JP2001263590A - Method of manufacturing pressure vessel - Google Patents

Method of manufacturing pressure vessel

Info

Publication number
JP2001263590A
JP2001263590A JP2000074335A JP2000074335A JP2001263590A JP 2001263590 A JP2001263590 A JP 2001263590A JP 2000074335 A JP2000074335 A JP 2000074335A JP 2000074335 A JP2000074335 A JP 2000074335A JP 2001263590 A JP2001263590 A JP 2001263590A
Authority
JP
Japan
Prior art keywords
winding
dome
pressure vessel
fiber
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000074335A
Other languages
Japanese (ja)
Inventor
Fumiharu Namiki
木 文 春 並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2000074335A priority Critical patent/JP2001263590A/en
Publication of JP2001263590A publication Critical patent/JP2001263590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem of impairing the winding performance of a filament in a conventional method wherein the filament is helically wound around dome portions and the winding angle to a cylindrical portion is set as 54 degree, when molding a pressure vessel having the dome portions on both end sides of the cylindrical portion by means of filament winding method. SOLUTION: The filament F is helically wound around both dome portions 2, 3 at each winding angle α1, α2, and winding without sliding is enabled regardless of the size of openings 4, 5. As continuous to the dome portions, the filament F is wound around the cylindrical portion 1 at an angle in a range between the winding angle α1 of the first end side dome portion 2 and the winding angle α2 of the second end side dome portion 3. Winding in a state capable of ensuring sufficient strength especially in an axial direction while absorbing the mismatch of the winding angles α1, α2 to both dome portions 2, 3 is enabled to obtain a pressure vessel with high performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、ロケットのモータケー
スなどに用いられる圧力容器の製造方法に関し、フィラ
メントワインディング法に基づいて成形される繊維強化
プラスチック製圧力容器の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a pressure vessel used for a motor case of a rocket, and more particularly to a method of manufacturing a fiber-reinforced plastic pressure vessel formed based on a filament winding method.

【従来の技術】フィラメントワインディング法に基づく
繊維強化プラスチック製圧力容器の製造方法は、例え
ば、樹脂を含浸させた繊維(繊維束)を回転するマンド
レルに連続的に巻き付けてプリフォームを形成し、次
に、加熱および加圧によりプリフォームを硬化成形した
後、マンドレルを取り外して圧力容器を得るものであ
る。このとき、フィラメントワインディング法では、製
造する圧力容器の形状などに応じてマンドレルに対する
繊維の巻き付け方の選択が行われており、その巻き付け
方としては、等張力ヘリカル巻きやインプレーン巻きあ
るいは双方を組み合わせたものがある。図5および図6
に示すマンドレル100は、円筒部の両端側に略半球状
のドーム部を有する圧力容器を成形するものであって、
両端部を同軸状態で支持する回転軸101,102によ
り両ドーム部の中央に円形の開口部を形成する。等張力
ヘリカル巻きは、図5に示すように、両ドーム部および
円筒部に対して測地線に沿って繊維Fを巻き付ける方法
である。この方法では、両ドーム部と円筒部の接続部お
よび円筒部における繊維Fの巻き付け角度が軸線に対し
て一定になる。このため、圧力容器は、両ドーム部の形
状が同一であり且つ両開口部の直径も同一でなければな
らない。このような技術は、1979年11月の『東京
大学宇宙航空研究所報告・第15巻・第4号』に記載さ
れている。インプレーン巻きは、図6に示すように、両
ドーム部を経て1周したときの軌跡が一平面を形成する
ように繊維Fを巻き付ける方法である。この場合、圧力
容器は、両開口部の直径を同一にする必要は無いもの
の、軸線方向の全長の増大に伴って円筒部における繊維
Fの巻き付け角度が小さくなり、巻き付け時の安定性
(滑らないこと)の確保が難しくなることがある。この
ような技術は、AIAAJOURNAL VOL.1
NO.12の第2842〜2844頁に記載されてい
る。ここで、円筒部の両端側に頂部に開口部を有するド
ーム部を備え且つ一端側と他端側とで開口部の直径が異
なる圧力容器の製造方法としては、特開平11−101
397号公報に開示されているものがある。同公報の製
造方法では、図7に示すように、圧力容器200におい
て、一方のドーム部201の開口部201Aの半径をr
1、他方のドーム部202の開口部202Aの半径をr
2、ドーム部201,202の任意の位置における半径
をrとした場合に、一方のドーム部201に対する巻き
付け角度αをsin−1(r1/r)、他方のドーム部
202に対する巻き付け角度βをsin−1(r2/
r)とし、円筒部203に対する巻き付け角度が実質的
に55度となるようにして繊維Fを巻き付けている。
2. Description of the Related Art A method of manufacturing a fiber reinforced plastic pressure vessel based on a filament winding method is, for example, to continuously wind a resin-impregnated fiber (fiber bundle) around a rotating mandrel to form a preform. Then, after the preform is cured by heating and pressurizing, the mandrel is removed to obtain a pressure vessel. At this time, in the filament winding method, the method of winding the fiber around the mandrel is selected according to the shape of the pressure vessel to be manufactured and the like, and the winding method is equal-tensile helical winding, in-plane winding, or a combination of both. There are things. 5 and 6
The mandrel 100 shown in FIG. 1 is for molding a pressure vessel having substantially hemispherical dome portions at both ends of a cylindrical portion,
A circular opening is formed at the center of both dome portions by the rotating shafts 101 and 102 supporting both ends coaxially. As shown in FIG. 5, the equal-tensile helical winding is a method of winding a fiber F around both dome portions and a cylindrical portion along a geodesic line. In this method, the winding angle of the fiber F in the connection between the dome portion and the cylindrical portion and in the cylindrical portion becomes constant with respect to the axis. For this reason, in the pressure vessel, both domes must have the same shape and both openings have the same diameter. Such a technique is described in "Report of the Institute of Space and Aeronautics and Astronautics, The University of Tokyo, Vol. 15, No. 4", November 1979. As shown in FIG. 6, in-plane winding is a method in which the fiber F is wound so that the trajectory when making one round through both dome portions forms one plane. In this case, although the pressure vessel does not need to have the same diameter at both openings, the winding angle of the fiber F in the cylindrical portion becomes smaller as the total length in the axial direction increases, and the stability at the time of winding (there is no slippage). ) Can be difficult to secure. Such a technique is described in AIAAJOURNAL VOL. 1
NO. 12 pages 2842 to 2844. Here, as a method for manufacturing a pressure vessel provided with a dome portion having an opening at the top on both ends of a cylindrical portion and having different diameters of the opening at one end and the other end, see JP-A-11-101.
No. 397 is disclosed. In the manufacturing method of the publication, as shown in FIG. 7, in the pressure vessel 200, the radius of the opening 201A of one dome portion 201 is set to r.
1. The radius of the opening 202A of the other dome 202 is r
2. When the radius at an arbitrary position of the dome portions 201 and 202 is r, the winding angle α for one dome portion 201 is sin −1 (r1 / r), and the winding angle β for the other dome portion 202 is sin. -1 (r2 /
The fiber F is wound so that the winding angle with respect to the cylindrical portion 203 is substantially 55 degrees.

【発明が解決しようとする課題】ところで、上記公報の
圧力容器の製造方法では、等張力ヘリカル巻きに基づい
て両ドーム部に対する繊維の巻き付け角度を個別に設定
しているので、図7に示す如く両端側の開口部の直径が
異なる場合に対処することができる。しかし、この製造
方法では、円筒部に対する繊維の巻き付け角度を55度
とすることに重点をおいているため、次のような問題が
生じることとなる。すなわち、円筒形状の圧力容器で
は、軸線方向に発生する応力が周方向に発生する応力の
1/2であるから、材料そのものの強度が軸線方向対周
方向で1:2になっていれば、バランスがとれた設計と
することができる。また、フィラメントワインディング
法を用いたCFRPの斜向積層板の製造において、上記
1:2の強度を達成しようとすると、円筒部に対する繊
維の巻き付け角度はおおむね55度近辺になる。ただ
し、これは繊維のみが強度を受け持つと考える網目理論
に基づくものであり、実際の破壊形態は異なる場合が多
く、巻き付け角度を55度にして成形した円筒形状の圧
力容器において軸線方向強度対周方向強度が1:2にな
ることは希である。また、網目理論でなく、古典積層理
論を用いた解析によると、円筒部に対する巻き付け角度
を55度とした場合の強度/重量は、円筒部に対する巻
き付け角度をより小さい角度(例えば15度)とし、周
巻きを追加したものに比べて優位なものとはならない。
したがって、円筒部に対する巻き付け角度を実質的に5
5度にすることはあまり得策ではなく、むしろ円筒部に
対する巻き付け角度を極力軸線方向に近いものとし、不
足する周方向強度については周巻きを追加する方が軽量
設計において有利な場合が多い。さらに、円筒部とドー
ム部との接合部での巻き付け角度は、ドーム部の開口部
の直径をD1とし、円筒部の直径をDとしたときに、s
in−1(D1/D)で決まるものであり、開口部直径
D1が円筒部直径Dに対して82%のときに巻き付け角
度が55度となる。ところが、高性能の圧力容器を設計
する場合には、ドーム部の開口部の直径をなるべく小さ
くするのが望ましく、この場合、ドーム部の形状に基づ
いて接続部での巻き付け角度を設定すると、その角度は
55度よりも小さくなる。また、開口部の直径は他の設
計要求で制限されることもあり、このときには、巻き付
け角度は制限を受けて必ずしも55度に設定することが
困難になる場合がある。このため、軸線方向の強度を高
めるには巻き付け角度を極力小さくするのが有利である
のに対して、巻き付け角度を55度にすることは強度的
に不利なものになる。加えて、円筒部に対する巻き付け
角度を単に55度にするということは、巻き付け性の観
点からも問題が生じる。つまり、両ドーム部に対して等
張力ヘリカル巻きにより別々の巻き付け角度で巻き付け
る繊維と、円筒部に対して55度の巻き付け角度で巻き
付ける繊維とを連続させるには、角度変化域を設けて巻
き付け角度を徐々に変化させることになるが、この際、
55度までの変化量が小さい場合には問題は少ないもの
の、変化量が大きい場合には繊維が滑る可能性が高くな
る。したがって、円筒部に対する繊維の巻き付け角度
は、円筒部とドーム部との接続部での巻き付け角度と無
縁で決定することは望ましくない。
In the method of manufacturing a pressure vessel disclosed in the above publication, the winding angles of the fibers with respect to both the dome portions are individually set based on the equal-tensile helical winding. Therefore, as shown in FIG. It is possible to cope with the case where the diameters of the openings at both ends are different. However, in this manufacturing method, the following problem arises because the emphasis is placed on making the winding angle of the fiber around the cylindrical portion 55 degrees. That is, in a cylindrical pressure vessel, since the stress generated in the axial direction is の of the stress generated in the circumferential direction, if the strength of the material itself is 1: 2 in the axial direction versus the circumferential direction, The design can be balanced. Further, in the production of the oblique laminate of CFRP using the filament winding method, if the strength of 1: 2 is to be achieved, the winding angle of the fiber with respect to the cylindrical portion is about 55 degrees. However, this is based on the mesh theory that only fibers are responsible for the strength, and the actual fracture mode is often different. In a cylindrical pressure vessel formed with a wrapping angle of 55 degrees, the strength in the axial direction versus the circumference is considered. It is rare that the directional intensity is 1: 2. According to the analysis using the classical lamination theory instead of the mesh theory, the strength / weight when the winding angle with respect to the cylindrical portion is set to 55 degrees, the winding angle with respect to the cylindrical portion is set to a smaller angle (for example, 15 degrees). It will not be superior to the one with the additional winding.
Therefore, the winding angle with respect to the cylindrical portion is substantially 5
It is not very advisable to set the angle to 5 degrees. Rather, it is often advantageous to make the winding angle with respect to the cylindrical portion as close to the axial direction as possible and to add the circumferential winding to the insufficient circumferential strength in the light weight design. Further, when the diameter of the opening of the dome portion is D1 and the diameter of the cylindrical portion is D, the winding angle at the junction between the cylindrical portion and the dome portion is s.
in -1 (D1 / D), and when the opening diameter D1 is 82% of the cylindrical diameter D, the winding angle is 55 degrees. However, when designing a high-performance pressure vessel, it is desirable to reduce the diameter of the opening of the dome as much as possible. In this case, if the winding angle at the connection is set based on the shape of the dome, the The angle will be less than 55 degrees. Also, the diameter of the opening may be limited by other design requirements, and in this case, the winding angle may be limited and may not always be set to 55 degrees. For this reason, to increase the strength in the axial direction, it is advantageous to reduce the winding angle as much as possible, while setting the winding angle to 55 degrees is disadvantageous in strength. In addition, simply setting the winding angle to the cylindrical portion to 55 degrees causes a problem from the viewpoint of the winding property. In other words, in order to make the fiber wound around the two dome portions at different winding angles by the equal tension helical winding and the fiber wound around the cylindrical portion at a winding angle of 55 degrees continuous, a winding angle is provided by providing an angle change region. Is gradually changed.
When the change amount up to 55 degrees is small, the problem is small, but when the change amount is large, the fiber is more likely to slip. Therefore, it is not desirable that the winding angle of the fiber with respect to the cylindrical portion is determined without the winding angle at the connection portion between the cylindrical portion and the dome portion.

【発明の目的】本発明は、上記従来の状況に鑑みて成さ
れたもので、円筒部の両端側に頂部に開口部を有するド
ーム部を備え且つ一端側と他端側とで開口部の直径が異
なる圧力容器をフィラメントワインディング法に基づい
て成形するに際し、両ドーム部には、開口部の大きさに
左右されることなく滑りの無い状態で繊維を良好に巻き
付けることができると共に、円筒部には、両ドーム部に
対する巻き付け角度の不整合を吸収しつつ、とくに軸線
方向の充分な強度を確保し得る状態で繊維を良好に巻き
付けることができ、結果として高性能な圧力容器を得る
ことができる圧力容器の製造方法を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and has a dome portion having an opening at the top on both ends of a cylindrical portion, and having an opening at one end and the other end. When molding pressure vessels having different diameters based on the filament winding method, the fibers can be satisfactorily wound around both dome parts without slippage without being affected by the size of the opening, and the cylindrical part In this way, the fibers can be wrapped well in a state where sufficient strength in the axial direction can be secured, while absorbing the mismatch of the wrapping angles with respect to both dome parts, and as a result, a high-performance pressure vessel can be obtained. It is an object of the present invention to provide a method for manufacturing a pressure vessel that can be used.

【課題を解決するための手段】本発明に係わる圧力容器
の製造方法は、請求項1として、円筒部の両端側に頂部
に開口部を有するドーム部を備え且つ一端側と他端側と
で開口部の直径が異なる圧力容器をフィラメントワイン
ディング法に基づいて成形するに際し、圧力容器の内側
形状に対応するマンドレルに対して、両ドーム部におけ
る少なくとも開口部から軸線方向の所定範囲には、ヘリ
カル巻きにより各々の巻き付け角度で繊維を巻き付け、
これに連続して両ドーム部の所定範囲外である円筒部を
含む中間部分には、一端側ドーム部の巻き付け角度と他
端側ドーム部の巻き付け角度との間の範囲の巻き付け角
度で繊維を巻き付けて圧力容器を成形する構成とし、請
求項2として、円筒部を含む中間部分には、巻き付け角
度を連続的に変化させて繊維を巻き付ける構成とし、請
求項3として、円筒部を含む中間部分には、いずれか一
方のドーム部に対する巻き付け角度で繊維を巻き付ける
と共に、他方のドーム部側で巻き付け角度を変化させて
繊維を巻き付ける構成とし、請求項4として、円筒部を
含む中間部分には、両ドーム部側で巻き付け角度を変化
させて繊維を巻き付けると共に、両角度変化域の間で巻
き付け角度を一定にして繊維を巻き付ける構成とし、請
求項5として、ヘリカル巻きの範囲が、ドーム部の軸線
方向の長さに対して少なくとも開口部から50%の範囲
である構成とし、請求項6として、両ドーム部および円
筒部に繊維を巻き付けた後、少なくとも円筒部に周巻き
により繊維を巻き付けて圧力容器を成形する構成として
おり、上記構成をもって従来の課題を解決するための手
段としている。
According to a first aspect of the present invention, there is provided a method for manufacturing a pressure vessel, comprising: a dome having an opening at a top portion at both ends of a cylindrical portion; When forming pressure vessels having different diameters of the openings based on the filament winding method, a helical winding is performed on a mandrel corresponding to the inner shape of the pressure vessel in at least a predetermined range in the axial direction from the openings in both dome portions. Wind the fiber at each winding angle by
On the intermediate portion including the cylindrical portion which is outside the predetermined range of both dome portions continuously, the fiber is wound at a winding angle in a range between the winding angle of the one-side dome portion and the winding angle of the other-side dome portion. The pressure vessel is formed by winding, and as a second aspect, the fiber is wound around the intermediate portion including the cylindrical portion by continuously changing the winding angle. The third portion includes the cylindrical portion. In the configuration, the fiber is wound at the winding angle with respect to one of the dome portions, and the fiber is wound by changing the winding angle on the other dome portion side. The fiber is wound by changing the winding angle on both dome portions, and the fiber is wound with the winding angle being constant between both angle change regions. The range of the cull winding is at least 50% from the opening with respect to the axial length of the dome portion. According to claim 6, after the fibers are wound around both the dome portion and the cylindrical portion, at least the cylindrical portion is formed. The pressure vessel is formed by wrapping the fiber around the portion by circumferential winding, and the above-described structure is a means for solving the conventional problem.

【発明の作用】本発明の請求項1に係わる圧力容器の製
造方法では、圧力容器の内側形状に対応するマンドレル
に対して、両ドーム部における少なくとも開口部から軸
線方向の所定範囲には、ヘリカル巻きにより軸線に対す
る各々の巻き付け角度で繊維を巻き付けるので、一端側
の開口部と他端側の開口部とで直径が異なっていても、
双方の寸法差に何ら左右されることなく滑りの無い状態
で繊維の巻き付けが行われる。このとき、等張力ヘリカ
ル巻きでは、一端側の開口部の直径をD1、他端側の開
口部の直径をD2、円筒部の直径をDとすると、一端側
のドーム部に対する巻き付け角度はsin−1(D1/
D)になり、他端側のドーム部に対する巻き付け角度は
sin−1(D2/D)になる。すなわち、両開口部の
直径の相違により双方の巻き付け角度が異なるものとな
っている。そして、当該圧力容器の製造方法では、両ド
ーム部に対する繊維の巻き付けに連続して、両ドーム部
の所定範囲外である円筒部を含む中間部分には、一端側
ドーム部の巻き付け角度と他端側ドーム部の巻き付け角
度との間の範囲の巻き付け角度で繊維を巻き付ける。つ
まり、円筒部を含む中間部分には、一部あるいは全体に
おいて、巻き付け角度が一端側ドーム部の巻き付け角度
から他端側ドーム部の巻き付け角度に変化するように繊
維を滑らかに連続させて巻き付ける。このとき、繊維
は、両ドーム部で巻き付け角度が異なり、且つ両ドーム
部での巻き付け位置を最短距離で結ぶ測地線からずれた
軌跡で巻き付けられることとなるが、マンドレルにおけ
る巻き付け面の面直ベクトルと繊維の方向ベクトルとが
成す角度が直角といくらずれているかを求め、その角度
の正接と静止摩擦係数を比較することにより、滑るか否
かを判断することができるので、円筒部を含む中間部分
において、両ドーム部側での巻き付け角度の不整合を吸
収しつつ滑りの無い状態で巻き付けられる。本発明の請
求項2に係わる圧力容器の製造方法では、円筒部を含む
中間部分において、繊維の巻き付け角度を一端側ドーム
部の巻き付け角度から他端側ドーム部の巻き付け角度に
変化させるに際し、巻き付け角度を連続的に変化させて
繊維を巻き付けるので、巻き付け角度の変化量が部分的
に大きくなるのを防止して、一端側と他端側での巻き付
け角度の不整合を吸収しつつ繊維がより滑らかに巻き付
けられる。本発明の請求項3に係わる圧力容器の製造方
法では、円筒部を含む中間部分において、繊維の巻き付
け角度を一端側ドーム部の巻き付け角度から他端側ドー
ム部の巻き付け角度に変化させるに際し、いずれか一方
のドーム部に対する巻き付け角度で繊維を巻き付けると
共に、他方のドーム部側で巻き付け角度を変化させて繊
維を巻き付けるので、円筒部の多くの部分に対してヘリ
カル巻きによる一定の巻き付け角度での繊維の巻き付け
が成されると共に、一端側と他端側での巻き付け角度の
不整合を吸収しつつ繊維が滑らかに巻き付けられる。本
発明の請求項4に係わる圧力容器の製造方法では、円筒
部を含む中間部分において、繊維の巻き付け角度を一端
側ドーム部の巻き付け角度から他端側ドーム部の巻き付
け角度に変化させるに際し、両ドーム部側で巻き付け角
度を変化させて繊維を巻き付けると共に、両角度変化域
の間で巻き付け角度を一定にして繊維を巻き付けるの
で、円筒部の中間に対して一定の巻き付け角度での繊維
の巻き付けが行われると共に、一端側と他端側での巻き
付け角度の不整合を吸収しつつ繊維が滑らかに巻き付け
られる。本発明の請求項5に係わる圧力容器の製造方法
では、ドーム部の軸線方向の長さに対して少なくとも開
口部から50%の範囲において、ヘリカル巻きにより繊
維の巻き付けを行う。つまり、ヘリカル巻きを行う範囲
を50%よりも小さくすると、ドーム部における等張力
での繊維の巻き付けによる効果が損なわれる場合がある
ので、少なくとも50%とすることにより、等張力での
繊維の巻き付け状態を最低限確保しつつ、円筒部を含む
中間部分において一端側と他端側での巻き付け角度の不
整合を充分に吸収し得ることとなる。本発明の請求項6
に係わる圧力容器の製造方法では、両ドーム部および円
筒部に繊維を巻き付けた後、少なくとも円筒部に周巻き
により繊維を巻き付けることにより、両ドーム部に、開
口部の寸法差に左右されることなく滑りの無い状態で繊
維が巻き付けられると共に、円筒部を含む中間部分に、
一端側と他端側での巻き付け角度の不整合を吸収しつつ
繊維が滑らかに巻き付けられたうえで、繊維の周巻きに
よって少なくとも円筒部の周方向強度がより増大する。
According to the method for manufacturing a pressure vessel according to the first aspect of the present invention, the helical is disposed at least within a predetermined range in the axial direction from at least the openings in both dome portions with respect to the mandrel corresponding to the inner shape of the pressure vessel. Since the fiber is wound at each winding angle with respect to the axis by winding, even if the diameter is different between the opening on one end and the opening on the other end,
The winding of the fiber is performed without slipping without any influence from the dimensional difference between the two. At this time, in the equal tension helical winding, assuming that the diameter of the opening at one end is D1, the diameter of the opening at the other end is D2, and the diameter of the cylindrical portion is D, the winding angle with respect to the dome at one end is sin − 1 (D1 /
D), and the winding angle with respect to the dome portion on the other end side is sin −1 (D2 / D). That is, the winding angles of the two openings are different due to the difference in the diameter of the two openings. In the method for manufacturing the pressure vessel, the winding angle of the one-side dome portion and the other end portion of the intermediate portion including the cylindrical portion outside the predetermined range of the two dome portions are continuously formed after the winding of the fibers around the two dome portions. Wind the fiber at a wrap angle in the range between the wrap angle of the side dome. That is, the fibers are smoothly and continuously wound around the intermediate portion including the cylindrical portion such that the winding angle changes from the winding angle of the one-side dome portion to the winding angle of the other-side dome portion in part or in whole. At this time, the fiber is wound at a trajectory that is different from the geodesic line connecting the winding positions at the two dome portions at different winding angles and at the shortest distance between the winding positions at the two dome portions. It is possible to determine whether or not to slip by comparing the tangent of the angle and the coefficient of static friction by determining whether the angle formed between the fiber and the direction vector of the fiber is a right angle. The portion is wound without slipping while absorbing the mismatch of the winding angles on both dome portions. In the pressure vessel manufacturing method according to the second aspect of the present invention, in the intermediate portion including the cylindrical portion, the winding angle of the fiber is changed from the winding angle of the one-side dome portion to the winding angle of the other-side dome portion. Since the fiber is wound by continuously changing the angle, the amount of change in the winding angle is prevented from partially increasing, and the fiber is more absorbed while absorbing the mismatch of the winding angle at one end and the other end. Wraps smoothly. In the method for manufacturing a pressure vessel according to claim 3 of the present invention, when changing the winding angle of the fiber from the winding angle of the one-side dome portion to the winding angle of the other-side dome portion in the intermediate portion including the cylindrical portion, Since the fiber is wound at the winding angle with respect to one of the dome portions and the fiber is wound with the winding angle changed at the other dome portion side, the fiber is wound at a fixed winding angle by helical winding around many portions of the cylindrical portion. Is wound, and the fibers are smoothly wound while absorbing the mismatch of the winding angles at one end and the other end. In the method for manufacturing a pressure vessel according to claim 4 of the present invention, when changing the winding angle of the fiber from the winding angle of the one-side dome portion to the winding angle of the other-side dome portion in the intermediate portion including the cylindrical portion, The fiber is wound by changing the winding angle on the dome side, and the fiber is wound at a constant winding angle between both angle change areas, so that the fiber is wound at a fixed winding angle with respect to the middle of the cylindrical part. At the same time, the fibers are smoothly wound while absorbing the mismatch of the winding angle between the one end and the other end. In the method for manufacturing a pressure vessel according to claim 5 of the present invention, the fibers are wound by helical winding at least in a range of 50% from the opening with respect to the axial length of the dome. In other words, if the range of the helical winding is smaller than 50%, the effect of winding the fiber with equal tension in the dome portion may be impaired. It is possible to sufficiently absorb the mismatch of the winding angle between the one end and the other end in the intermediate portion including the cylindrical portion while keeping the state at a minimum. Claim 6 of the present invention
In the method for manufacturing a pressure vessel according to the above, after the fibers are wound around both the dome portion and the cylindrical portion, the fibers are wound around at least the cylindrical portion by circumferential winding, so that both the dome portions are affected by the dimensional difference between the openings. While the fiber is wound without slip without slipping, in the middle part including the cylindrical part,
The fibers are smoothly wound while absorbing the mismatch between the winding angles at the one end and the other end, and at least the circumferential strength of the cylindrical portion is further increased by the circumferential winding of the fibers.

【発明の効果】本発明の請求項1に係わる圧力容器の製
造方法によれば、円筒部の両端側に頂部に開口部を有す
るドーム部を備え且つ一端側と他端側とで開口部の直径
が異なる圧力容器をフィラメントワインディング法に基
づいて成形するに際し、両ドーム部には、各々の巻き付
け角度によるヘリカル巻きにより、開口部の寸法差に何
ら左右されることなく滑りの無い状態で繊維を良好に巻
き付けることができ、また、円筒部には、巻き付け角度
の変化量を部分的に過大にすることなく、両ドーム部に
対する巻き付け角度の不整合を吸収しつつ、とくに軸線
方向の充分な強度を確保し得る状態で繊維を滑らかに連
続させて滑りの無い状態で良好に巻き付けることがで
き、設計の自由度を著しく高めることができると共に、
高性能な圧力容器を得ることができる。本発明の請求項
2に係わる圧力容器の製造方法によれば、請求項1と同
様の効果を得ることができるうえに、とくに円筒部を含
む圧力容器の中間部分においては、巻き付け角度を連続
的に変化させることにより、両ドーム部に対する巻き付
け角度の不整合を吸収しつつ、巻き付け角度の変化量が
部分的に大きくなるのを防止して繊維をより滑らかに巻
き付けることができ、円筒部の軸線方向にわたって充分
な強度をほぼ均一に得ることができる。本発明の請求項
3に係わる圧力容器の製造方法によれば、請求項1と同
様の効果を得ることができるうえに、とくに円筒部を含
む圧力容器の中間部分においては、いずれか一方のドー
ム部に対する巻き付け角度で繊維を巻き付けるとともに
他方のドーム部側で巻き付け角度を変化させることによ
り、両ドーム部に対する巻き付け角度の不整合を吸収し
つつ、円筒部の多くの部分に対してヘリカル巻きによる
強度を得ることができる。さらに、繊維の角度変化域が
部分的(1箇所)なものとなることから、マンドレルや
繊維供給手段による巻き付け制御を一層容易にすること
ができると共に、円筒部の長さの変更に対する設計上の
変更点を最小にすることができる。本発明の請求項4に
係わる圧力容器の製造方法によれば、請求項1と同様の
効果を得ることができるうえに、とくに円筒部を含む圧
力容器の中間部分においては、両ドーム部側で巻き付け
角度を変化させて繊維を巻き付けると共に、両角度変化
域の間で巻き付け角度を一定にすることにより、両ドー
ム部に対する巻き付け角度の不整合を吸収しつつ、とく
に両角度変化域の間に対して一定の巻き付け角度による
強度を得ることができる。さらに、繊維の角度変化域が
部分的(2箇所)なものとなることから、マンドレルや
繊維供給手段による巻き付け制御を一層容易にすること
ができると共に、円筒部の長さの変更に対する設計上の
変更点を最小にすることができる。本発明の請求項5に
係わる圧力容器の製造方法によれば、請求項1〜4と同
様の効果を得ることができるうえに、ドーム部の軸線方
向の長さに対して少なくとも開口部から50%の範囲に
おいてヘリカル巻きによる繊維の巻き付けを行うことか
ら、ドーム部における等張力での繊維の巻き付け状態を
最低限確保しつつ、円筒部を含む中間部分において一端
側と他端側での巻き付け角度の不整合を充分に吸収する
ことができる。本発明の請求項6に係わる圧力容器の創
造方法によれば、請求項1〜5と同様の効果を得ること
ができるうえに、少なくとも円筒部に周巻きにより繊維
を巻き付けることから、少なくとも円筒部の周方向強度
をより増大させることができ、先に行った両ドーム部お
よび円筒部への繊維の巻き付けと相俟って軸線方向およ
び周方向に充分な強度を有する高性能の圧力容器を得る
ことができる。
According to the method for manufacturing a pressure vessel according to the first aspect of the present invention, a dome portion having an opening at the top is provided at both ends of the cylindrical portion, and the opening is formed at one end and the other end. When molding pressure vessels with different diameters based on the filament winding method, the fibers are wrapped around both domes by helical winding at their respective winding angles without slippage without being affected by any dimensional differences between the openings. It can be wound well, and the cylindrical part has sufficient strength, especially in the axial direction, while absorbing the mismatch of the winding angle with respect to both dome parts without partially increasing the amount of change in the winding angle. The fibers can be wrapped smoothly in a state where they can be secured and can be satisfactorily wound without slippage, and the degree of freedom in design can be significantly increased.
A high-performance pressure vessel can be obtained. According to the method for manufacturing a pressure vessel according to the second aspect of the present invention, the same effect as that of the first aspect can be obtained, and in particular, in the intermediate portion of the pressure vessel including the cylindrical portion, the winding angle is set to be continuous. By changing the winding angle, it is possible to absorb the inconsistency of the winding angle with respect to both the dome portions, prevent the change amount of the winding angle from being partially increased, and wind the fiber more smoothly. Sufficient strength can be obtained almost uniformly in all directions. According to the method for manufacturing a pressure vessel according to the third aspect of the present invention, the same effect as that of the first aspect can be obtained, and in addition, in the middle portion of the pressure vessel including the cylindrical portion, any one of the dome portions can be obtained. By winding the fiber at the winding angle with respect to the part and changing the winding angle on the other dome side, the strength of the helical winding on many parts of the cylindrical part while absorbing the mismatch of the winding angle with respect to both dome parts Can be obtained. Further, since the angle change region of the fiber is partial (one position), the winding control by the mandrel and the fiber supply means can be further facilitated, and the design for the change in the length of the cylindrical portion can be further improved. Changes can be minimized. According to the method for manufacturing a pressure vessel according to claim 4 of the present invention, the same effect as that of claim 1 can be obtained, and in addition, especially in the intermediate portion of the pressure vessel including the cylindrical portion, the both dome portions side By changing the winding angle and winding the fiber, and keeping the winding angle constant between the two angle change areas, while absorbing the mismatch of the winding angle with respect to both dome parts, especially between the two angle change areas Thus, strength at a constant winding angle can be obtained. Furthermore, since the angle change region of the fiber is partial (two places), the winding control by the mandrel and the fiber supply means can be further facilitated, and the design for the change in the length of the cylindrical portion can be further improved. Changes can be minimized. According to the method for manufacturing a pressure vessel according to claim 5 of the present invention, the same effect as in claims 1 to 4 can be obtained, and at least 50 mm from the opening with respect to the axial length of the dome. %, The wrapping of the fiber by helical winding is performed, so that the winding state of the fiber with equal tension in the dome portion is kept at a minimum, and the winding angle at one end and the other end in the intermediate portion including the cylindrical portion. Can be sufficiently absorbed. According to the method for creating a pressure vessel according to claim 6 of the present invention, the same effect as in claims 1 to 5 can be obtained, and at least the fiber is wound around at least the cylindrical portion. And a high-performance pressure vessel having sufficient strength in the axial direction and in the circumferential direction in combination with the previously wound fibers around the dome portion and the cylindrical portion. be able to.

【実施例】以下、図面に基づいて、本発明に係わる圧力
容器の製造方法を説明する。図1(b)に示す圧力容器
Aは、フィラメントワインディング法に基づいて成形し
た繊維強化プラスチック製のものであって、円筒部1の
両端側に等張力曲面を有するドーム部(鏡板部)2,3
を有すると共に、両ドーム部2,3の頂部に円形の開口
部4,5を有している。このとき、両開口部4,5は、
互いに異なる直径D1,D2を有している。上記の圧力
容器Aを成形するには、図1(a)に示すマンドレル1
0を使用する。このマンドレル10は、円筒部1の内側
形状に対応する円筒成形部11、および両ドーム部2,
3の内側形状に対応するドーム成形部12,13を有
し、両端側が各開口部4,5を成形する回転軸14,1
5により支持してあって、図示しない駆動手段により軸
線回りに回転駆動される。また、繊維(繊維束)Fは、
例えば予め樹脂を含浸させたロービングプリプレグであ
り、図示しない繊維供給装置にセットしてある。そし
て、マンドレル10を回転させると共に、繊維供給装置
をマンドレル10の軸線方向に往復移動させて、繊維F
をマンドレル10に巻き付けることとなるが、この際、
当該圧力容器の製造方法では、両ドーム部2,3(ドー
ム成形部12,13)における少なくとも開口部4,5
(回転軸14,15)から軸線方向の所定範囲には、ヘ
リカル巻きにより各々の巻き付け角度で繊維Fを巻き付
け、これに連続して両ドーム部2,3(ドーム成形部1
2,13)の所定範囲外である円筒部1(円筒成形部1
1)を含む中間部分には、一端側ドーム部2(ドーム成
形部12)の巻き付け角度と他端側ドーム部3(ドーム
成形部13)の巻き付け角度との間の範囲の巻き付け角
度で繊維Fを巻き付けて、圧力容器(プリフォーム)A
を成形する。すなわち、両ドーム部2,3においては、
ヘリカル巻きにより軸線に対する各々の巻き付け角度で
繊維Fを巻き付けるので、一端側の開口部4の直径D1
と他端側の開口部5の直径D2が異なっていても、双方
の寸法差に何ら左右されることなく滑りの無い状態で繊
維Fの巻き付けが行われる。このとき、ヘリカル巻きの
範囲は、ドーム部2,3の軸線方向の長さに対して少な
くとも開口部4,5から50%の範囲としている。これ
は、50%よりも小さくすると、ドーム部2,3におけ
る等張力での繊維Fの巻き付けによる効果が損なわれる
場合があり、少なくとも50%とすれば、等張力での繊
維Fの巻き付け状態が最低限確保されると共に、後述す
る巻き付け角度の不整合の吸収を充分に実現し得るから
である。また、等張力ヘリカル巻きでは、円筒部の直径
をDとすると、図1(c)に示すように、一端側のドー
ム部2に対する巻き付け角度α1がsin−1(D1/
D)になり、他端側のドーム部3に対する巻き付け角度
α2がsin−1(D2/D)になる。すなわち、両開
口部4,5の直径D1,D2の相違により双方の巻き付
け角度α1,α2が異なることとなる。そこで、当該圧
力容器の製造方法では、円筒部1を含む中間部分には、
巻き付け角度が一端側ドーム部2の巻き付け角度α1か
ら他端側ドーム部3の巻き付け角度α2に変化するよう
に繊維Fを滑らかに連続させて巻き付けるようにしてお
り、この実施例では、図1(c)に示すように、両ドー
ム部2,3側の2箇所の角度変化域B1,B2におい
て、巻き付け角度を変化させて繊維Fを巻き付けると共
に、両角度変化域B1,B2の間で巻き付け角度を一定
にして繊維Fを巻き付けている。このとき、繊維Fは、
両ドーム部2,3における巻き付け角度α1,α2が異
なり、且つ両ドーム部2,3での巻き付け位置(図1c
中のP,Q)を最短距離で結ぶ測地線Cからずれた軌跡
で巻き付けられるが、マンドレル10における巻き付け
面の面直ベクトルと繊維Fの方向ベクトルとが成す角度
が直角といくらずれているかを求め、その角度の正接と
静止摩擦係数を比較することにより、滑るか否かを判断
することができる。そして、円筒部1および両ドーム部
2,3に対して繊維Fを滑らせることなく巻き付けるに
際しては、パソコンにより各々の巻き付け角度α1,α
2や角度変化域B1,B2を容易に設定することがで
き、その設定に基づいて、マンドレルや繊維供給装置を
含むフィラメントワインディング装置を数値制御するこ
とが容易である。このように、上記実施例の圧力容器の
製造方法では、両ドーム部2,3には、各々の巻き付け
角度α1,α2によるヘリカル巻きにより、滑りの無い
状態で繊維Fが良好に巻き付けられることとなり、例え
ば、円筒部に対する巻き付け角度を実質的に55度とす
る従来の製造方法に比べると、円筒部1には、巻き付け
角度の変化量を部分的に過大にすることなく、両ドーム
部2,3に対する巻き付け角度α1,α2の不整合を吸
収しつつ、とくに軸線方向の充分な強度を確保し得る状
態で繊維Fを滑らかに連続させることができ、設計の自
由度も著しく高いものとなる。なお、上記の如くフィラ
メントワインディング法に基づいて得た圧力容器(プリ
フォーム)Aは、その後、加熱および加圧による硬化成
形が成され、マンドレル10から取り外した後、必要に
応じて適宜の機械加工が施される。図2および図3は、
本発明に係わる圧力容器の製造方法の他の実施例を説明
する図である。図2に示す実施例では、とくに円筒部1
を含む中間部分に、巻き付け角度を連続的に変化させて
繊維Fを巻き付けている。この場合には、円筒部1の全
体が角度変化域となるので、巻き付け角度の変化量が部
分的に大きくなることがなく、一端側と他端側での巻き
付け角度α1,α2の不整合を吸収しつつ繊維Fがより
滑らかに巻き付けられることとなり、円筒部1の軸線方
向にわたってほぼ均一な強度が得られる。図3に示す実
施例では、とくに円筒部1を含む中間部分に、他端側ド
ーム部3に対する巻き付け角度α2で繊維Fを巻き付け
ると共に、一端側ドーム部2側の1箇所の角度変化域B
で巻き付け角度を変化させて繊維Fを巻き付けている。
なお、各巻き付け角度α1,α2の大きさによっては、
角度変化域Bを他端側ドーム部3側に1設けることも当
然あり得る。この場合にあっても、一端側と他端側での
巻き付け角度α1,α2の不整合を吸収しつつ繊維Fを
滑らかに巻き付けることができる。さらに、本発明に係
わる圧力容器の製造方法では、上記各実施例で説明した
ように、両ドーム部2,3および円筒部1に繊維Fを巻
き付けた後、少なくとも円筒部1に周巻きにより繊維F
を巻き付けることができる。この場合には、少なくとも
円筒部1の周方向強度がより高められ、先に行った両ド
ーム部2,3および円筒部1への繊維Fの巻き付けと相
俟って軸線方向および周方向に充分な強度を有する高性
能の圧力容器Aが得られることになる。なお、本発明に
係わる圧力容器の製造方法において、ヘリカル巻きを行
う範囲は、両ドーム部2,3における少なくとも開口部
4,5から軸線方向の所定範囲であるから、角度変化域
をドーム部あるいはドーム部と円筒部にわたる部分に設
けることもできる。また、とくに円筒部1を含む中間部
分への繊維Fの巻き付けの際には、上記各実施例で説明
した巻き付けを組み合わせて用いることも可能であり、
これに周巻きを加えることも可能である。図4は、本発
明に係わる製造方法に基づいて得た圧力容器の具体例を
説明する図であり、図示の圧力容器はロケットのモータ
ケースRである。この場合、強化繊維としては炭素繊維
が使用され、両端側の開口部4,5は金属製あるいは複
合材料製のボス24,25で形成されている。図中左側
の一端側ドーム部2における小径ボス24にはイグナイ
タが取り付けられ、図中右側の他端側ドーム部3におけ
る大径ボス25にはロケットノズルが取り付けられる。
これらのボス24,25は、繊維の巻き付けを行う際
に、図1(a)に示すマンドレル10に予め取り付けて
おくことができる。また、モータケースRは、内面に、
図示しない固体推進薬との間に介装される断熱材26が
設けてあり、外側には、両端部に継手用のアタッチリン
グ27,28を取り付けたフランジ29が設けてある。
より具体的には、一端側ドーム部2における小径開口部
4の直径D1は250mm、他端側ドーム部3における
大径開口部5の直径D2は320mm、円筒部1の直径
Dは530mm、軸線方向の全長は2000mmであ
る。この場合、一端側ドーム部2と円筒部1との接合部
分において、ヘリカル巻きによる繊維の巻き付け角度α
1は28度であり、他端側ドーム部3と円筒部1との接
合部分において、ヘリカル巻きによる繊維の巻き付け角
度α2は37度である。そして、円筒部1においては、
他端側ドーム部3での巻き付け角度α2をベースとし、
一端側ドーム部3からおおむね2/3の範囲で一端側の
巻き付け角度α2に滑らかに変化させた。このとき、円
筒部1における巻き付け角度は軸線に対して20〜30
度の範囲になることから、周方向強度を補うために繊維
の周巻きを追加した。その後、加熱および加圧による硬
化成形を施してモータケースRを得た。上記の如く製造
したモータケースRは、必要な機械加工を施したうえ
で、寸法や外観検査を行ったところ、巻き付けに起因す
る不具合は全く発生しておらず、CFRP製圧力容器と
して良好なものであった。また、放射線検査において
も、内部に層間の割れやボイド(隙間)等の欠陥は発見
されず、成形性がきわめて良好であることが確認でき
た。さらに、モータケースRは、内部に水圧を負荷する
耐圧試験において、設計制限圧力(例えば16MPa)
の1.2倍の水圧を段階的に負荷し、各部位の歪や変位
を測定したところ、FRP製圧力容器の特徴である樹脂
割れに起因すると思われる音が発生したものの、全体破
壊や圧力低下といった異常は見られなかった。そしてさ
らに、除圧後に寸法や外観の検査を行ったが、樹脂割れ
以外の異常は全く見られず、充分な耐圧性能を有するこ
とが確認できた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a pressure vessel according to the present invention will be described below with reference to the drawings. The pressure vessel A shown in FIG. 1B is made of fiber-reinforced plastic molded based on a filament winding method, and has a dome portion (end plate portion) 2 having an equal tension curved surface on both ends of a cylindrical portion 1. 3
And circular openings 4 and 5 at the tops of both dome portions 2 and 3. At this time, both openings 4 and 5 are
They have different diameters D1 and D2. To mold the pressure vessel A, a mandrel 1 shown in FIG.
Use 0. The mandrel 10 has a cylindrical molded portion 11 corresponding to the inner shape of the cylindrical portion 1 and both dome portions 2.
3 having dome forming portions 12 and 13 corresponding to the inner shape of the rotary shaft 3, and having both ends formed with openings 4 and 5.
5 and is driven to rotate about an axis by driving means (not shown). The fiber (fiber bundle) F is
For example, it is a roving prepreg previously impregnated with a resin, and is set in a fiber supply device (not shown). Then, the mandrel 10 is rotated, and the fiber supply device is reciprocated in the axial direction of the mandrel 10 so that the fiber F
Is wound around the mandrel 10.
In the method for manufacturing the pressure vessel, at least the opening portions 4 and 5 in both the dome portions 2 and 3 (dome forming portions 12 and 13) are provided.
The fibers F are wound in a predetermined range in the axial direction from the (rotating shafts 14 and 15) by helical winding at respective winding angles, and the two dome portions 2 and 3 (dome forming portion 1) are continuously wound.
2, 1) outside the predetermined range (cylindrical molded part 1)
In the intermediate portion including (1), the fiber F has a winding angle in a range between the winding angle of the one end dome portion 2 (dome forming portion 12) and the winding angle of the other end dome portion 3 (dome forming portion 13). And pressure vessel (preform) A
Is molded. That is, in both dome parts 2 and 3,
Since the fiber F is wound at each winding angle with respect to the axis by helical winding, the diameter D1 of the opening 4 at one end is
Even if the diameter D2 of the opening 5 at the other end differs from that of the other end, the winding of the fiber F is performed in a state in which there is no slippage regardless of the dimensional difference between the two. At this time, the range of the helical winding is 50% at least from the openings 4, 5 to the axial length of the dome portions 2, 3. If this is smaller than 50%, the effect of winding the fiber F with equal tension in the dome portions 2 and 3 may be impaired, and if at least 50%, the winding state of the fiber F with equal tension is reduced. This is because it is possible to secure the minimum, and sufficiently realize the winding angle mismatch described later. Further, in the case of the equal tension helical winding, assuming that the diameter of the cylindrical portion is D, as shown in FIG. 1C, the winding angle α1 with respect to the dome portion 2 at one end is sin −1 (D1 / D1).
D), and the winding angle α2 with respect to the dome portion 3 on the other end side becomes sin −1 (D2 / D). That is, the winding angles α1 and α2 of the two openings 4 and 5 are different due to the difference in the diameters D1 and D2. Therefore, in the pressure vessel manufacturing method, the intermediate portion including the cylindrical portion 1 includes:
The fiber F is smoothly and continuously wound so that the winding angle changes from the winding angle α1 of the one-side dome portion 2 to the winding angle α2 of the other-side dome portion 3, and in this embodiment, FIG. As shown in c), in two angle change areas B1 and B2 on both dome portions 2 and 3, the winding angle is changed to wind the fiber F, and the winding angle is set between the two angle change areas B1 and B2. And the fiber F is wound. At this time, the fiber F
The winding angles α1 and α2 of the two dome portions 2 and 3 are different, and the winding positions of the two dome portions 2 and 3 (FIG. 1C)
Are wound with a locus deviated from the geodesic line C connecting the P and Q in the shortest distance, and it is determined whether the angle formed by the plane vector of the winding surface of the mandrel 10 and the direction vector of the fiber F is a right angle or not. By determining the tangent of the angle and the coefficient of static friction, it is possible to determine whether or not the vehicle slides. When the fiber F is wound around the cylindrical portion 1 and both dome portions 2 and 3 without slipping, the winding angles α1, α are set by a personal computer.
2 and the angle change regions B1 and B2 can be easily set, and based on the settings, it is easy to numerically control the filament winding device including the mandrel and the fiber supply device. As described above, in the pressure vessel manufacturing method of the above-described embodiment, the fibers F are satisfactorily wound around the dome portions 2 and 3 without slipping by the helical winding at the winding angles α1 and α2. For example, as compared with the conventional manufacturing method in which the winding angle with respect to the cylindrical portion is substantially 55 degrees, the cylindrical portion 1 can be formed without changing the amount of change in the winding angle with both the dome portions 2 and 2 partially. While absorbing the mismatch between the winding angles α1 and α2 with respect to the fiber No. 3, the fibers F can be smoothly continued in a state where sufficient strength can be secured, particularly in the axial direction, and the degree of freedom in design is significantly increased. The pressure vessel (preform) A obtained on the basis of the filament winding method as described above is thereafter subjected to curing and molding by heating and pressurizing, and after being detached from the mandrel 10, appropriately machined as necessary. Is applied. FIG. 2 and FIG.
It is a figure explaining other examples of the manufacturing method of the pressure vessel concerning the present invention. In the embodiment shown in FIG.
The fiber F is wound around the intermediate portion including the above while continuously changing the winding angle. In this case, since the entire cylindrical portion 1 is an angle change region, the amount of change in the winding angle does not partially increase, and the mismatch between the winding angles α1 and α2 at one end and the other end is reduced. The fibers F are wound more smoothly while being absorbed, and a substantially uniform strength can be obtained in the axial direction of the cylindrical portion 1. In the embodiment shown in FIG. 3, the fiber F is wound around the intermediate portion including the cylindrical portion 1 at a winding angle α2 with respect to the other end dome portion 3, and the angle change region B at one location on the one end dome portion 2 side
The fiber F is wound by changing the winding angle.
In addition, depending on the magnitude of each winding angle α1, α2,
It is naturally possible to provide one angle change region B on the other end side dome portion 3 side. Even in this case, the fiber F can be smoothly wound while absorbing the mismatch between the winding angles α1 and α2 at one end and the other end. Further, in the method for manufacturing a pressure vessel according to the present invention, as described in each of the above embodiments, after the fiber F is wound around both the dome portions 2 and 3 and the cylindrical portion 1, the fiber is wound around at least the cylindrical portion 1. F
Can be wound. In this case, at least the strength in the circumferential direction of the cylindrical portion 1 is further increased, and in combination with the winding of the fiber F around the dome portions 2 and 3 and the cylindrical portion 1 previously performed, the axial direction and the circumferential direction are sufficient. A high-performance pressure vessel A having a high strength can be obtained. In the method for manufacturing the pressure vessel according to the present invention, the range in which the helical winding is performed is a predetermined range in the axial direction from at least the openings 4 and 5 in both the dome portions 2 and 3, so that the angle change area is changed to the dome portion or the dome portion. It can also be provided at a portion between the dome portion and the cylindrical portion. In addition, when winding the fiber F around the intermediate portion including the cylindrical portion 1 in particular, it is also possible to use a combination of the winding described in each of the above embodiments,
It is also possible to add a circumferential winding to this. FIG. 4 is a diagram illustrating a specific example of a pressure vessel obtained based on the manufacturing method according to the present invention. The illustrated pressure vessel is a motor case R of a rocket. In this case, carbon fibers are used as the reinforcing fibers, and the openings 4 and 5 at both ends are formed by bosses 24 and 25 made of metal or a composite material. An igniter is attached to the small-diameter boss 24 in the one end dome portion 2 on the left side in the drawing, and a rocket nozzle is attached to the large-diameter boss 25 in the other end dome portion 3 on the right side in the drawing.
These bosses 24 and 25 can be attached in advance to the mandrel 10 shown in FIG. 1A when winding the fibers. The motor case R has an inner surface
A heat insulating material 26 is provided between the solid propellant (not shown) and a flange 29 to which attachment rings 27 and 28 for joints are attached at both ends.
More specifically, the diameter D1 of the small diameter opening 4 in the one end dome portion 2 is 250 mm, the diameter D2 of the large diameter opening 5 in the other end dome portion 3 is 320 mm, the diameter D of the cylindrical portion 1 is 530 mm, and the axis is The total length in the direction is 2000 mm. In this case, at the joint between the one end side dome portion 2 and the cylindrical portion 1, the winding angle α of the fiber by helical winding
1 is 28 degrees, and the wrapping angle α2 of the fiber by helical winding at the junction between the other end side dome portion 3 and the cylindrical portion 1 is 37 degrees. And in the cylindrical part 1,
Based on the winding angle α2 at the other end side dome part 3,
The winding angle α2 on the one end side was smoothly changed within a range of about / from the one end side dome portion 3. At this time, the winding angle of the cylindrical portion 1 is 20 to 30 with respect to the axis.
Since the degree is within the range, a circumferential winding of the fiber was added to supplement the circumferential strength. After that, a hardening molding by heating and pressing was performed to obtain a motor case R. The motor case R manufactured as described above was subjected to the necessary machining and then inspected for dimensions and appearance. As a result, no problems caused by winding occurred, and the motor case R was a good CFRP pressure vessel. Met. Further, in the radiation inspection, no defects such as cracks or voids (gaps) between layers were found inside, and it was confirmed that the moldability was extremely good. Further, the motor case R has a design limit pressure (for example, 16 MPa) in a pressure resistance test in which a water pressure is loaded inside.
When the strain and displacement of each part were measured stepwise by applying 1.2 times the water pressure of the above, the sound which seems to be caused by the resin crack which is the characteristic of the FRP pressure vessel was generated, but the total destruction and pressure No abnormalities such as a decrease were observed. Further, after the pressure was removed, the dimensions and appearance were inspected. No abnormality other than resin cracking was observed at all, and it was confirmed that the film had sufficient pressure resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる圧力容器の製造方法の一実施例
を説明する図であって、マンドレルを説明する側面図
(a)、圧力容器を説明する断面図(b)、および円筒
部に対する繊維の巻き付け要領を説明する円筒部の展開
図(c)である。
FIG. 1 is a view for explaining an embodiment of a method for manufacturing a pressure vessel according to the present invention, which is a side view (a) for explaining a mandrel, a sectional view (b) for explaining a pressure vessel, and a cylindrical portion. It is a development view (c) of a cylindrical part explaining a winding procedure of a fiber.

【図2】本発明に係わる圧力容器の製造方法の他の実施
例において、円筒部に対する繊維の巻き付け要領を説明
する円筒部の展開図である。
FIG. 2 is a developed view of a cylindrical portion illustrating a procedure for winding fibers around the cylindrical portion in another embodiment of the method for manufacturing a pressure vessel according to the present invention.

【図3】本発明に係わる圧力容器の製造方法のさらに他
の実施例において、円筒部に対する繊維の巻き付け要領
を説明する円筒部の展開図である。
FIG. 3 is a development view of a cylindrical portion illustrating a procedure for winding fibers around the cylindrical portion in still another embodiment of the method for manufacturing a pressure vessel according to the present invention.

【図4】本発明に係わる圧力容器の製造方法に基づいて
製造したロケットのモータケースを説明する片側省略断
面図である。
FIG. 4 is a partially omitted cross-sectional view illustrating a motor case of a rocket manufactured based on the method for manufacturing a pressure vessel according to the present invention.

【図5】ヘリカル巻きを説明する側面図である。FIG. 5 is a side view illustrating helical winding.

【図6】インプレーン巻きを説明する側面図である。FIG. 6 is a side view illustrating in-plane winding.

【図7】従来における圧力容器の製造方法を説明する側
面図である。
FIG. 7 is a side view illustrating a conventional method for manufacturing a pressure vessel.

【符号の説明】[Explanation of symbols]

A 圧力容器 B B1 B2 角度変化域 F 繊維 R モータケース(圧力容器) 1 円筒部 2 3 ドーム部 4 5 開口部 10 マンドレル α1 一端側ドーム部の巻き付け角度 α2 他端側ドーム部の巻き付け角度 A Pressure vessel B B1 B2 Angle change area F Fiber R Motor case (pressure vessel) 1 Cylindrical part 2 3 Dome part 4 5 Opening part 10 Mandrel α1 Winding angle of one end dome α2 Winding angle of other end dome part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E072 AA10 BA04 CA01 3J046 AA01 BA01 BA04 BD11 CA04 EA02 EA10 4F205 AD16 AH31 AH55 HA02 HA23 HA33 HA37 HB01 HC02 HF05 HL02 HL12 HL13 HL14  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 3E072 AA10 BA04 CA01 3J046 AA01 BA01 BA04 BD11 CA04 EA02 EA10 4F205 AD16 AH31 AH55 HA02 HA23 HA33 HA37 HB01 HC02 HF05 HL02 HL12 HL13 HL14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円筒部の両端側に頂部に開口部を有する
ドーム部を備え且つ一端側と他端側とで開口部の直径が
異なる圧力容器をフィラメントワインディング法に基づ
いて成形するに際し、圧力容器の内側形状に対応するマ
ンドレルに対して、両ドーム部における少なくとも開口
部から軸線方向の所定範囲には、ヘリカル巻きにより各
々の巻き付け角度で繊維を巻き付け、これに連続して両
ドーム部の所定範囲外である円筒部を含む中間部分に
は、一端側ドーム部の巻き付け角度と他端側ドーム部の
巻き付け角度との間の範囲の巻き付け角度で繊維を巻き
付けて圧力容器を成形することを特徴とする圧力容器の
製造方法。
1. A pressure vessel having a dome portion having an opening at the top on both ends of a cylindrical portion and having different diameters of the opening at one end and the other end based on a filament winding method. With respect to the mandrel corresponding to the inner shape of the container, the fibers are wound by helical winding at respective winding angles in at least a predetermined range in the axial direction from at least the openings in the two dome portions, and the two dome portions are continuously wound with the fibers. The pressure vessel is formed by winding fibers around the intermediate portion including the cylindrical portion that is out of the range at a winding angle in a range between the winding angle of the one-side dome portion and the winding angle of the other-side dome portion. Pressure vessel manufacturing method.
【請求項2】 円筒部を含む中間部分には、巻き付け角
度を連続的に変化させて繊維を巻き付けることを特徴と
する請求項1に記載の圧力容器の製造方法。
2. The method according to claim 1, wherein the fiber is wound around the intermediate portion including the cylindrical portion while continuously changing the winding angle.
【請求項3】 円筒部を含む中間部分には、いずれか一
方のドーム部に対する巻き付け角度で繊維を巻き付ける
と共に、他方のドーム部側で巻き付け角度を変化させて
繊維を巻き付けることを特徴とする請求項1に記載の圧
力容器の製造方法。
3. A fiber is wound around an intermediate portion including a cylindrical portion at a winding angle with respect to one of the dome portions, and the fiber is wound by changing the winding angle at the other dome portion side. Item 2. A method for producing a pressure vessel according to Item 1.
【請求項4】 円筒部を含む中間部分には、両ドーム部
側で巻き付け角度を変化させて繊維を巻き付けると共
に、両角度変化域の間で巻き付け角度を一定にして繊維
を巻き付けることを特徴とする請求項1に記載の圧力容
器の製造方法。
4. A fiber is wound around an intermediate portion including a cylindrical portion by changing a winding angle on both dome portions, and a fiber is wound at a constant winding angle between both angle change regions. The method for producing a pressure vessel according to claim 1.
【請求項5】 ヘリカル巻きの範囲が、ドーム部の軸線
方向の長さに対して少なくとも開口部から50%の範囲
であることを特徴とする請求項1〜4のいずれかに記載
の圧力容器の製造方法。
5. The pressure vessel according to claim 1, wherein the range of the helical winding is at least 50% of the axial length of the dome from the opening. Manufacturing method.
【請求項6】 両ドーム部および円筒部に繊維を巻き付
けた後、少なくとも円筒部に周巻きにより繊維を巻き付
けて圧力容器を成形することを特徴とする請求項1〜5
のいずれかに記載の圧力容器の製造方法。
6. The pressure vessel is formed by winding fibers around both the dome portion and the cylindrical portion, and then winding the fibers around at least the cylindrical portion by circumferential winding.
The method for producing a pressure vessel according to any one of the above.
JP2000074335A 2000-03-16 2000-03-16 Method of manufacturing pressure vessel Pending JP2001263590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074335A JP2001263590A (en) 2000-03-16 2000-03-16 Method of manufacturing pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074335A JP2001263590A (en) 2000-03-16 2000-03-16 Method of manufacturing pressure vessel

Publications (1)

Publication Number Publication Date
JP2001263590A true JP2001263590A (en) 2001-09-26

Family

ID=18592409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074335A Pending JP2001263590A (en) 2000-03-16 2000-03-16 Method of manufacturing pressure vessel

Country Status (1)

Country Link
JP (1) JP2001263590A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152614A (en) * 2005-12-01 2007-06-21 Mitsubishi Heavy Ind Ltd Tape sticking route setting method, program, and tape sticking device
JP2012040736A (en) * 2010-08-18 2012-03-01 Toyoda Gosei Co Ltd Filament winding apparatus
JP2014534395A (en) * 2011-10-21 2014-12-18 ダイムラー・アクチェンゲゼルシャフトDaimler AG Pressure gas tank and manufacturing method thereof
WO2018096905A1 (en) * 2016-11-24 2018-05-31 東レ株式会社 Method for manufacturing pressure container
JP2019190297A (en) * 2018-04-19 2019-10-31 株式会社Ihiエアロスペース Split-type motor case and its manufacturing method
CN112895503A (en) * 2021-01-25 2021-06-04 湖北三江航天江北机械工程有限公司 Method for forming small-diameter large-opening solid rocket engine shell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10119138A (en) * 1996-10-21 1998-05-12 Mitsubishi Heavy Ind Ltd Production of filament wounding pressure vessel
JPH11101397A (en) * 1997-09-26 1999-04-13 Mitsubishi Heavy Ind Ltd Pressure vessel of cylindrical shape with frp-made dome

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10119138A (en) * 1996-10-21 1998-05-12 Mitsubishi Heavy Ind Ltd Production of filament wounding pressure vessel
JPH11101397A (en) * 1997-09-26 1999-04-13 Mitsubishi Heavy Ind Ltd Pressure vessel of cylindrical shape with frp-made dome

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152614A (en) * 2005-12-01 2007-06-21 Mitsubishi Heavy Ind Ltd Tape sticking route setting method, program, and tape sticking device
JP4592573B2 (en) * 2005-12-01 2010-12-01 三菱重工業株式会社 Tape sticking route setting method and program, and tape sticking apparatus
JP2012040736A (en) * 2010-08-18 2012-03-01 Toyoda Gosei Co Ltd Filament winding apparatus
JP2014534395A (en) * 2011-10-21 2014-12-18 ダイムラー・アクチェンゲゼルシャフトDaimler AG Pressure gas tank and manufacturing method thereof
WO2018096905A1 (en) * 2016-11-24 2018-05-31 東レ株式会社 Method for manufacturing pressure container
JP2019190297A (en) * 2018-04-19 2019-10-31 株式会社Ihiエアロスペース Split-type motor case and its manufacturing method
CN112895503A (en) * 2021-01-25 2021-06-04 湖北三江航天江北机械工程有限公司 Method for forming small-diameter large-opening solid rocket engine shell
CN112895503B (en) * 2021-01-25 2022-07-08 湖北三江航天江北机械工程有限公司 Method for forming small-diameter large-opening solid rocket engine shell

Similar Documents

Publication Publication Date Title
US10022948B2 (en) Composite pipe and method of manufacture
US9486965B2 (en) Composite columnar structure having co-bonded reinforcement and fabrication method
US4272971A (en) Reinforced tubular structure
US3886024A (en) Thick-walled, fiber-reinforced composite structures and method of making same
US20090314785A1 (en) Damage and leakage barrier in all-composite pressure vessels and storage tanks
US6719165B2 (en) Apparatus and method for reinforcing a pressure vessel
US10457011B2 (en) Composite columnar structure having co-bonded reinforcement and fabrication method
JP2001263590A (en) Method of manufacturing pressure vessel
KR101509103B1 (en) Composite pipe, composite roller, composite pipe manufacturing method and composite roller manufacturing method using the composite pipe
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
US20190376543A1 (en) Composite joint assembly
JP2020138345A (en) Method for manufacturing tube body used for power transmission shaft
JPS63249628A (en) Fiber reinforced resin tubular body
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
JPH04201244A (en) Pipe structure made of fiber reinforced composite material
US4807531A (en) Contemporary composite polar boss
JPS6323019A (en) Connecting rod made of fiber-reinforced plastic and manufacture of it
JPS62288703A (en) Cylinder device
JP3745402B2 (en) Manufacturing method of pressure vessel
JPS61261035A (en) Manufacture of sandwich cylindrical material provided with hole and made of fiber reinforced plastics
WO2020174694A1 (en) Mandrel
JPH0788212A (en) Manufacture of golf club shaft
JP2020138364A (en) Method for manufacturing pipe body used in power transmission shaft
JP2652244B2 (en) Fiber reinforced resin tube with metal tube
JPS5845925A (en) Manufacture of frp pipe with thread

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100524