JP2020138364A - Method for manufacturing pipe body used in power transmission shaft - Google Patents

Method for manufacturing pipe body used in power transmission shaft Download PDF

Info

Publication number
JP2020138364A
JP2020138364A JP2019033976A JP2019033976A JP2020138364A JP 2020138364 A JP2020138364 A JP 2020138364A JP 2019033976 A JP2019033976 A JP 2019033976A JP 2019033976 A JP2019033976 A JP 2019033976A JP 2020138364 A JP2020138364 A JP 2020138364A
Authority
JP
Japan
Prior art keywords
manufacturing
tubular body
power transmission
transmission shaft
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2019033976A
Other languages
Japanese (ja)
Inventor
一希 大田
Kazuki Ota
一希 大田
貴博 中山
Takahiro Nakayama
貴博 中山
森 健一
Kenichi Mori
健一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2019033976A priority Critical patent/JP2020138364A/en
Publication of JP2020138364A publication Critical patent/JP2020138364A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a method for manufacturing a pipe body used in a power transmission shaft without using a mandrel.SOLUTION: A method for manufacturing a pipe body 102 that is made of a fiber-reinforced plastic and is used in a power transmission shaft 101 includes: a base material manufacturing step of manufacturing a plurality of base materials 2 extending in a shaft direction; a cylindrical body manufacturing step of combining the plurality of base materials 2 to manufacture a cylindrical body 12; and a winding step of winding a continuous fiber impregnated with a resin on the outer peripheral surface of the cylindrical body 12.SELECTED DRAWING: Figure 6

Description

本発明は、動力伝達軸に用いられる管体の製造方法に関する。 The present invention relates to a method for manufacturing a tubular body used for a power transmission shaft.

車両に搭載される動力伝達軸(プロペラシャフト)は、車両の前後方向に延在する管体を備え、この管体により原動機で発生し変速機で減速された動力を終減速装置に伝達している。
このような動力伝達軸に用いられる管体として、繊維強化プラスチックで形成されたものがある。繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法としては、例えば、熱硬化性樹脂を含浸した連続繊維をマンドレルに何重にも巻き付けて筒状の成形体を形成する。その後、成形体を加熱し樹脂を硬化させ、筒状の管体が形成される。その後、硬化した管体の端部の開口からマンドレルを引き抜き、製造工程が終了する(下記特許文献1参照)。
The power transmission shaft (propeller shaft) mounted on the vehicle is provided with a pipe body extending in the front-rear direction of the vehicle, and the power generated by the prime mover and decelerated by the transmission is transmitted to the final reduction gear by this pipe body. There is.
As a tube body used for such a power transmission shaft, there is a tube body made of fiber reinforced plastic. As a method for manufacturing a tube body made of fiber reinforced plastic and used for a power transmission shaft, for example, continuous fibers impregnated with a thermosetting resin are wound around a mandrel in multiple layers to form a tubular molded body. After that, the molded body is heated to cure the resin, and a tubular tube body is formed. Then, the mandrel is pulled out from the opening at the end of the hardened tube, and the manufacturing process is completed (see Patent Document 1 below).

特開平3−265738号公報Japanese Unexamined Patent Publication No. 3-265738

ところで、管体の形状に関し、近年、両端部よりも中央部の方が径方向外側に膨らんだいわゆる樽形状(バレル形状)とすることが研究されている。
しかしながら、樽形状のマンドレルを用いて上記形状の動力伝達軸を形成しようとすると、マンドレルの中央部が外側に膨らみ、管体の開口を通過できず、管体からマンドレルを引き抜くことができない。よって、マンドレルを用いることなく、管体を製造できる新規な製造方法が望まれている。
By the way, regarding the shape of the tubular body, in recent years, it has been studied to make the central portion bulge outward in the radial direction rather than the both end portions, so-called barrel shape (barrel shape).
However, when an attempt is made to form a power transmission shaft having the above-mentioned shape using a barrel-shaped mandrel, the central portion of the mandrel bulges outward and cannot pass through the opening of the tube body, and the mandrel cannot be pulled out from the tube body. Therefore, there is a demand for a new manufacturing method capable of manufacturing a tube without using a mandrel.

本発明は、このような課題を解決するために創作されたものであり、マンドレルを用いることなく管体を製造できる動力伝達軸に用いられる管体の製造方法を提供することを目的とする。 The present invention has been created to solve such a problem, and an object of the present invention is to provide a method for manufacturing a tube body used for a power transmission shaft capable of manufacturing a tube body without using a mandrel.

前記課題を解決するため、本発明は、繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法であって、軸方向に延在する基材を複数製造する基材製造工程と、前記複数の基材を組み合わせて筒体を製造する筒体製造工程と、前記筒体の外周面に樹脂を含浸した連続繊維を巻き付ける巻き付け工程と、を備えることを特徴とする。 In order to solve the above problems, the present invention is a method for manufacturing a tube body made of fiber reinforced plastic and used for a power transmission shaft, which comprises a base material manufacturing process for manufacturing a plurality of base materials extending in the axial direction. It is characterized by including a tubular body manufacturing step of manufacturing a tubular body by combining the plurality of base materials, and a winding step of winding continuous fibers impregnated with a resin around the outer peripheral surface of the tubular body.

本発明によれば、マンドレルを用いることなく動力伝達軸に用いられる管体を製造することができる。 According to the present invention, it is possible to manufacture a tube body used for a power transmission shaft without using a mandrel.

動力伝達軸を側面視した側面図である。It is a side view which looked at the power transmission shaft from the side. 管体の本体部を軸線方向に切った断面図である。It is sectional drawing which cut the main body part of a tube body in the axial direction. 第一実施形態に係る管体の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the pipe body which concerns on 1st Embodiment. 第一実施形態に係る管体の製造工程において、基材製造工程を示す図である。It is a figure which shows the base material manufacturing process in the manufacturing process of the tube body which concerns on 1st Embodiment. 第一実施形態に係る管体の製造工程において、筒体製造工程により製造された筒体の側面図である。It is a side view of the tubular body manufactured by the tubular body manufacturing process in the manufacturing process of the tubular body which concerns on 1st Embodiment. 第一実施形態に係る管体の製造工程において、巻き付け工程を示す図である。It is a figure which shows the winding process in the manufacturing process of the tube body which concerns on 1st Embodiment. 第二実施形態に係る管体の製造工程において、筒体製造工程により製造された筒体の側面図である。It is a side view of the tubular body manufactured by the tubular body manufacturing process in the manufacturing process of the tubular body which concerns on 2nd Embodiment. 第二実施形態に係る管体の製造工程において、巻き付け工程を示す図である。It is a figure which shows the winding process in the manufacturing process of the tube body which concerns on 2nd Embodiment. 第三実施形態に係る管体の製造工程において、筒体製造工程により製造された筒体の前端側を示す一部断面図である。It is a partial sectional view which shows the front end side of the tubular body manufactured by the tubular body manufacturing process in the manufacturing process of the tubular body which concerns on 3rd Embodiment. 第四実施形態に係る管体の製造工程において、筒体製造工程により製造された筒体の後部を示す側面図である。It is a side view which shows the rear part of the tubular body manufactured by the tubular body manufacturing process in the manufacturing process of the tubular body which concerns on 4th Embodiment.

次に、各実施形態における動力伝達軸に用いられる管体の製造方法について、図面を参照しながら説明する。各実施形態で共通する技術的要素には、共通の符号を付し、説明を省略する。最初に各製造方法で製造される管体を備えた動力伝達軸について説明する。 Next, a method of manufacturing a tube body used for the power transmission shaft in each embodiment will be described with reference to the drawings. The technical elements common to each embodiment are designated by a common reference numeral, and the description thereof will be omitted. First, a power transmission shaft having a tube body manufactured by each manufacturing method will be described.

[動力伝達軸]
図1に示すように、動力伝達軸101は、FF(Front−engine Front−drive)ベースの四輪駆動車に搭載されるプロペラシャフトである。
動力伝達軸101は、車両の前後方向に延在する略円筒状の管体102と、管体102の前端に接合するカルダンジョイントのスタブヨーク103と、管体102の後端に接合する等速ジョイントのスタブシャフト104と、を備えている。
スタブヨーク103は、車体の前部に搭載された変速機と管体102とを連結する連結部材である。スタブシャフト104は、車体の後部に搭載された終減速装置と管体102とを連結する連結部材である。
動力伝達軸101は、変速機から動力(トルク)が伝達されると軸線O1回りに回転し、その動力を終減速装置に伝達する。
[Power transmission shaft]
As shown in FIG. 1, the power transmission shaft 101 is a propeller shaft mounted on an FF (Front-engine Front-drive) -based four-wheel drive vehicle.
The power transmission shaft 101 includes a substantially cylindrical pipe body 102 extending in the front-rear direction of the vehicle, a cardan joint stub yoke 103 joined to the front end of the pipe body 102, and a constant velocity joint joined to the rear end of the pipe body 102. The stub shaft 104 is provided.
The stub yoke 103 is a connecting member that connects the transmission mounted on the front portion of the vehicle body and the pipe body 102. The stub shaft 104 is a connecting member that connects the final speed reducing device mounted on the rear portion of the vehicle body and the pipe body 102.
When power (torque) is transmitted from the transmission, the power transmission shaft 101 rotates around the axis O1 and transmits the power to the final speed reducer.

管体102は、炭素繊維強化プラスチック(CFRP)により形成されている。
管体102の内部において、軸線O1回りに巻回された繊維からなる繊維層と、軸線O1方向に延在する繊維からなる繊維層と、が積層している。このため、管体102は、機械的強度が高く、かつ、軸線O1方向に高弾性化している。
また、周方向に配向する繊維としてPAN系(Polyacrylonitrile)繊維が好ましく、軸線O1方向に配向する繊維としてピッチ繊維が好ましい。
なお、本発明の管体102において繊維強化プラスチックに使用される強化繊維は、炭素繊維に限られず、ガラス繊維やアラミド繊維であってもよい。
管体102は、本体部110と、本体部110の前側に配置された第一接続部120と、本体部110の後側に配置された第二接続部130と、本体部110と第二接続部130との間に位置する傾斜部140と、を備えている。
The tubular body 102 is made of carbon fiber reinforced plastic (CFRP).
Inside the tubular body 102, a fiber layer made of fibers wound around the axis O1 and a fiber layer made of fibers extending in the axis O1 direction are laminated. Therefore, the tubular body 102 has high mechanical strength and is highly elastic in the axis O1 direction.
Further, PAN-based (Polyacrylonitrile) fibers are preferable as the fibers oriented in the circumferential direction, and pitch fibers are preferable as the fibers oriented in the axis O1 direction.
The reinforcing fibers used for the fiber reinforced plastic in the tubular body 102 of the present invention are not limited to carbon fibers, but may be glass fibers or aramid fibers.
The tubular body 102 includes a main body 110, a first connection 120 arranged on the front side of the main body 110, a second connection 130 arranged on the rear side of the main body 110, and a second connection with the main body 110. It is provided with an inclined portion 140 located between the portions 130.

なお、図2以降の図面においては、管体102の形状を分かり易くするため、管体102の形状を誇張して描写している。
図2に示すように、本体部110の前端部111には、第一接続部120が連続し、本体部110の後端部112には、傾斜部140が連続している。
In the drawings after FIG. 2, the shape of the pipe body 102 is exaggerated in order to make the shape of the pipe body 102 easy to understand.
As shown in FIG. 2, the first connecting portion 120 is continuous with the front end portion 111 of the main body portion 110, and the inclined portion 140 is continuous with the rear end portion 112 of the main body portion 110.

軸線O1を法線とする平面で本体部110を切った場合、本体部110の外周面114の断面形状及び内周面115の断面形状は、円形状となっている。 When the main body 110 is cut along a plane having the axis O1 as the normal, the cross-sectional shape of the outer peripheral surface 114 and the cross-sectional shape of the inner peripheral surface 115 of the main body 110 are circular.

本体部110の外径は、中央部113から両端部(前端部111及び後端部112)に向うに連れて縮径しており、中央部113の外径R1は、両端部(前端部111及び後端部112)の外径R2よりも大きい。
軸線O1に沿って本体部110を切った場合、本体部110の外周面114の断面形状及び内周面115の断面形状は、緩やかな曲線を描き、中央部113が外側に向けて突出する円弧状となっている。よって、本体部110の外形は、中央部113が径方向外側に膨らむ樽形状(バレル形状)となっている。
また、本体部110の内径も、本体部110の中央部113から両端部(前端部111及び後端部112)に向うに連れて縮径している。
また、その断面形状において、本体部110の板厚は、両端部(前端部111及び後端部112)から中央部113に向うに連れて薄くなっており、中央部113の板厚T1は、両端部(前端部111及び後端部112)の板厚T2よりも薄い。
The outer diameter of the main body 110 is reduced from the central 113 toward both ends (front end 111 and rear end 112), and the outer diameter R1 of the central 113 is both ends (front end 111). And the outer diameter R2 of the rear end portion 112).
When the main body 110 is cut along the axis O1, the cross-sectional shape of the outer peripheral surface 114 and the cross-sectional shape of the inner peripheral surface 115 of the main body 110 draw a gentle curve, and the central portion 113 protrudes outward. It has an arc shape. Therefore, the outer shape of the main body 110 has a barrel shape (barrel shape) in which the central portion 113 bulges outward in the radial direction.
Further, the inner diameter of the main body 110 is also reduced from the central 113 of the main body 110 toward both ends (front end 111 and rear end 112).
Further, in the cross-sectional shape, the plate thickness of the main body portion 110 becomes thinner from both end portions (front end portion 111 and rear end portion 112) toward the central portion 113, and the plate thickness T1 of the central portion 113 is It is thinner than the plate thickness T2 at both ends (front end 111 and rear end 112).

図1に示すように、第一接続部120内には、スタブヨーク103のシャフト部103aが嵌め込まれている。シャフト部103aの外周面は、多角形状に形成されている。第一接続部120の内周面は、シャフト部103aの外周面に倣った多角形状に形成されている。このため、スタブヨーク103と管体102が互いに相対回転しないように構成されている。
第二接続部130内には、スタブシャフト104のシャフト部104aが嵌め込まれている。スタブシャフト104のシャフト部104aの外周面は、多角形状に形成されている。第二接続部130の内周面は、スタブシャフト104のシャフト部104aの外周面に倣った多角形状に形成されている。このため、管体102とスタブシャフト104とが互いに相対回転しないように構成されている。
As shown in FIG. 1, the shaft portion 103a of the stub yoke 103 is fitted in the first connecting portion 120. The outer peripheral surface of the shaft portion 103a is formed in a polygonal shape. The inner peripheral surface of the first connecting portion 120 is formed in a polygonal shape that follows the outer peripheral surface of the shaft portion 103a. Therefore, the stub yoke 103 and the tube body 102 are configured so as not to rotate relative to each other.
The shaft portion 104a of the stub shaft 104 is fitted in the second connecting portion 130. The outer peripheral surface of the shaft portion 104a of the stub shaft 104 is formed in a polygonal shape. The inner peripheral surface of the second connecting portion 130 is formed in a polygonal shape that follows the outer peripheral surface of the shaft portion 104a of the stub shaft 104. Therefore, the tube body 102 and the stub shaft 104 are configured so as not to rotate relative to each other.

傾斜部140の外径は、本体部110から第二接続部130に向かうに連れて次第に縮径し、円錐台形状となっている。傾斜部140の板厚は、第二接続部130側(後側)の端部から本体部110側(前側)の端部に向かうに連れて漸次薄くなっている。このため、傾斜部140のうち前端部の板厚が最も薄く、脆弱部を構成している。
よって、車両が前方から衝突されて管体102に衝突荷重が入力すると、軸線O1に対して傾斜する傾斜部140にせん断力が作用する。そして、傾斜部140に作用するせん断力が所定値を超えると、傾斜部140の前端部(脆弱部)が破損する。このため、車両衝突時、車体の前部に搭載されたエンジンや変速機は速やかに後退し、衝突エネルギーは車体の前部により吸収される。
The outer diameter of the inclined portion 140 gradually decreases from the main body portion 110 toward the second connecting portion 130, forming a truncated cone shape. The plate thickness of the inclined portion 140 gradually decreases from the end portion on the second connecting portion 130 side (rear side) toward the end portion on the main body portion 110 side (front side). Therefore, the thickness of the front end portion of the inclined portion 140 is the thinnest, forming a fragile portion.
Therefore, when the vehicle is collided from the front and a collision load is input to the pipe body 102, a shearing force acts on the inclined portion 140 that is inclined with respect to the axis O1. Then, when the shearing force acting on the inclined portion 140 exceeds a predetermined value, the front end portion (fragile portion) of the inclined portion 140 is damaged. Therefore, in the event of a vehicle collision, the engine and transmission mounted on the front part of the vehicle body quickly retract, and the collision energy is absorbed by the front part of the vehicle body.

上記管体102において、図2に示すように、曲げ応力が集中し易い本体部110の中央部113は、外径R1が大径に形成され、所定の曲げ強度を有している。一方で、曲げ応力が集中し難い本体部110の両端部(前端部111及び後端部112)は、外径R2が小径に形成され、軽量化している。また、本体部110の中央部113は、板厚T1が薄く軽量化している。よって、管体102は、中央部113の所定の曲げ剛性を確保しつつ本体部110が軽量化しており、曲げ一次共振点が向上している。 In the tubular body 102, as shown in FIG. 2, the central portion 113 of the main body portion 110 in which bending stress is easily concentrated has an outer diameter R1 formed to have a large diameter and has a predetermined bending strength. On the other hand, both ends (front end 111 and rear end 112) of the main body 110 where bending stress is difficult to concentrate are formed with a small outer diameter R2 to reduce the weight. Further, the central portion 113 of the main body portion 110 has a thin plate thickness T1 and is lightweight. Therefore, in the tubular body 102, the weight of the main body 110 is reduced while ensuring a predetermined flexural rigidity of the central portion 113, and the bending primary resonance point is improved.

[第一実施形態]
図3に示すように、第一実施形態における動力伝達軸101に用いられる管体102の製造方法は、複数の基材2を製造する基材製造工程(ステップS1)と、筒体12を製造する筒体製造工程(ステップS2)と、連続繊維を巻き付ける巻き付け工程(ステップS3)と、樹脂を硬化させる硬化工程(ステップS4)と、を備えている。
[First Embodiment]
As shown in FIG. 3, the method of manufacturing the tubular body 102 used for the power transmission shaft 101 in the first embodiment includes a base material manufacturing step (step S1) for manufacturing a plurality of base materials 2 and manufacturing a tubular body 12. It includes a tubular body manufacturing step (step S2), a winding step of winding continuous fibers (step S3), and a curing step of curing the resin (step S4).

(基材製造工程)
第一実施形態の基材製造工程は、図4に示すように、一対の金型(図4においては一方の下型1のみ図示)で、内部に強化繊維が配置された繊維強化樹脂板をプレス成形し、基材2を製造する。
本実施形態における繊維強化樹脂板の樹脂は、熱可塑性樹脂であり、繊維強化樹脂板を加熱して樹脂が溶融した状態にしてからプレス成形を行う。
(Base material manufacturing process)
In the base material manufacturing process of the first embodiment, as shown in FIG. 4, a fiber-reinforced resin plate in which reinforcing fibers are arranged is formed by a pair of molds (only one lower mold 1 is shown in FIG. 4). Press molding is performed to manufacture the base material 2.
The resin of the fiber-reinforced resin plate in the present embodiment is a thermoplastic resin, and press molding is performed after heating the fiber-reinforced resin plate to make the resin melted.

本工程で製造される基材2は、一方向に長い部品であり、長手方向の一端から他端に向って順に、第一接続部用基部3、本体部用基部4、傾斜部用基部5、並びに第二接続部用基部6が形成されている。 The base material 2 manufactured in this step is a component that is long in one direction, and the first connection portion base 3, the main body portion base 4, and the inclined portion base 5 are in order from one end to the other end in the longitudinal direction. , And a base 6 for the second connecting portion is formed.

第一接続部用基部3、本体部用基部4、傾斜部用基部5、並びに第二接続部用基部6を軸線O1を法線とする平面で切った断面形状は、それぞれ半円弧状に形成されている。
第一接続部用基部3は、管体102の第一接続部120の内周部となる部位である。本体部用基部4は、本体部110の内周部となる部位である。傾斜部用基部5は、傾斜部140の内周部となる部位である。第二接続部用基部6は、第二接続部130の内周部となる部位である。
また、第一接続部用基部3、本体部用基部4、傾斜部用基部5、並びに第二接続部用基部6の各部位の厚みは、一定に形成されている。
The cross-sectional shape of the first connection portion base 3, the main body portion base 4, the inclined portion base portion 5, and the second connection portion base portion 6 cut by a plane having the axis O1 as a normal is formed in a semicircular shape. Has been done.
The base portion 3 for the first connecting portion is a portion that becomes an inner peripheral portion of the first connecting portion 120 of the tubular body 102. The main body portion base 4 is a portion that serves as an inner peripheral portion of the main body portion 110. The inclined portion base portion 5 is a portion that becomes an inner peripheral portion of the inclined portion 140. The base portion 6 for the second connecting portion is a portion that becomes an inner peripheral portion of the second connecting portion 130.
Further, the thickness of each portion of the first connection portion base portion 3, the main body portion base portion 4, the inclined portion base portion 5, and the second connection portion base portion 6 is formed to be constant.

(筒体製造工程)
第一実施形態の筒体製造工程は、図5に示すように、2つの基材2の合わせ面7同士を接着剤により接着させて筒状の筒体12を製造する。
本工程で製造される筒体12は、一端側から他端側に向って順に、第一接続部用筒部13、本体部用筒部14、傾斜部用筒部15、並びに第二接続部用筒部16を備えている。
第一接続部用筒部13は、円筒状となっている。本体部用筒部14は、いわゆる樽形状(バレル形状)となっている。傾斜部用筒部15は、円錐台状となっている。第二接続部用筒部16は、円筒状となっている。
(Cylindrical manufacturing process)
In the tubular body manufacturing step of the first embodiment, as shown in FIG. 5, the mating surfaces 7 of the two base materials 2 are adhered to each other with an adhesive to manufacture a tubular tubular body 12.
The tubular body 12 manufactured in this step has, in order from one end side to the other end side, the first connecting portion cylinder portion 13, the main body portion cylinder portion 14, the inclined portion cylinder portion 15, and the second connecting portion. A cylinder portion 16 is provided.
The tubular portion 13 for the first connecting portion has a cylindrical shape. The cylinder portion 14 for the main body portion has a so-called barrel shape (barrel shape). The inclined portion cylinder portion 15 has a truncated cone shape. The tubular portion 16 for the second connecting portion has a cylindrical shape.

(巻き付け工程)
第一実施形態の巻き付け工程は、図6に示すように、フィラメントワインディング法により筒体12に樹脂を含浸した強化繊維21を巻き付ける。これにより、筒体12の外周側には、管体102の外周部を構成する強化繊維層が形成される。
本工程で使用するワインディング装置20は、強化繊維21を構成するストランドがそれぞれ巻回された複数のボビン22と、溶融した熱可塑性樹脂を貯留する樹脂含浸部23と、集約部24と、移動供給部25と、筒体12を回転させる回転装置26と、を備えている。
(Wrapping process)
In the winding step of the first embodiment, as shown in FIG. 6, the reinforcing fiber 21 impregnated with the resin is wound around the tubular body 12 by the filament winding method. As a result, a reinforcing fiber layer forming the outer peripheral portion of the tubular body 102 is formed on the outer peripheral side of the tubular body 12.
The winding device 20 used in this step is a moving supply of a plurality of bobbins 22 in which strands constituting the reinforcing fiber 21 are wound, a resin impregnated portion 23 for storing the molten thermoplastic resin, and an aggregation portion 24. A portion 25 and a rotating device 26 for rotating the tubular body 12 are provided.

複数のボビン22からストランドを引き出し、そのストランドを樹脂含浸部23で熱可塑性樹脂に含浸処理する。次いで、複数のストランドを集約部24で集約し、1本の強化繊維21とする。また、移動供給部25は、強化繊維21を挿通可能に支持する。
回転装置26は、円柱状の回転軸27を備えており、この回転軸27を筒体12内に挿通させて回転軸27を筒体12に内嵌させる。そして、回転装置26により筒体12を回転させ、強化繊維21を筒体12に巻き付けて強化繊維層を形成する。
Strands are drawn out from the plurality of bobbins 22, and the strands are impregnated with the thermoplastic resin by the resin impregnating portion 23. Next, the plurality of strands are aggregated by the aggregation portion 24 to form one reinforcing fiber 21. Further, the mobile supply unit 25 supports the reinforcing fibers 21 so as to be insertable.
The rotating device 26 includes a columnar rotating shaft 27, and the rotating shaft 27 is inserted into the tubular body 12 to fit the rotating shaft 27 into the tubular body 12. Then, the cylinder body 12 is rotated by the rotating device 26, and the reinforcing fibers 21 are wound around the cylinder body 12 to form the reinforcing fiber layer.

また、移動供給部25を軸線O2方向に往復動させて、筒体12に対する強化繊維21の巻き付け量を、第一接続部用筒部13、傾斜部用筒部15、並びに第二接続部用筒部16のそれぞれが均一となるように調整する。また、本体部用筒部14に対する強化繊維21の巻き付け量は、中央部から両端側に向かうに連れて次第に巻き付け量が低減するようにする。巻き付け後は、回転軸27から筒体12を取り外す。 Further, the moving supply unit 25 is reciprocated in the axis O2 direction to adjust the winding amount of the reinforcing fiber 21 around the cylinder body 12 for the first connection portion cylinder portion 13, the inclined portion cylinder portion 15, and the second connection portion. Adjust so that each of the tubular portions 16 is uniform. Further, the winding amount of the reinforcing fiber 21 around the cylinder portion 14 for the main body portion is set so that the winding amount gradually decreases from the central portion toward both ends. After winding, the tubular body 12 is removed from the rotating shaft 27.

(硬化工程)
第一実施形態の硬化工程は、放熱によって強化繊維層を冷却し、強化繊維層の樹脂を硬化させる。これによれば、強化繊維層の樹脂の一部が筒体12に溶着して強化繊維層と筒体12とが一体化して動力伝達軸101に用いられる管体102が製造される。
(Curing process)
In the curing step of the first embodiment, the reinforcing fiber layer is cooled by heat dissipation, and the resin of the reinforcing fiber layer is cured. According to this, a part of the resin of the reinforcing fiber layer is welded to the tubular body 12, and the reinforcing fiber layer and the tubular body 12 are integrated to manufacture the tubular body 102 used for the power transmission shaft 101.

以上、第一実施形態によれば、樽形状(バレル形状)の本体部110を備えた管体102を製造でき、樽形状のマンドレルを用いる必要がない。 As described above, according to the first embodiment, the pipe body 102 having the barrel-shaped (barrel-shaped) main body 110 can be manufactured, and it is not necessary to use the barrel-shaped mandrel.

[第二実施形態]
次に第二実施形態の管体102の製造方法について説明する。
第二実施形態における管体102の製造方法は、複数の基材2を製造する基材製造工程(ステップS1)と、筒体12を製造する筒体製造工程(ステップS2)と、樹脂を含浸した連続繊維を巻き付ける巻き付け工程(ステップS3)と、樹脂を硬化させる硬化工程(ステップS4)と、備えている(図3参照)。以下、第一実施形態との相違点に絞って説明する。
[Second Embodiment]
Next, a method of manufacturing the tubular body 102 of the second embodiment will be described.
The method for manufacturing the tubular body 102 in the second embodiment includes a base material manufacturing step (step S1) for manufacturing a plurality of base materials 2, a tubular body manufacturing step for manufacturing a tubular body 12 (step S2), and impregnation with a resin. It includes a winding step (step S3) for winding the continuous fibers and a curing step (step S4) for curing the resin (see FIG. 3). Hereinafter, the differences from the first embodiment will be described.

図7に示すように、第二実施形態の基材製造工程(ステップS1)において、プレス成形により形成される基材2の合わせ面7には、凸部7aと凹部7bが形成されている。また、筒体製造工程(ステップS2)において、二つの基材2を組み合わせる際、一方の基材2の凸部7aを他方の基材2の凹部7b内に嵌合させる。これにより、接着剤を用いることなく、二つの基材2を一体化させることができる。また、凸部7aと凹部7bにより位置合わせができ、精度良く筒体12を製造できる。 As shown in FIG. 7, in the base material manufacturing step (step S1) of the second embodiment, the convex portion 7a and the concave portion 7b are formed on the mating surface 7 of the base material 2 formed by press molding. Further, in the tubular body manufacturing step (step S2), when the two base materials 2 are combined, the convex portion 7a of one base material 2 is fitted into the concave portion 7b of the other base material 2. As a result, the two base materials 2 can be integrated without using an adhesive. Further, the convex portion 7a and the concave portion 7b can be aligned, and the tubular body 12 can be manufactured with high accuracy.

図8に示すように、第二実施形態の巻き付け工程(ステップS3)は、回転装置26によって回転する筒体12に対し、強化繊維に樹脂(熱硬化性樹脂)を含浸させてなるシート状のプリプレグ28を複数の圧着ローラ29を利用して巻き付けている。
このようなシートワインディング法によれば、シート内の強化繊維を軸方向に沿って延在させることができ、管体102の曲げ強度の向上を図れる。
As shown in FIG. 8, in the winding step (step S3) of the second embodiment, the tubular body 12 rotated by the rotating device 26 is in the form of a sheet obtained by impregnating the reinforcing fibers with a resin (thermosetting resin). The prepreg 28 is wound by using a plurality of crimping rollers 29.
According to such a sheet winding method, the reinforcing fibers in the sheet can be extended along the axial direction, and the bending strength of the tubular body 102 can be improved.

以上、第二実施形態によれば、樽形状(バレル形状)の本体部110を備えた管体102を製造でき、樽形状のマンドレルを用いる必要がない。 As described above, according to the second embodiment, the pipe body 102 having the barrel-shaped (barrel-shaped) main body 110 can be manufactured, and it is not necessary to use the barrel-shaped mandrel.

[第三実施形態]
第三実施形態における管体102の製造方法は、基材2を複数製造する基材製造工程(ステップS1)と、筒体12を製造する筒体製造工程(ステップS2)と、連続繊維を巻き付ける巻き付け工程(ステップS3)と、樹脂を硬化させる硬化工程(ステップS4)と、備えている(図3参照)。以下、第一実施形態との相違点に絞って説明する。
[Third Embodiment]
The method for manufacturing the tubular body 102 in the third embodiment includes a base material manufacturing step (step S1) for manufacturing a plurality of base materials 2, a tubular body manufacturing step for manufacturing a tubular body 12 (step S2), and winding continuous fibers. It includes a winding step (step S3) and a curing step (step S4) for curing the resin (see FIG. 3). Hereinafter, the differences from the first embodiment will be described.

第三実施形態の基材製造工程(ステップS1)は、プレス成形ではなく、Resin Transfer Molding成形(以下「RTM成形」という)により基材2を製造している。RTM成形は、一対の金型内に強化繊維を配置し、型締めした後に金型内に溶融した樹脂を注入し、強化繊維に樹脂を含浸させながら基材2を製造する方法である。 In the base material manufacturing step (step S1) of the third embodiment, the base material 2 is manufactured by Resin Transfer Molding molding (hereinafter referred to as “RTM molding”) instead of press molding. The RTM molding is a method of arranging reinforcing fibers in a pair of molds, injecting molten resin into the mold after molding, and manufacturing the base material 2 while impregnating the reinforcing fibers with the resin.

図9に示すように、第三実施形態の基材製造工程(ステップS1)は、両端面から軸方向外側に突出する半円弧状の突出部8が形成された基材2を製造する。この突出部8は、筒体製造工程(ステップS2)において、組み合わせた場合、円筒状の突起18を構成している。
そして、第三実施形態の筒体製造工程(ステップS2)において、二つの基材2を組み合わせた後、突起18をスタブヨーク102の外筒部102aに内嵌させる。また、特に図示しないが、筒体12の後端に形成された突起は、スタブシャフト103の図示しない外筒部内に内嵌される。これにより、接着剤を用いることなく、二つの基材2を一体化させることができる。
第三実施形態の巻き付け工程(ステップS3)は、筒体12の外周側のみならず、スタブヨーク102の外筒部102a及びスタブシャフト103の外筒部(不図示)の外周側にも強化繊維を巻き付けて強化繊維層を形成している。よって、硬化工程(ステップS4)において、強化繊維層がスタブヨーク102やスタブシャフト103と溶着するようになっている。
As shown in FIG. 9, the base material manufacturing step (step S1) of the third embodiment manufactures the base material 2 in which the semicircular arc-shaped protrusions 8 protruding outward in the axial direction from both end faces are formed. When combined, the protrusions 8 form a cylindrical protrusion 18 in the tubular body manufacturing process (step S2).
Then, in the tubular body manufacturing step (step S2) of the third embodiment, after combining the two base materials 2, the protrusion 18 is fitted inside the outer tubular portion 102a of the stub yoke 102. Further, although not particularly shown, the protrusion formed at the rear end of the tubular body 12 is fitted inside the outer tubular portion of the stub shaft 103 (not shown). As a result, the two base materials 2 can be integrated without using an adhesive.
In the winding step (step S3) of the third embodiment, the reinforcing fibers are applied not only to the outer peripheral side of the tubular body 12, but also to the outer peripheral side of the outer cylinder portion 102a of the stub yoke 102 and the outer cylinder portion (not shown) of the stub shaft 103. It is wrapped to form a reinforcing fiber layer. Therefore, in the curing step (step S4), the reinforcing fiber layer is welded to the stub yoke 102 and the stub shaft 103.

以上、第三実施形態によれば、樽形状(バレル形状)の本体部110を備えた管体102を製造でき、樽形状のマンドレルを用いる必要がない。 As described above, according to the third embodiment, the pipe body 102 having the barrel-shaped (barrel-shaped) main body 110 can be manufactured, and it is not necessary to use the barrel-shaped mandrel.

[第四実施形態]
第四実施形態における管体102の製造方法は、複数の基材2を製造する基材製造工程(ステップS1)と、筒体12を製造する筒体製造工程(ステップS2)と、連続繊維を巻き付ける巻き付け工程(ステップS3)と、樹脂を硬化させる硬化工程(ステップS4)と、備えている(図3参照)。以下、第一実施形態との相違点に絞って説明する。
[Fourth Embodiment]
The method for manufacturing the tubular body 102 in the fourth embodiment includes a base material manufacturing step (step S1) for manufacturing a plurality of base materials 2, a tubular body manufacturing step (step S2) for manufacturing a tubular body 12, and continuous fibers. It includes a winding step (step S3) and a curing step (step S4) of curing the resin (see FIG. 3). Hereinafter, the differences from the first embodiment will be described.

図10に示すように、第四実施形態の筒体製造工程(ステップS2)は、二つの基材2を組み合わせて筒体12を形成した後に、ゴム製であり筒状の被覆膜40内に筒体12の後部を挿入し、被覆膜40で傾斜部用筒部15を被覆している。
これによれば、二つの基材2の後部側を一体化できる。また、傾斜部用筒部15の外周面が傾斜していることから、巻き付け工程(ステップS3)で傾斜部用筒部15に巻き付ける強化繊維が滑って所望の配向とならないおそれがあるところ、上記した被覆膜40の摩擦により強化繊維が滑り難くなる。
As shown in FIG. 10, in the tubular body manufacturing step (step S2) of the fourth embodiment, after the tubular body 12 is formed by combining the two base materials 2, the inside of the tubular covering film 40 made of rubber. The rear portion of the tubular body 12 is inserted into the body, and the tubular portion 15 for the inclined portion is covered with the coating film 40.
According to this, the rear side of the two base materials 2 can be integrated. Further, since the outer peripheral surface of the inclined portion tubular portion 15 is inclined, the reinforcing fibers wound around the inclined portion tubular portion 15 may slip in the winding step (step S3) and may not be oriented as desired. The friction of the coating film 40 makes the reinforcing fibers less slippery.

以上、第四実施形態によれば、樽形状(バレル形状)の本体部110を備えた管体102を製造でき、樽形状のマンドレルを用いる必要がない。 As described above, according to the fourth embodiment, the pipe body 102 having the barrel-shaped (barrel-shaped) main body 110 can be manufactured, and it is not necessary to use the barrel-shaped mandrel.

以上、各実施形態について説明したが、本発明は、実施形態で説明した例に限定されない。
例えば、第一接続部用筒部13及び第二接続部用筒部16は、円筒状に形成されているが、多角形状に形成してもよい。これによれば、管体102の第一接続部120及び第二接続部130の内周面が多角形状となる。そして、第一接続部120又は第二接続部130に挿入されるスタブヨーク102又はスタブシャフト103の挿入部を多角形状とすることで、相対回転し難くすることができる。
また、第三実施形態においては、突起18の断面形状を多角形状としてもよい。そして、スタブヨーク102の外筒部102aも多角形状とし、互いに相対回転し難くしてもよい。
Although each embodiment has been described above, the present invention is not limited to the examples described in the embodiments.
For example, the first connecting portion cylinder portion 13 and the second connecting portion cylinder portion 16 are formed in a cylindrical shape, but may be formed in a polygonal shape. According to this, the inner peripheral surfaces of the first connecting portion 120 and the second connecting portion 130 of the pipe body 102 have a polygonal shape. Then, by forming the insertion portion of the stub yoke 102 or the stub shaft 103 inserted into the first connection portion 120 or the second connection portion 130 into a polygonal shape, it is possible to make it difficult to rotate relative to each other.
Further, in the third embodiment, the cross-sectional shape of the protrusion 18 may be a polygonal shape. The outer cylinder portion 102a of the stub yoke 102 may also have a polygonal shape, making it difficult for the stub yoke 102 to rotate relative to each other.

また、実施形態では、筒体12を構成する樹脂及び強化繊維に含浸される樹脂に熱可塑性樹脂を使用した例を挙げたが、本発明においては、熱硬化性樹脂を使用してもよい。
また、実施形態では、2つの基材2により筒体12が構成されているが、本発明において基材を複数用意できれば特に限定されず、例えば、断面視四分円状の基材を4つ組み合わせて筒体12を製造してもよい。
Further, in the embodiment, an example in which a thermoplastic resin is used for the resin constituting the tubular body 12 and the resin impregnated with the reinforcing fibers has been given, but in the present invention, a thermosetting resin may be used.
Further, in the embodiment, the tubular body 12 is composed of two base materials 2, but the present invention is not particularly limited as long as a plurality of base materials can be prepared. For example, four base materials having a quadrant in cross section are used. The tubular body 12 may be manufactured in combination.

また、実施形態で製造された管体102の本体部110は、中央部113から両端部(前端部111及び後端部112)に向うに連れて縮径する樽形状(バレル形状)であったが、例えば、前端部111から後端部112までの径が一定に形成された本体部であってもよい。または、前端部111から中央部113までの径が一定で、中央部113から後端部112にかけて縮径するように形成されてもよい。 Further, the main body 110 of the pipe body 102 manufactured in the embodiment has a barrel shape (barrel shape) in which the diameter is reduced from the central portion 113 toward both end portions (front end portion 111 and rear end portion 112). However, for example, the main body portion may have a constant diameter from the front end portion 111 to the rear end portion 112. Alternatively, the diameter from the front end portion 111 to the central portion 113 may be constant, and the diameter may be reduced from the central portion 113 to the rear end portion 112.

また、本発明の製造方法で製造される管体は、上記したものに限定されない。例えば、傾斜部140に関し、板厚が本体部110側(前側)の端部から第二接続部130側(後側)の端部に向かうに連れて漸次薄くなっていてもよい。これによれば、傾斜部140のうち後端部の板厚が最も薄くなり、傾斜部140の後端部が脆弱部を構成する。若しくは、傾斜部140の外周面又は内周面に凹部を設けて一部区間の板厚を変化させて脆弱部を形成してもよい。 Further, the tube body manufactured by the manufacturing method of the present invention is not limited to the above-mentioned one. For example, with respect to the inclined portion 140, the plate thickness may be gradually reduced from the end portion on the main body portion 110 side (front side) toward the end portion on the second connection portion 130 side (rear side). According to this, the plate thickness of the rear end portion of the inclined portion 140 is the thinnest, and the rear end portion of the inclined portion 140 constitutes a fragile portion. Alternatively, a fragile portion may be formed by providing a recess on the outer peripheral surface or the inner peripheral surface of the inclined portion 140 and changing the plate thickness of a part of the section.

1 下型
2 基材
3 第一接続部用基部
4 本体部用基部
5 傾斜部用基部
6 第二接続部用基部
12 筒体
13 第一接続部用筒部
14 本体部用筒部
15 傾斜部用筒部
16 第二接続部用筒部
50 被覆膜
101 動力伝達軸
102 管体
103 スタブヨーク
104 スタブシャフト
110 本体部
120 第一接続部
130 第二接続部
140 傾斜部
1 Lower mold 2 Base material 3 First connection base 4 Main body base 5 Tilt base 6 Second connection base 12 Cylindrical body 13 First connection tube 14 Main body tube 15 Tilt Cylinder part 16 Cylinder part for second connection part 50 Coating film 101 Power transmission shaft 102 Tube body 103 Stub yoke 104 Stub shaft 110 Main body part 120 First connection part 130 Second connection part 140 Inclined part

Claims (6)

繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法であって、
軸方向に延在する基材を複数製造する基材製造工程と、
前記複数の基材を組み合わせて筒体を製造する筒体製造工程と、
前記筒体の外周面に樹脂を含浸した連続繊維を巻き付ける巻き付け工程と、
を備えることを特徴とする動力伝達軸に用いられる管体の製造方法。
A method for manufacturing a tube body made of fiber reinforced plastic and used for a power transmission shaft.
A base material manufacturing process for manufacturing a plurality of base materials extending in the axial direction,
A tubular body manufacturing process for manufacturing a tubular body by combining the plurality of base materials,
A winding step of winding continuous fibers impregnated with resin around the outer peripheral surface of the cylinder, and
A method for manufacturing a tube body used for a power transmission shaft, which comprises.
前記繊維強化プラスチックは、炭素繊維強化プラスチックであることを特徴とする請求項1に記載の動力伝達軸に用いられる管体の製造方法。 The method for manufacturing a tube body used for a power transmission shaft according to claim 1, wherein the fiber reinforced plastic is a carbon fiber reinforced plastic. 前記基材製造工程において、軸方向から視て半円弧状の基材を2つ製造し、
前記筒体製造工程において、前記2つの基材を組み合わせて前記筒体を製造することを特徴とする請求項1又は請求項2に記載の動力伝達軸に用いられる管体の製造方法。
In the base material manufacturing process, two semicircular base materials viewed from the axial direction are manufactured.
The method for manufacturing a tubular body used for a power transmission shaft according to claim 1 or 2, wherein in the tubular body manufacturing step, the tubular body is manufactured by combining the two base materials.
前記基材製造工程は、プレス成形又はRTM成形により前記基材を製造することを特徴とする請求項1から請求項3のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。 The method for manufacturing a tubular body used for a power transmission shaft according to any one of claims 1 to 3, wherein the base material manufacturing step is to manufacture the base material by press molding or RTM molding. .. 前記巻き付け工程における巻き付け方法は、フィラメントワインディング法又はシートワインディング法であることを特徴とする請求項1から請求項4のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。 The method for manufacturing a tube body used for a power transmission shaft according to any one of claims 1 to 4, wherein the winding method in the winding step is a filament winding method or a sheet winding method. 前記管体は、本体部と、前記本体部の端部に連続し、連結部材が接続される接続部を備え、
前記本体部の外径は、中央部から両端部に向かうに連れて縮径していることを特徴とする請求項1から請求項5のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。
The tubular body includes a main body and a connecting portion that is continuous with the end of the main body and to which a connecting member is connected.
The pipe used for the power transmission shaft according to any one of claims 1 to 5, wherein the outer diameter of the main body is reduced from the central portion toward both ends. How to make a body.
JP2019033976A 2019-02-27 2019-02-27 Method for manufacturing pipe body used in power transmission shaft Ceased JP2020138364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033976A JP2020138364A (en) 2019-02-27 2019-02-27 Method for manufacturing pipe body used in power transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033976A JP2020138364A (en) 2019-02-27 2019-02-27 Method for manufacturing pipe body used in power transmission shaft

Publications (1)

Publication Number Publication Date
JP2020138364A true JP2020138364A (en) 2020-09-03

Family

ID=72279746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033976A Ceased JP2020138364A (en) 2019-02-27 2019-02-27 Method for manufacturing pipe body used in power transmission shaft

Country Status (1)

Country Link
JP (1) JP2020138364A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118831A (en) * 1979-03-08 1980-09-12 Nissan Motor Co Ltd Method of making drive shaft made of fiber-reinforced plastic
JPS5950216A (en) * 1982-09-16 1984-03-23 Honda Motor Co Ltd Drive shaft of fiber reinforced synthetic resin and manufacture thereof
JPH04244832A (en) * 1991-01-31 1992-09-01 Sekisui Chem Co Ltd Manufacture of tube body made of fiber-reinforced plastic
JP2004293718A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Power transmission shaft and its manufacturing method
JP2004293717A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Power transmission shaft
JP2004293714A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Power transmission shaft and its manufacturing method and tool
JP2004293715A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Joint for power transmission shaft, and power transmission shaft
JP2004293716A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Shaft for power transmission
JP2006247985A (en) * 2005-03-10 2006-09-21 Murata Mach Ltd Thermoplastic frp and its manufacturing method
JP2012530628A (en) * 2009-06-26 2012-12-06 ベーデー インヴェント Method of manufacturing composite connecting rod and connecting rod manufactured by the method
JP2015071239A (en) * 2013-10-02 2015-04-16 東邦テナックス株式会社 Manufacturing method of frp molding, and molding
JP2015536257A (en) * 2012-10-11 2015-12-21 ベデ・アンヴァン・エスア One-piece connecting rod and manufacturing method thereof
JP2020138345A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing tube body used for power transmission shaft

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118831A (en) * 1979-03-08 1980-09-12 Nissan Motor Co Ltd Method of making drive shaft made of fiber-reinforced plastic
JPS5950216A (en) * 1982-09-16 1984-03-23 Honda Motor Co Ltd Drive shaft of fiber reinforced synthetic resin and manufacture thereof
JPH04244832A (en) * 1991-01-31 1992-09-01 Sekisui Chem Co Ltd Manufacture of tube body made of fiber-reinforced plastic
JP2004293715A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Joint for power transmission shaft, and power transmission shaft
JP2004293717A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Power transmission shaft
JP2004293714A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Power transmission shaft and its manufacturing method and tool
JP2004293718A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Power transmission shaft and its manufacturing method
JP2004293716A (en) * 2003-03-27 2004-10-21 Toyota Industries Corp Shaft for power transmission
JP2006247985A (en) * 2005-03-10 2006-09-21 Murata Mach Ltd Thermoplastic frp and its manufacturing method
JP2012530628A (en) * 2009-06-26 2012-12-06 ベーデー インヴェント Method of manufacturing composite connecting rod and connecting rod manufactured by the method
JP2015536257A (en) * 2012-10-11 2015-12-21 ベデ・アンヴァン・エスア One-piece connecting rod and manufacturing method thereof
JP2015071239A (en) * 2013-10-02 2015-04-16 東邦テナックス株式会社 Manufacturing method of frp molding, and molding
JP2020138345A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing tube body used for power transmission shaft

Similar Documents

Publication Publication Date Title
US11940007B2 (en) Tubular body used for power transmission shaft and power transmission shaft
US20210180645A1 (en) Method for manufacturing tube body used in power transmission shaft
JP7264665B2 (en) power transmission shaft
JP2007271079A (en) Torque transmission shaft
JP2020138364A (en) Method for manufacturing pipe body used in power transmission shaft
JP2020138592A (en) Shell used for power transmission shaft and power transmission shaft
JP2020138343A (en) Method for manufacturing pipe body used in power transmission shaft
JP6581737B1 (en) Tube for power transmission shaft and power transmission shaft
KR101744705B1 (en) Hybrid Propeller Shaft and Method for Manufacturing Thereof
JP2020138359A (en) Method for manufacturing tube body used for power transmission shaft
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
WO2020174697A1 (en) Method for producing drive shaft
JP2020138338A (en) Mandrel
JP7324589B2 (en) Pipe body and power transmission shaft used for power transmission shaft
JP2020138366A (en) Manufacturing method of tube body used for power transmission shaft
WO2023238300A1 (en) Carbon-fiber-reinforced resin cylinder for propeller shafts
WO2021186735A1 (en) Pipe body intermediate and method for manufacturing pipe body
JP7526698B2 (en) Power transmission shaft
WO2021186736A1 (en) Tubular body manufacturing method
WO2016125517A1 (en) Power transmission shaft
JP2020138587A (en) Power transmission shaft
JP2020138334A (en) Mandrel and method for manufacturing pipe body used in power transmission shaft
JP2015139930A (en) Manufacturing method of bar-shaped part and bar-shaped part
JP2024080636A (en) Frp pipe composite body and manufacturing method thereof
JP2015131423A (en) Method of manufacturing bar-like component

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20230328