熱支持構造。
10. A fiber-reinforced resin multiple cylinder having a structure in which a plurality of cylinders having different diameters are arranged in a stack, and adjacent cylinders are integrally molded at one end portion and / or an intermediate portion thereof. Insulation support structure for cryogenic containers.
【請求項11】複数個の径の異なる円筒が同心円状に重
ねて配置され、隣接する円筒同士がその中央部で一体成
形された構造を有する繊維強化樹脂製多重筒から成るこ
とを特徴とする低温容器の断熱支持構造。
11. A fiber-reinforced resin multi-cylinder having a structure in which a plurality of cylinders having different diameters are concentrically overlapped with each other, and adjacent cylinders are integrally molded at the center thereof. Insulation support structure for cryogenic containers.
【請求項12】複数個の径の異なる円筒が同心円状に重
ねて配置され、隣接する円筒同士がその片端部で一体成
形された構造を有する繊維強化樹脂製多重筒から成るこ
とを特徴とする低温容器の断熱支持構造。
12. A multi-cylinder made of fiber reinforced resin having a structure in which a plurality of cylinders having different diameters are concentrically overlapped with each other and adjacent cylinders are integrally molded at one end thereof. Insulation support structure for cryogenic containers.
【請求項13】繊維強化樹脂がアルミナ質繊維強化樹脂
である請求項10、11又は12記載の低温容器の断熱
支持構造。
13. The heat insulating support structure for a cryogenic container according to claim 10, 11 or 12, wherein the fiber reinforced resin is an alumina fiber reinforced resin.
JP3178207A 1990-07-19 1991-07-18 Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application Pending JPH0541546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178207A JPH0541546A (en) 1990-07-19 1991-07-18 Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP02192186 1990-07-19
JP12916791 1991-05-31
JP2-192186 1991-05-31
JP3-129167 1991-05-31
JP3178207A JPH0541546A (en) 1990-07-19 1991-07-18 Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application

Publications (1)

Publication Number Publication Date
JPH0541546A true JPH0541546A (en) 1993-02-19

Family

ID=27315893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178207A Pending JPH0541546A (en) 1990-07-19 1991-07-18 Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application

Country Status (1)

Country Link
JP (1) JPH0541546A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367823A (en) * 2001-06-08 2002-12-20 Hitachi Ltd Load support of superconducting magnet and superconducting magnet device
JP2016133187A (en) * 2015-01-21 2016-07-25 公益財団法人鉄道総合技術研究所 Superconducting magnetic bearing
KR101643083B1 (en) * 2015-02-03 2016-07-26 한국과학기술연구원 Low heat loss cryogenic fluid storage equipment using multilayered cylindrical support
JP2017054924A (en) * 2015-09-09 2017-03-16 株式会社有沢製作所 Load support material and manufacturing method thereof
WO2022209811A1 (en) * 2021-03-31 2022-10-06 株式会社有沢製作所 Thermal-insulation container and magnetospinograph using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367823A (en) * 2001-06-08 2002-12-20 Hitachi Ltd Load support of superconducting magnet and superconducting magnet device
JP2016133187A (en) * 2015-01-21 2016-07-25 公益財団法人鉄道総合技術研究所 Superconducting magnetic bearing
KR101643083B1 (en) * 2015-02-03 2016-07-26 한국과학기술연구원 Low heat loss cryogenic fluid storage equipment using multilayered cylindrical support
JP2017054924A (en) * 2015-09-09 2017-03-16 株式会社有沢製作所 Load support material and manufacturing method thereof
WO2022209811A1 (en) * 2021-03-31 2022-10-06 株式会社有沢製作所 Thermal-insulation container and magnetospinograph using same

Similar Documents

Publication Publication Date Title
US4968545A (en) Composite tube and method of manufacture
US3837985A (en) Multi-directional reinforced composite and method of making the same
US6719165B2 (en) Apparatus and method for reinforcing a pressure vessel
JPH0541546A (en) Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application
JPH09250247A (en) Composite material reinforced concrete structural body
US4807531A (en) Contemporary composite polar boss
EP3964745B1 (en) Composite gas storage tank
JPH057023A (en) Integrally molded heat insulating retainer
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
CN111805938B (en) Heat-proof bearing integrated structure for aircraft and forming method thereof
EP0370147A1 (en) Tubular composite construction
JP2001263590A (en) Method of manufacturing pressure vessel
CN114556009A (en) Method for producing a pressure vessel and pressure vessel
JP3855648B2 (en) Superconducting magnet load support and superconducting magnet device
JP2610581B2 (en) Joining member having dimensional change function, joining structure and joining method using the same
WO2022209811A1 (en) Thermal-insulation container and magnetospinograph using same
JPH1016068A (en) Manufacture of tube body constituted of fiber-reinforced thermoplastic resin
WO2022249960A1 (en) Thermally insulated container and magnetospinograph using same
JPH04201244A (en) Pipe structure made of fiber reinforced composite material
JP3370977B2 (en) Load transmission shaft made of fiber reinforced plastic
US20240084970A1 (en) Double-wall tank and an assembling method of said double-wall tank
JPH07323503A (en) Hybrid pipe, production thereof and roller formed using hybrid pipe
Shin et al. RESIDUAL STRESS MINIMIZATION TO PREVENT PROCESS-INDUCED DAMAGES IN THICK-WALLED CFRP PIPES
EP3705288A1 (en) Hybrid composite tube systems and methods
JP3989124B2 (en) Fiber-reinforced composite cross beam with cross-section rib and method of manufacturing the same