JP3745402B2 - Manufacturing method of pressure vessel - Google Patents

Manufacturing method of pressure vessel Download PDF

Info

Publication number
JP3745402B2
JP3745402B2 JP07656995A JP7656995A JP3745402B2 JP 3745402 B2 JP3745402 B2 JP 3745402B2 JP 07656995 A JP07656995 A JP 07656995A JP 7656995 A JP7656995 A JP 7656995A JP 3745402 B2 JP3745402 B2 JP 3745402B2
Authority
JP
Japan
Prior art keywords
winding
pressure vessel
fiber
cylinder
dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07656995A
Other languages
Japanese (ja)
Other versions
JPH08270793A (en
Inventor
木 文 春 並
Original Assignee
株式会社アイ・エイチ・アイ・エアロスペース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・エイチ・アイ・エアロスペース filed Critical 株式会社アイ・エイチ・アイ・エアロスペース
Priority to JP07656995A priority Critical patent/JP3745402B2/en
Publication of JPH08270793A publication Critical patent/JPH08270793A/en
Application granted granted Critical
Publication of JP3745402B2 publication Critical patent/JP3745402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、フィラメントワインディング法に基づいて成形される繊維強化プラスチック製の圧力容器に関し、例えばロケットモータケースなどに使用される圧力容器に関するものである。
【0002】
【従来の技術】
フィラメントワインディング法に基づいて成形された繊維強化プラスチック製の圧力容器は、例えばロケットモータケースとして、平成4年9月30日に丸善が発行した『第2版・航空宇宙工学便覧』の第932頁および第933頁に記載されているものがある。
【0003】
このようなロケットモータケースは、ケース内形状に対応したマンドレルに熱硬化性樹脂を含浸させた繊維を巻き付けてプリフォームを形成し、このプリフォームに対して真空引きを行うとともに加熱することにより硬化成形される。このとき、モータケースの形状などに応じて、マンドレルに対する繊維の巻き付け方が選択される。
【0004】
図2に示すマンドレル100は、シリンダ部の両端側に断面略半円形のドーム部を有するロケットモータケースを成形するものであって、両端部を支持する回転軸101,102によりドーム部の中央に開口部が形成される。図示のマンドレル100における繊維Fの巻き付け方は、両側のドーム部を経て1周したときに軌跡の内側に平面を形成し、これを1周毎にずらせて連続的に巻き付けていくインプレーン巻である。このインプレーン巻は、例えば、AIAA JOURNAL VOL.1 NO.12の第2842〜2844頁に記載されている。
【0005】
また、その他の繊維の巻き付け方としては等張力曲面を構成するヘリカル巻があり、上記のようなシリンダ部を有するロケットモータケースを成形する場合、インプレーン巻ではシリンダ部における軸線に対する繊維の傾斜角が場所によって僅かに異なるのに対して、ヘリカル巻では同傾斜角が一定になる。これらの技術は、1979年11月の『東京大学宇宙航空研究所報告・第15巻・第4号』に記載されている。
【0006】
【発明が解決しようとする課題】
ところが、上記したような従来のロケットモータケース(圧力容器)の製造において、インプレーン巻は、球形もしくは略球形であるケースに好適であって、シリンダ部を有するケースの場合には、シリンダ部が長くなるにつれて軸線に対する繊維の傾斜角が小さくなり、これにより繊維のすべりが生じ易くなることから比較的シリンダ部の長いケースには不向きであり、また、ヘリカル巻は、シリンダ部の長いケースには対処し得るものの、一般的に用いられている等張力曲面形状を構成するための巻き付け条件によって結果的に両側の開口部の直径が等しいものに限られている。両端の開口部の直径を同一にせざるを得ない場合、小径側(通常はイグナイタ側)ではその開口部に取付けるボスが大型化し、重量増および部品コスト増に至ることとなる。
【0007】
このため、従来の圧力容器の製造における繊維の巻き付け方では、シリンダ部の長さや開口部の大きさなどの条件によっては成形が難しい場合があり、このような不具合を解決することが課題であった。
【0008】
【発明の目的】
本発明は、上記従来の課題に着目して成されたもので、シリンダ部の両端側にドーム部を有し且つ両ドーム部の中央に円形の開口部を有する圧力容器において、フィラメントワインディング法に基づいて、シリンダ部の長さや両側の開口部の寸法差に左右されることなく良好に圧力容器を成形することができる圧力容器の製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明に係わる圧力容器の製造方法は、シリンダ部の両端側にドーム部を有し且つ両ドーム部の中央に円形の開口部を有する圧力容器をフィラメントワインディング法に基づいて成形するに際し、圧力容器の内側形状に対応するマンドレルを用い、マンドレルのドーム成形部にはインプレーン巻により繊維を巻き付け、マンドレルのシリンダ成形部にはヘリカル巻により繊維を巻き付けることとし、各部位におけるインプレーン巻とヘリカル巻を繰り返しつつ連続して繊維を巻き付けて圧力容器を成形す構成としており、上記の構成を課題を解決するための手段としている。
【0010】
網目理論によるインプレーン巻が構成するシリンダ部は等張力曲面を構成するシリンダ部と全く同一ではないが、実際上、網目理論によるインプレーン巻のシリンダ部はほぼ巻角一定のヘリカル巻とみなして差支えないことに着目したものである。シリンダ部をヘリカル巻と仮定できれば、シリンダ部の長さ変更(巻角一定の下で)は任意であり、上記構成は実施可能であることが説明できる。当然両ドーム部はそれぞれが平面上にあるが、両ドーム部はねじれの位置にあることになる。
【0011】
【発明の作用】
本発明に係わる圧力容器の製造方法では、マンドレルのドーム成形部にはインプレーン巻により繊維を巻き付けることから、両側のドーム部の中央に形成される開口部の直径が異なる場合にも対処し得ることとなり、なお且つ、マンドレルのシリンダ成形部にはヘリカル巻により繊維を巻き付けることから、シリンダ部における軸線方向に対する繊維の傾斜角が一定になると共に、同シリンダ部が比較的長い場合であっても繊維のすべりを生じさせることなく巻き付けが行われる。
【0012】
【実施例】
以下、図面に基づいて、本発明に係わる圧力容器の製造方法を説明する。ここでは圧力容器としてロケットモータケースを例示している。
【0013】
図1(b)に示すロケットモータケースRは、フィラメントワインディング法に基づいて成形した繊維強化プラスチック製であって、シリンダ部1の両端側に断面略半円形のドーム部(鏡板部)2,3を有すると共に、両ドーム部2,3の中央に円形の開口部4,5を有している。
【0014】
両開口部4,5は、互いに異なる直径D1,D2を有しており、例えば固体推進薬の充填後、図1左側の小さい開口部4には閉塞部材あるいはイグナイタが取付けられ、図1右側の大きい開口部5には推進用のノズルが取付けられる。
【0015】
上記のロケットモータケースRを成形するには、図1(a)に示すマンドレル10を用いる。このマンドレル10は、シリンダ部1の内側形状に対応するシリンダ成形部11、および各ドーム部2,3の内側形状に対応するドーム成形部12,13を有し、両端側が各開口部4,5を成形する回転軸14,15により支持してある。
【0016】
そして、マンドレル10を回転させながら熱硬化性樹脂を含浸させた連続繊維Fを巻き付けることとなるが、この際、ドーム成形部12,13には軌跡の内側に平面S1,S2を形成するインプレーン巻により繊維Fを巻き付け、シリンダ成形部11にはヘリカル巻により繊維Fを巻き付け、各部位におけるインプレーン巻とヘリカル巻を繰り返しつつ連続して繊維Fを巻き付けてロケットモータケース(プリフォーム)Rを成形する。
【0017】
このような製造方法では、ドーム成形部部12,13にはインプレーン巻により繊維Fを巻き付けることから、各ドーム部2,3に形成する開口部4,5の直径D1,D2が異なっていても良好に巻き付けが行われ、また、シリンダ成形部11にはヘリカル巻により繊維Fを巻き付けることから、シリンダ部1における軸線方向に対する繊維Fの傾斜角αが一定になると共に、同シリンダ部1が比較的長い場合であっても繊維Fのすべりを生じさせることなく、良好な巻き付けが行われる。
【0018】
また、上記のロケットモータケース(プリフォーム)Rは、後に真空引きおよび加熱処理を施して硬化成形されることとなり、上記した繊維Fの巻き付けにより、繊維配向状態が良好で且つ所望の強度を備えたものとなる。
【0019】
なお、上記実施例では、ロケットモータケースを例示したが、他の圧力容器の製造にも適用することができ、シリンダ部の短い圧力容器や両側の開口部の直径が等しい圧力容器についても当然適用できる。
【0020】
【発明の効果】
以上説明してきたように、本発明に係わる圧力容器の製造方法によれば、シリンダ部の両端側にドーム部を有し且つ両ドーム部の中央に円形の開口部を有する圧力容器において、フィラメントワインディング法に基づいて、シリンダ部の長さや両側の開口部の寸法差に左右されることなく良好に圧力容器を成形することができ、とくに、比較的シリンダ部が長いものや両側の開口部の直径が異なるものについてもきわめて良好に成形することができ、シリンダ部、ドーム部および開口部を有する圧力容器の成形性を著しく高めることができる。
【図面の簡単な説明】
【図1】本発明に係わる圧力容器の製造方法において、マンドレルに対する繊維の巻き付け要領を説明する側面図(a)および圧力容器としてのロケットモータケースを説明する断面図(b)である。
【図2】インプレーン巻による繊維の巻き付け要領を説明する側面図である。
【符号の説明】
F 繊維
R ロケットモータケース(圧力容器)
1 シリンダ部
2 3 ドーム部
4 5 開口部
10 マンドレル
11 シリンダ成形部
12 13 ドーム成形部
[0001]
[Industrial application fields]
The present invention relates to a pressure vessel made of fiber reinforced plastic molded based on a filament winding method, for example, a pressure vessel used for a rocket motor case or the like.
[0002]
[Prior art]
The pressure vessel made of fiber reinforced plastic molded based on the filament winding method is, for example, rocket motor case, page 932 of "Second Edition: Aerospace Engineering Handbook" issued by Maruzen on September 30, 1992. And on page 933.
[0003]
Such a rocket motor case is formed by winding a fiber impregnated with a thermosetting resin around a mandrel corresponding to the inner shape of the case to form a preform, and evacuating and heating the preform. Molded. At this time, a method of winding the fiber around the mandrel is selected according to the shape of the motor case.
[0004]
A mandrel 100 shown in FIG. 2 forms a rocket motor case having a dome portion having a substantially semicircular cross section at both ends of a cylinder portion, and is formed at the center of the dome portion by rotating shafts 101 and 102 that support both end portions. An opening is formed. The method of winding the fiber F in the illustrated mandrel 100 is an in-plane winding in which a flat surface is formed on the inside of the trajectory when it goes around once through the dome portions on both sides, and this is shifted continuously every turn. is there. This in-plane winding is, for example, AIAA JOURNAL VOL. 1 NO. 12 pages 2842-2844.
[0005]
As another method of winding the fiber, there is a helical winding that constitutes an isotonic curved surface. When forming a rocket motor case having the cylinder portion as described above, in the in-plane winding, the inclination angle of the fiber with respect to the axis in the cylinder portion Is slightly different from place to place, whereas the same angle of inclination is constant in helical winding. These technologies are described in the November 1979 report of the Institute of Space and Aeronautics, University of Tokyo, Vol. 15, No. 4.
[0006]
[Problems to be solved by the invention]
However, in the manufacture of the conventional rocket motor case (pressure vessel) as described above, the in-plane winding is suitable for a spherical or substantially spherical case. In the case of a case having a cylinder portion, the cylinder portion is As the length increases, the angle of inclination of the fiber with respect to the axis becomes smaller, which makes the fiber slip more likely to occur. Therefore, it is not suitable for a case with a relatively long cylinder, and helical winding is not suitable for a case with a long cylinder. Although it can be dealt with, the diameters of the openings on both sides are limited to the same due to the winding conditions for constructing the isotonic curved surface in general use. When the diameters of the openings at both ends must be the same, on the small diameter side (usually the igniter side), the boss attached to the opening becomes large, resulting in an increase in weight and cost of parts.
[0007]
For this reason, in the conventional method of winding a fiber in the production of a pressure vessel, molding may be difficult depending on conditions such as the length of the cylinder part and the size of the opening, and it is an issue to solve such problems. It was.
[0008]
OBJECT OF THE INVENTION
The present invention has been made in view of the above problems, in a pressure vessel having a circular opening at the center of and both the dome portion has a de-over arm portions on both ends of the cylinder portion, the filament winding It is an object of the present invention to provide a method of manufacturing a pressure vessel that can satisfactorily mold the pressure vessel without being affected by the length of the cylinder portion or the dimensional difference between the opening portions on both sides.
[0009]
[Means for Solving the Problems]
In the production method of the pressure vessel according to the present invention is molded based on the pressure vessel having a circular opening at the center of and both the dome portion has a de-over arm portions on both ends of the cylinder portion to the filament winding method, using a mandrel corresponding to the inner shape of the pressure vessel, wrapping the fibers by in-plane winding the dome shaped portion of the mandrel, the cylinder forming part of the mandrel and Rukoto wound fibers by helical winding, in-plane winding at each site The pressure vessel is formed by continuously winding fibers while repeating helical winding, and the above configuration is used as a means for solving the problems.
[0010]
The cylinder part that the in-plane winding according to the mesh theory constitutes is not exactly the same as the cylinder part that constitutes the isotonic curved surface, but in practice the cylinder part of the in-plane winding according to the mesh theory is regarded as a helical winding with a substantially constant winding angle. It focuses on the fact that there is no problem. If it can be assumed that the cylinder portion is helically wound, it can be explained that the length of the cylinder portion can be changed (under a constant winding angle) and the above configuration can be implemented. Naturally, both dome portions are on a plane, but both dome portions are in a twisted position.
[0011]
[Effects of the Invention]
In the method for manufacturing a pressure vessel according to the present invention, fibers are wound around the dome forming portion of the mandrel by in-plane winding, so that it is possible to cope with a case where the diameters of the openings formed at the centers of the dome portions on both sides are different. In addition, since the fiber is wound around the cylinder forming part of the mandrel by helical winding, the inclination angle of the fiber with respect to the axial direction in the cylinder part is constant, and the cylinder part is relatively long. Winding is performed without causing fiber slip.
[0012]
【Example】
Hereinafter, a method for manufacturing a pressure vessel according to the present invention will be described based on the drawings. Here, a rocket motor case is illustrated as the pressure vessel.
[0013]
The rocket motor case R shown in FIG. 1 (b) is made of fiber reinforced plastic molded based on the filament winding method, and has dome portions (end plate portions) 2, 3 having substantially semicircular cross sections at both ends of the cylinder portion 1. And circular openings 4 and 5 at the center of both dome portions 2 and 3.
[0014]
Both openings 4 and 5 have different diameters D1 and D2. For example, after filling with a solid propellant, a closing member or an igniter is attached to the small opening 4 on the left side of FIG. A propelling nozzle is attached to the large opening 5.
[0015]
To form the rocket motor case R, a mandrel 10 shown in FIG. The mandrel 10 has a cylinder forming portion 11 corresponding to the inner shape of the cylinder portion 1 and dome forming portions 12 and 13 corresponding to the inner shapes of the dome portions 2 and 3, and the opening portions 4 and 5 at both ends. Is supported by rotating shafts 14 and 15 for forming the.
[0016]
Then, the continuous fiber F impregnated with the thermosetting resin is wound while the mandrel 10 is rotated. At this time, the planes S1 and S2 are formed on the inner side of the trajectory in the dome forming portions 12 and 13. The fiber F is wound by winding, the fiber F is wound around the cylinder forming portion 11 by helical winding, and the fiber F is continuously wound while repeating the in-plane winding and the helical winding at each portion, and the rocket motor case (preform) R is wound. Mold.
[0017]
In such a manufacturing method, since the fiber F is wound around the dome forming portions 12 and 13 by in-plane winding, the diameters D1 and D2 of the openings 4 and 5 formed in the dome portions 2 and 3 are different. In addition, since the fiber F is wound around the cylinder molding portion 11 by helical winding, the inclination angle α of the fiber F with respect to the axial direction in the cylinder portion 1 becomes constant, and the cylinder portion 1 Even if it is relatively long, good winding is performed without causing the fiber F to slip.
[0018]
In addition, the rocket motor case (preform) R is subjected to evacuation and heat treatment later to be cured and molded, and by winding the fiber F described above, the fiber orientation state is good and has a desired strength. It will be.
[0019]
In the above embodiment, the rocket motor case is exemplified, but it can also be applied to the manufacture of other pressure vessels, and is naturally applicable to pressure vessels having a short cylinder part and pressure vessels having the same opening diameter on both sides. it can.
[0020]
【The invention's effect】
As has been described, according to the manufacturing method of the pressure vessel according to the present invention, in a pressure vessel with a circular opening in the center of and both the dome portion has a de-over arm portions on both ends of the cylinder portion, Based on the filament winding method, pressure vessels can be molded well without being affected by the length of the cylinder part or the dimensional difference between the opening parts on both sides, especially those with relatively long cylinder parts or opening parts on both sides. Those having different diameters can be molded very well, and the moldability of the pressure vessel having the cylinder part, the dome part and the opening part can be remarkably improved.
[Brief description of the drawings]
1A and 1B are a side view for explaining a fiber winding procedure around a mandrel and a cross-sectional view for explaining a rocket motor case as a pressure vessel in a pressure vessel manufacturing method according to the present invention.
FIG. 2 is a side view for explaining a fiber winding procedure by in-plane winding.
[Explanation of symbols]
F Fiber R Rocket motor case (pressure vessel)
1 Cylinder part 2 3 Dome part 4 5 Opening part
10 Mandrels
11 Cylinder molding part
12 13 Dome forming part

Claims (1)

シリンダ部の両端側にドーム部を有し且つ両ドーム部の中央に円形の開口部を有する圧力容器をフィラメントワインディング法に基づいて成形するに際し、圧力容器の内側形状に対応するマンドレルを用い、マンドレルのドーム成形部にはインプレーン巻により繊維を巻き付け、マンドレルのシリンダ成形部にはヘリカル巻により繊維を巻き付けることとし、各部位におけるインプレーン巻とヘリカル巻を繰り返しつつ連続して繊維を巻き付けて圧力容器を成形することを特徴とする圧力容器の製造方法。Upon forming the basis of the pressure vessel with a circular opening in the center of and both dome portions on both end sides have a de over arm portions of the cylinder portion to the filament winding method, using a mandrel corresponding to the inner shape of the pressure vessel , wound fibers by in-plane winding the dome shaped portion of the mandrel, the cylinder forming part of the mandrel and Rukoto wound fibers by helical winding, the fibers are continuously being repeated in-plane winding and helical winding at each site A method for manufacturing a pressure vessel, characterized by forming a pressure vessel by winding .
JP07656995A 1995-03-31 1995-03-31 Manufacturing method of pressure vessel Expired - Fee Related JP3745402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07656995A JP3745402B2 (en) 1995-03-31 1995-03-31 Manufacturing method of pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07656995A JP3745402B2 (en) 1995-03-31 1995-03-31 Manufacturing method of pressure vessel

Publications (2)

Publication Number Publication Date
JPH08270793A JPH08270793A (en) 1996-10-15
JP3745402B2 true JP3745402B2 (en) 2006-02-15

Family

ID=13608870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07656995A Expired - Fee Related JP3745402B2 (en) 1995-03-31 1995-03-31 Manufacturing method of pressure vessel

Country Status (1)

Country Link
JP (1) JP3745402B2 (en)

Also Published As

Publication number Publication date
JPH08270793A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
US6820654B2 (en) High performance composite tubular structures
US5830400A (en) Method of manufacturing a hollow structure for storing pressurized fluids
AU2001266906A1 (en) High performance composite tubular structures
JPS6292833A (en) Manufacture of bent continuous fiber reinforced resin tube
TW202116536A (en) Method for producing a positive-locking load application for rod-shaped fiber composite structures, and the design thereof
JP2008536024A (en) Applicable blade
JPH11101397A (en) Pressure vessel of cylindrical shape with frp-made dome
KR101509103B1 (en) Composite pipe, composite roller, composite pipe manufacturing method and composite roller manufacturing method using the composite pipe
US20230175547A1 (en) Method for manufacturing by molding elongate and hollow workpieces made from composite material, molding device for implementing the method and workpieces obtained
KR940003722B1 (en) Forming method for pressure container
JP2009052612A (en) Fiber-reinforced resin gear
JP3745402B2 (en) Manufacturing method of pressure vessel
JPH10119138A (en) Production of filament wounding pressure vessel
US6403179B1 (en) Fiberglass boom and method of making same
GB2222653A (en) Hollow tubular structures of fibre reinforced plastics material and method for their production
US3436289A (en) Method of making a corrugated tube of fiber-reinforced plastic material
JP2001263590A (en) Method of manufacturing pressure vessel
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
JP2000013117A (en) Light weight three-dimensional waveguide
RU2180948C1 (en) Method of manufacture of pressure cylinder
JPH0214894B2 (en)
JPH06278671A (en) Fiber-reinforced thermosetting resin pipe for bicycle frame and its manufacture
WO2021186734A1 (en) Tube intermediate and tube production method
JPH04356147A (en) Production of fishing rod
JPS6112326A (en) Steering wheel and its preparation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees