JPS61261035A - Manufacture of sandwich cylindrical material provided with hole and made of fiber reinforced plastics - Google Patents
Manufacture of sandwich cylindrical material provided with hole and made of fiber reinforced plasticsInfo
- Publication number
- JPS61261035A JPS61261035A JP60104575A JP10457585A JPS61261035A JP S61261035 A JPS61261035 A JP S61261035A JP 60104575 A JP60104575 A JP 60104575A JP 10457585 A JP10457585 A JP 10457585A JP S61261035 A JPS61261035 A JP S61261035A
- Authority
- JP
- Japan
- Prior art keywords
- skin
- core
- mold
- cylindrical body
- circumferential surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Moulding By Coating Moulds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、繊維強化プラスチックス(FRP)製サン
ドイッチ円筒体、中でも、シンタチック7オームのコア
層をFRPのスキン層で包んだサンドインチ円筒体の製
造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a sandwich cylinder made of fiber reinforced plastics (FRP), particularly a sandwich cylinder in which a syntactic 7 ohm core layer is wrapped with an FRP skin layer. Relating to a manufacturing method.
FRPを使用する目的は多様ではあるが最も大きな要素
は構造体の軽量化にある。しかし、強化繊維と樹脂マ)
IJソックスみから成るFRPの軽量化(こは限度が
ある。そこで、コア材として発泡体等の極めて比重の小
さな材料を、スキン材としては、強度、剛性に優れた材
料を選定し、これ等を貼合せた所謂サンドインチ構造が
考えられている。Although the purpose of using FRP is diverse, the most important factor is to reduce the weight of the structure. However, reinforcing fibers and resin ma)
Reducing the weight of FRP made of IJ socks (there is a limit to this. Therefore, we selected a material with extremely low specific gravity such as foam as the core material, and a material with excellent strength and rigidity as the skin material. A so-called sand-inch structure is being considered.
このサンドインチ構造体のコア材としては、一般的に、
金属、FRP、紙等で作られたハニカム構造体が剛性、
重量の見地から採用されるが、これは、例えば深海用構
造材と云った用途ではコア空隙部に浸水の恐れがあり、
実用的でない。The core material for this sand inch structure is generally
The honeycomb structure made of metal, FRP, paper, etc. is rigid,
It is adopted from the viewpoint of weight, but in applications such as deep-sea structural materials, there is a risk of water intrusion into the core cavity.
Not practical.
一方、ガラス、プラスチック等の微小中空体を樹脂マト
リックス中に均一に分散した首記のシンタチック7オー
ムは、■独立気泡であるため、樹脂マトリックスにき裂
を生じない限り空隙部への浸水がない、■圧縮強度が高
く強い側圧に耐える、■比較的低比重であると云った特
徴を有し、浮力体に必要な諸条件を満足している。On the other hand, the above-mentioned syntactic 7 ohm, in which microscopic hollow bodies made of glass, plastic, etc. are uniformly dispersed in a resin matrix, ■ has closed cells, so water will not enter the voids unless cracks occur in the resin matrix. It has the following characteristics: (1) it has high compressive strength and can withstand strong lateral pressure; (2) it has a relatively low specific gravity, and it satisfies the various conditions necessary for a buoyant body.
従って、深海潜水艇等の外郭構造材としては、FRPを
スキン層、シンタチック7オームをコア層としたサンド
イッチ円筒体が適切と考えられる。Therefore, a sandwich cylindrical body having a skin layer of FRP and a core layer of syntactic 7 ohm is considered to be appropriate as an outer structural material for a deep-sea submersible or the like.
ところが、シンタチックフォームは引張強度が低く(約
34/d )、かつ、熱膨張率が大きい(30XiO”
−’/℃)ため、FRP材と組合せた場合、硬゛化時の
熱残留応力によってフオームにき裂を生じ易く、製造性
に優れない。However, syntactic foam has a low tensile strength (approximately 34/d) and a high coefficient of thermal expansion (30XiO"
-'/°C), so when combined with FRP materials, the foam tends to crack due to thermal residual stress during hardening, resulting in poor manufacturability.
即ち、在来の製造方法では、先ず樹脂の含浸された繊維
をFW(フィラメントワインディング)法により巻付型
上に最適構成に巻付け、硬化し、得られた内層スキンを
巻付型よりも若干径の大きい加工型上に締め代を零とす
るか若干与えて移し変え、スキンの内径を拡張しっつ偏
肉を減らして真円状態に近づけるために外周を機械加工
する。That is, in the conventional manufacturing method, resin-impregnated fibers are first wound onto a winding die in an optimal configuration using the FW (filament winding) method, and then cured, and the resulting inner layer skin is slightly smaller than the winding die. The skin is transferred onto a processing mold with a large diameter with zero interference or a slight interference, and the inner diameter of the skin is expanded and the outer periphery is machined to reduce uneven thickness and bring it closer to a perfect circle.
この後、内層スキンを再び巻付型上に移して予め成形し
たシンタチックフォームのコア材のその外周面に接着剤
で貼付ける。Thereafter, the inner layer skin is transferred onto the wrapping mold again and attached to the outer circumferential surface of the preformed syntactic foam core material using an adhesive.
次に、内層スキンとコアの積層体を加工型上に移してコ
ア外周の機械加工にょる偏肉調整を行い、この上にFW
法により外層スキンを形成する。その後、最終的な外周
加工と長さ調整加工を行い製品とする。Next, the laminate of the inner skin and core is transferred onto a processing mold, the thickness unevenness is adjusted by machining the outer periphery of the core, and the FW
The outer skin is formed by the method. After that, final circumferential processing and length adjustment processing are performed to produce the product.
しかるに、この方法で問題となるのは、シンタチツクフ
オームの貼付後の加工型への挿入時、或いは機械加工時
に7オームに対してき裂が高い確率で発生すると云うこ
とである。However, a problem with this method is that there is a high probability that cracks will occur for 7 ohms when inserting the syntactic foam into a processing mold after pasting or during machining.
本発明者等は、その原因を検討した結果、次の結論に達
した。As a result of examining the cause, the present inventors reached the following conclusion.
即ち、加工型への挿入時には、通常、偏肉を除去する目
的から加工体の内径と等しいか又は若干大きい外径の加
工型を寒剤により予冷し、ここに加工体を挿入して常温
への復帰後に機械加工する「冷し嵌め」法が適用される
。この際の加工型は、フオーム加工後再度全体を冷却し
て加工体を取外すため、周方向の熱膨張係数が加工体よ
りも大である必要がある。That is, when inserting the workpiece into the processing mold, normally, in order to remove uneven thickness, a workpiece mold with an outer diameter equal to or slightly larger than the inner diameter of the workpiece is pre-cooled with a cryogen, and the workpiece is inserted into this mold and allowed to cool to room temperature. A ``cold fit'' method is applied, which involves machining after return. In this case, the processing mold needs to have a larger coefficient of thermal expansion in the circumferential direction than the workpiece, since the whole is cooled again after forming the form and the workpiece is removed.
この「冷し嵌め」法で加工型にFRPとシンタチツクフ
オームの積層円筒体を嵌める場合、例えば、FRPをC
FRP (炭素繊維強化プラスチックス)2m、7オ一
ム層を1111m厚さとしたときに型の冷却温度差を一
300°としても7オ一ム層には1.71’f/mJの
引張応力が働くのみで、特に加工時にき裂を生じること
はない。しかし、FRPとシンタチツクフオームとを接
着する接着MJ HAには、層の厚さを1調とした場合
において一300℃の温度差で約6.0Kiil/−の
引張応力が働く。これは接着剤の引張強度にほぼ等しい
。When fitting a laminated cylindrical body of FRP and sintered foam into a processing mold using this "cold fitting" method, for example,
When FRP (Carbon Fiber Reinforced Plastics) is 2m long and 7 ohm layer is 1111 m thick, the 7 ohm layer has a tensile stress of 1.71'f/mJ even if the mold cooling temperature difference is 1300 degrees. It only works and does not cause any cracks during processing. However, when the thickness of the layer is set to 1, a tensile stress of approximately 6.0 Kiil/- is applied to the adhesive MJ HA that adheres the FRP and the syntactic foam at a temperature difference of -300°C. This is approximately equal to the tensile strength of the adhesive.
従って、上記のき裂は主に接着剤に起因するもので、接
着剤のき裂が7オームに伝播し、同様に7オーム材にも
き裂が発生すると考えられる。Therefore, it is thought that the above cracks are mainly caused by the adhesive, and the cracks in the adhesive propagate to the 7 ohm material, and cracks also occur in the 7 ohm material.
そこで、本発明者等は更に検討を加え、機械加工のため
の冷し嵌めが可能で、かつ、7オームにき裂を生じない
成形方法について研究した結果、課題解決に有効な以下
の方法を発明するに到った。Therefore, the inventors of the present invention further investigated and researched a forming method that allows cold fitting for machining and does not cause cracks at 7 ohms.As a result, the following method was found to be effective in solving the problem. I came to invent it.
上述の課題を解決するこの発明の方法は2つあるので先
にその1つを述べる。There are two methods of the present invention to solve the above-mentioned problems, and one of them will be described first.
第1番目の方法は、第2図に示すように、先ず、巻付型
A上にFW法により予め樹脂を含浸した連続繊維を最適
構成に巻付けて硬化、成形し、FRPの内層スキン1を
得る。In the first method, as shown in Fig. 2, continuous fibers impregnated with resin in advance by the FW method are wound onto a winding die A in an optimal configuration, hardened and molded, and the inner layer skin 1 of FRP is formed. get.
次に、この内層スキン1を巻付型より外して巻付型より
も若干外径の大きい第3図の加工型B上に冷し嵌め法に
より移し変え、外表面の偏肉を除去すると共に既定寸法
まで機械加工する。Next, this inner layer skin 1 is removed from the wrapping mold and transferred onto the processing mold B shown in Fig. 3, which has a slightly larger outer diameter than the wrapping mold, by cold fitting, and the uneven thickness on the outer surface is removed. Machined to predetermined dimensions.
次いで、内層スキン1を加工型Bに嵌めたま\の状態下
でスキン1の外周面に予め成形したシンタチツクフオー
ムのコア材を接着し、スキン1とコア2の一体化された
第3図の積層体を得る。・コア2は1個の円筒体を挿入
接着するほか、コア材を周方向に分割した彎曲板、軸方
向に分割したリング、或いは周方向と軸方向の2方向に
分割した第5図に示す如き彎曲ブロック2aを貼り合わ
せてもよく、この後、コア2の外周面を機械加工して整
形する。Next, while the inner skin 1 is still fitted into the processing mold B, a pre-formed sintered foam core material is adhered to the outer peripheral surface of the skin 1, and the skin 1 and the core 2 are integrated as shown in FIG. Obtain a laminate.・For the core 2, in addition to inserting and gluing one cylindrical body, it can also be a curved plate divided in the circumferential direction, a ring divided in the axial direction, or divided into two directions, the circumferential direction and the axial direction, as shown in Fig. 5. The curved blocks 2a may be bonded together, and then the outer peripheral surface of the core 2 is shaped by machining.
コア2の外径寸法を整えた積層体は、加工型Bから一旦
外してj!!4図に示すように巻付型Aに移し、この上
にFRPの外層スキン3をFW法によって形成した後再
度加工型B上に戻して外1スキン3の外周を機械加工整
形するか或いは第3図の加工型上にそのまま残してコア
2の外周面上にFW法による外層スキン3の巻付は硬化
成形を行い、スキン3の外周面を機械加工する。この後
、加工型より外して機械加工により長さ寸法を整えると
、第1図に示すように、コア2の内外周面がスキン1.
3に覆われたサンドイッチ円筒体4が得られる。Once the outer diameter of the core 2 has been adjusted, the laminate is removed from the processing die B. ! As shown in Fig. 4, it is transferred to a winding die A, on which an FRP outer layer skin 3 is formed by the FW method, and then returned to the processing die B and the outer periphery of the outer skin 3 is machined or shaped. The outer skin 3 is left as it is on the processing mold shown in FIG. 3, and the outer skin 3 is wrapped around the outer peripheral surface of the core 2 by the FW method and then hardened and molded, and the outer peripheral surface of the skin 3 is machined. Thereafter, when the core 2 is removed from the processing mold and the length dimension is adjusted by machining, the inner and outer circumferential surfaces of the core 2 are adjusted to the skin 1 as shown in FIG.
A sandwich cylinder 4 covered with 3 is obtained.
以上の方法によると、外層スキン3の成形を型A、Hの
いずれの上において行っても、得られる製品が例えばス
キン111.3が各々CFRP2g、コア2が11mg
、トータル厚み15mmのサンドイッチ円筒体であると
仮定してそれに一300℃の温度差を与えた場合のシン
タチツク7ォームコアへの発生応力は、約2.4KF/
1rdの引張応力となり、コアはその応力には充分に耐
えるためき裂を生じない。この応力の緩和効果は、内層
スキン1を加工型上に嵌めてコア材を接着することによ
って生じる。According to the above method, regardless of whether the outer layer skin 3 is molded on molds A or H, the resulting products are, for example, skins 111.3 each weighing 2 g of CFRP, and core 2 containing 11 mg of CFRP.
Assuming that it is a sandwich cylindrical body with a total thickness of 15 mm, the stress generated in the syntactic 7 form core when a temperature difference of -300°C is applied to it is approximately 2.4 KF/
1rd tensile stress, and the core sufficiently withstands this stress, so no cracks occur. This stress relieving effect is produced by fitting the inner layer skin 1 onto a processing mold and adhering the core material.
次に、この発明のもう1つの方法を述べる。Next, another method of this invention will be described.
この2番目の方法は、巻付型から加工型に移した内層ス
キン1上にコア2を形成し、その外周面を機械加工する
迄の工程は先の方法と変わりがない。即ち、第2の方法
の第1の方法との相違点は、この後、内層スキン1とコ
ア2の積層体を加工型より脱型し、予めFW法により成
形した外層スキン3を積層体の外周に圧入接着する点に
のみある。In this second method, the steps from forming the core 2 on the inner layer skin 1 transferred from the winding mold to the processing mold and machining the outer circumferential surface are the same as the previous method. That is, the difference between the second method and the first method is that after this, the laminate of the inner skin 1 and core 2 is removed from the processing mold, and the outer skin 3, which has been molded in advance by the FW method, is inserted into the laminate. There is only a point where it is press-fitted to the outer periphery.
この場合、積層体の外径は外周スキン3の内径に等しい
か若干大きめとし、具体的には締め代を0〜0.37径
程度とし、両者の軸芯のズレを無くすことが好ましい。In this case, it is preferable that the outer diameter of the laminate be equal to or slightly larger than the inner diameter of the outer circumferential skin 3, and specifically, the interference should be about 0 to 0.37 diameter to eliminate misalignment of the axes of the two.
この第2の方法によれば、接着剤層に加わる温度を、接
着剤の硬化に必要な温度のみに止めることができるため
、コアに与える熱応力の影響が前者よりも更に小さくな
る。According to this second method, the temperature applied to the adhesive layer can be limited to only the temperature necessary for curing the adhesive, so that the influence of thermal stress on the core is even smaller than in the former method.
以上述べたように、本発明の方法は、巻付型上で成形さ
れた内層スキンを、巻付型よりも若干径の大きな加工型
上に移してその外周にコア材を接着するので、従来、接
着剤層に生じていた引張応力を大巾に緩和でき、従って
、接着剤の引張り応力に起因するシンタチツクファーム
コアへのキ裂の発生が無く、安定した円筒体の製作が可
能になる。As described above, in the method of the present invention, the inner layer skin formed on the wrapping die is transferred onto a processing die whose diameter is slightly larger than that of the wrapping die, and the core material is adhered to the outer periphery. , the tensile stress occurring in the adhesive layer can be greatly alleviated, and therefore, there is no cracking of the syntactic firm core due to the tensile stress of the adhesive, making it possible to manufacture a stable cylindrical body. .
コアのき裂防止効果は、外層スキンを圧入接着する第2
の方法の場合より顕著である。The crack prevention effect of the core is due to the second layer that press-fits the outer skin.
This is more noticeable than in the case of the above method.
また、内外のスキンとコアの外周面を各々機械加工して
整形するので偏肉が少なく、耐座屈性の高い円筒体を製
作できる。In addition, since the outer peripheral surfaces of the inner and outer skins and the core are individually machined and shaped, a cylindrical body with less uneven thickness and high buckling resistance can be manufactured.
第1図は、この発明の方法によって得られるサンドイッ
チ円筒体の断面図、第2図乃至第4図はこの発明の第1
の方法の工程図、第5図はコア材の一例を示す斜視図で
ある。
1・・・内層スキン、2・・・コア、3・・・外層スキ
ン、4・・・サンドイッチ円筒体、A・・・巻付型、B
・・・加工型。FIG. 1 is a sectional view of a sandwich cylinder obtained by the method of the present invention, and FIGS.
FIG. 5 is a perspective view showing an example of the core material. DESCRIPTION OF SYMBOLS 1... Inner layer skin, 2... Core, 3... Outer layer skin, 4... Sandwich cylindrical body, A... Wrap type, B
...Processing type.
Claims (5)
をシンタチツクフオームとするサンドイッチ円筒体の製
造方法において、巻付型上にフィラメントワインディン
グ法により内層スキンを成形後、このスキン材を巻付型
よりも外径の大きい加工型上に移して外周面を機械加工
整形し、次に、この表面に予め製作したコア材を接着後
コア材の外周面を機械加工成形し、しかる後、内層スキ
ンとコアの積層体を一旦巻付型に移すか又は加工型上に
そのまゝ残してコア上にフィラメントワインディング法
により外層スキン層を成形し、最終的にスキン層の外周
を機械加工整形することを特徴とする繊維強化プラスチ
ックス製サンドイッチ円筒体の製造方法。(1) In a method for manufacturing a sandwich cylindrical body in which the inner and outer skin layers are made of fiber-reinforced plastic and the core is made of sintered foam, the inner layer skin is formed on a wrapping mold by the filament winding method, and then this skin material is placed on the wrapping mold. The outer circumferential surface is machined onto a processing die with a larger outer diameter than the original skin. Next, a pre-fabricated core material is bonded to this surface, the outer circumferential surface of the core material is machined, and then the inner layer skin is formed. The laminate of the core and the core is once transferred to a winding mold or left as is on the processing mold, and an outer skin layer is formed on the core by a filament winding method, and finally the outer periphery of the skin layer is shaped by machining. A method for producing a sandwich cylindrical body made of fiber-reinforced plastics, characterized by:
向に分割成形して接着することを特徴とする特許請求の
範囲第(1)項記載の繊維強化プラスチックス製サンド
イッチ円筒体の製造方法。(2) The method for producing a sandwich cylindrical body made of fiber-reinforced plastics according to claim (1), characterized in that the core material is molded in sections in the circumferential direction, the axial direction, or both directions and then bonded.
をシンタチツクフオームとするサンドイッチ円筒体の製
造方法において、巻付型上にフィラメントワインディン
グ法により内層スキンを成形後、このスキン材を巻付型
よりも外径の大きい加工型上に移して外周面を機械加工
整形し、次に、この表面に予め製作したコア材を接着後
コア材の外周面を機械加工成形し、しかる後、内層スキ
ンとコアの積層体を加工型より脱型してその外周に予め
フィラメントワインディング法により成形した外層スキ
ンを圧入接着することを特徴とする繊維強化プラスチッ
クス製サンドイッチ円筒体の製造方法。(3) In a method for manufacturing a sandwich cylindrical body in which the inner and outer skin layers are made of fiber-reinforced plastic and the core is made of sintered foam, the inner layer skin is formed on a wrapping die by the filament winding method, and then this skin material is placed on the wrapping die. The outer circumferential surface is machined onto a processing die with a larger outer diameter than the original skin. Next, a pre-fabricated core material is bonded to this surface, the outer circumferential surface of the core material is machined, and then the inner layer skin is formed. A method for producing a sandwich cylindrical body made of fiber-reinforced plastics, characterized in that a laminate of a core and a core is removed from a processing mold, and an outer skin formed in advance by a filament winding method is press-fitted onto the outer periphery of the laminate.
向に分割成形して接着することを特徴とする特許請求の
範囲第(3)項記載の繊維強化プラスチックス製サンド
イッチ円筒体の製造方法。(4) The method for manufacturing a sandwich cylindrical body made of fiber-reinforced plastics according to claim (3), characterized in that the core material is molded in sections in the circumferential direction, the axial direction, or both directions and then bonded together.
又は若干大きめにすることを特徴とする特許請求の範囲
第(3)項又は第(4)項記載の繊維強化プラスチック
ス製サンドイッチ円筒体の製造方法。(5) A fiber-reinforced plastic sandwich according to claim (3) or (4), wherein the outer diameter of the laminate is equal to or slightly larger than the inner diameter of the outer layer skin. Method of manufacturing a cylindrical body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60104575A JPS61261035A (en) | 1985-05-14 | 1985-05-14 | Manufacture of sandwich cylindrical material provided with hole and made of fiber reinforced plastics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60104575A JPS61261035A (en) | 1985-05-14 | 1985-05-14 | Manufacture of sandwich cylindrical material provided with hole and made of fiber reinforced plastics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61261035A true JPS61261035A (en) | 1986-11-19 |
JPH0527539B2 JPH0527539B2 (en) | 1993-04-21 |
Family
ID=14384235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60104575A Granted JPS61261035A (en) | 1985-05-14 | 1985-05-14 | Manufacture of sandwich cylindrical material provided with hole and made of fiber reinforced plastics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61261035A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015504789A (en) * | 2011-12-14 | 2015-02-16 | ザ・ボーイング・カンパニーTheBoeing Company | Columnar composite structure with co-bonding reinforcement and fabrication method |
US10457011B2 (en) | 2011-11-03 | 2019-10-29 | The Boeing Company | Composite columnar structure having co-bonded reinforcement and fabrication method |
US10464656B2 (en) | 2011-11-03 | 2019-11-05 | The Boeing Company | Tubular composite strut having internal stiffening and method for making the same |
-
1985
- 1985-05-14 JP JP60104575A patent/JPS61261035A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9486965B2 (en) | 2011-11-03 | 2016-11-08 | The Boeing Company | Composite columnar structure having co-bonded reinforcement and fabrication method |
US10457011B2 (en) | 2011-11-03 | 2019-10-29 | The Boeing Company | Composite columnar structure having co-bonded reinforcement and fabrication method |
US10464656B2 (en) | 2011-11-03 | 2019-11-05 | The Boeing Company | Tubular composite strut having internal stiffening and method for making the same |
US11414171B2 (en) | 2011-11-03 | 2022-08-16 | The Boeing Company | Tubular composite strut having internal stiffening and method for making the same |
JP2015504789A (en) * | 2011-12-14 | 2015-02-16 | ザ・ボーイング・カンパニーTheBoeing Company | Columnar composite structure with co-bonding reinforcement and fabrication method |
Also Published As
Publication number | Publication date |
---|---|
JPH0527539B2 (en) | 1993-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4292101A (en) | Method of fabricating composite members | |
US3962393A (en) | Method for making a hollow laminated article | |
US3886024A (en) | Thick-walled, fiber-reinforced composite structures and method of making same | |
JPS6228742B2 (en) | ||
CN112829161B (en) | Foaming glue filling method for composite material honeycomb sandwich structure | |
JPS61261035A (en) | Manufacture of sandwich cylindrical material provided with hole and made of fiber reinforced plastics | |
JPH05193097A (en) | Gravure printing roll | |
US3509614A (en) | Method of making a filament wheel | |
CN111805938B (en) | Heat-proof bearing integrated structure for aircraft and forming method thereof | |
US3313664A (en) | Method for making laminated pressure vessels | |
US3295558A (en) | Filament wound structure | |
KR101744705B1 (en) | Hybrid Propeller Shaft and Method for Manufacturing Thereof | |
JPH04197740A (en) | Shaft-like member made by combining heat-expandable resin and carbon fiber and manufacture thereof | |
JPH0259328A (en) | Manufacture of frp container | |
US4807531A (en) | Contemporary composite polar boss | |
JPS635247B2 (en) | ||
KR100222276B1 (en) | Manufacturing method of composite pressure container | |
JPS6143537A (en) | Manufacture of cylindrical material made of fiber-reinforced plastics having heat insulation layer | |
JPH04201244A (en) | Pipe structure made of fiber reinforced composite material | |
JPS61242833A (en) | Manufacture of fiber-reinforced resin disc wheel | |
JPH0215377B2 (en) | ||
JPH0214895B2 (en) | ||
JP2022056047A (en) | Pressurizing jig, manufacturing method and manufacturing apparatus of fiber reinforced resin pipe using it | |
JP3014402B2 (en) | Fiber reinforced plastic pipe and method for producing the same | |
CN118082164A (en) | Composite honeycomb winding core mold and preparation method thereof |