JP2004293714A - Power transmission shaft and its manufacturing method and tool - Google Patents

Power transmission shaft and its manufacturing method and tool Download PDF

Info

Publication number
JP2004293714A
JP2004293714A JP2003089241A JP2003089241A JP2004293714A JP 2004293714 A JP2004293714 A JP 2004293714A JP 2003089241 A JP2003089241 A JP 2003089241A JP 2003089241 A JP2003089241 A JP 2003089241A JP 2004293714 A JP2004293714 A JP 2004293714A
Authority
JP
Japan
Prior art keywords
fiber bundle
wound
resin
jig
end member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089241A
Other languages
Japanese (ja)
Inventor
Toshihiro Gotou
稔裕 後藤
Yasunori Nonogaki
保紀 野々垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003089241A priority Critical patent/JP2004293714A/en
Publication of JP2004293714A publication Critical patent/JP2004293714A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/072Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving plastic deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate transmission of rotating torque, by solving a problem caused by constitution for fitting serration in an FRP tube. <P>SOLUTION: A power transmission shaft is a propeller shaft 11, in which end part members 13, 14 are connected with both ends of a FRP tube member 12. The serration 16 is formed in an outer circumferential face of a part where the end part members 13, 14 are connected with the tube member 12, reinforced fiber of the tube member 12 is wound around the end part members 13, 14 to constitute a plurality of layers, and a helical winding layer is formed as an innermost layer. Circumferential relative movement of fiber bundles constituting the helical winding layer with respect to the end parts members 13, 14 is restricted by the serration 16, and the fiber bundles are continuous over an entire length. Resin impregnated fiber bundles are wound while end part members 13, 14 are fit to a wound member 15, and the resin is hardened with the state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチック(以下、FRPと記載する)製の筒部材の少なくとも一端に端部部材が結合された動力伝達シャフト及びその製造方法並びに治具に関する。
【0002】
【従来の技術】
車両のエンジンで発生する回転動力を車両の駆動輪に伝達するプロペラシャフトは、一般に金属製シャフト部材の両端に、駆動軸や従動軸と連結する金属製の自在継手(ユニバーサルジョイント)のヨークを溶接したもの(以下、金属製プロペラシャフトという)が使用されている。
【0003】
近年、車両の軽量化を図るために各構造部材のさらなる軽量化が要求され、プロペラシャフトにおいてもFRP製のものに切り替えることによる軽量化が検討され、一部実施されている。図11(a)に示すように、FRP製プロペラシャフト51として、FRP製パイプ52の両端(片側のみ図示)に、FRP製パイプ52を駆動軸や従動軸等(図示せず)と連結する金属製の継手(ヨーク)53を圧入接合した構造のものが一般的である(例えば、特許文献1参照)。
【0004】
継手53にはFRP製パイプ52との接合部となる外周面に、図11(b)に示すように、FRP製パイプ52の端部内径より大きな外径のセレーション54が形成されている。そして、FRP製パイプ52に継手53の接合部を圧入することで、継手53のセレーション54の歯によって、FRP製パイプ52の内周面に溝が刻設され、歯が溝に食い込むことで継手53とFRP製パイプ52とが一体回転するための接合強度が確保される。図11(c)に示すように、継手53はFRP製パイプ52の内面とセレーション54の溝の底部との間に隙間が存在する状態でFRP製パイプ52に結合されている。
【0005】
また、図12(a)に示すように、外側端に中心軸55を突設した端部金具56を両端にそれぞれ嵌着した薄肉円筒57を使用してフィラメントワインディング法により製造する方法も提案されている(例えば、特許文献2参照)。この製造方法では、図12(b)に示すように、樹脂が含浸された炭素繊維58を端部金具56から薄肉円筒57にかけて連続して巻き付けて樹脂含浸炭素繊維層を形成し、そのまま硬化成形した後、必要により中心軸55を除去してプロペラシャフトを製造する。
【0006】
また、FRP製の内側軸部材の両端に、端面部の中心から軸部が突出する金属製継手部材を嵌合させ、前記内側軸部材及び前記金属製継手部材の筒状部にフィラメントワインディング法により樹脂被覆した繊維束を巻き付けて製造する方法も提案されている(例えば、特許文献3参照)。
【0007】
【特許文献1】
特開平5−139170号公報(明細書の段落[0014]、[0018]、[0020]、図1、図2)
【特許文献2】
特開昭55−118831号公報(2頁、図3、図4)
【特許文献3】
特開昭59−50216号公報(2,3頁、図2)
【0008】
【発明が解決しようとする課題】
特許文献1に開示されたFRP製プロペラシャフト51のように、FRP製パイプ52に継手53を圧入する構成では、圧入時にFRP製パイプ52に掛かる多大な応力の対策が必要である。また、FRP製パイプ52の内面とセレーション54の溝の底部との間に隙間が存在するため、FRP製パイプ52の端面から水分が侵入するのを防止するためシール等の対策が必要であった。また、FRP製パイプ52をフィラメントワインディング法で製造する際に、マンドレルの脱型の工程が必要であった。
【0009】
一方、特許文献2に開示されたプロペラシャフトでは、継手53に相当する端部金具56をFRP製パイプに圧入する工程が不要なため、セレーションの加工やマンドレルの脱型が不要となり、シール工程も不要となる。しかし、特許文献2に開示されたプロペラシャフトでは、端部金具56に中心軸55が必須のため、孔を有する一対の支持部を備えたヨークタイプの継手53(特許文献1に開示されたもの)を設けることができない。その結果、プロペラシャフトをドライブシャフトと連結するユニバーサルジョイントに一般的な十字軸でなく特別な構造のものが必要となるという問題がある。また、端部金具56に巻き付けられる炭素繊維58の折り返し部の回転バランスが悪いという問題がある。また、プロペラシャフトでは一般に回転バランスの正確な調整を行うため、バランスピースを継手に溶接で取り付けていた。しかし、特許文献2に開示された構成のプロペラシャフトでは、継手の部分全体がFRPで被覆されているため、バランスピースを溶接で取り付ける場合には、バランスピースを取り付けるためには、FRPを構成している繊維を切断する必要があり、強度が低下するという問題がある。バランスピースをFRP表面に接着で取り付ける場合には、その取り付け強度が不十分であった。
【0010】
また、特許文献3に開示された製造方法においても、ヨークタイプの継手53(特許文献1に開示されたもの)を設けることができないという問題がある。さらに、特許文献3に開示された製造方法では、繊維束の巻き付けを前記内側軸部材及び前記金属製継手部材の筒状部にのみ巻き付けるため、ヘリカル巻を行う場合、巻き付け角度を小さくできず、圧縮や引っ張り強度を高めることが難しいという問題がある。
【0011】
本発明の第1の目的は、FRP製チューブへのセレーションの圧入を行うための構成に起因する不具合を解消でき、しかも、回転トルクの伝達が良好な動力伝達シャフトを提供することにある。第2の目的は、前記動力伝達シャフトを容易に製造できるとともに、ヨークタイプの継手を設けることが可能な製造方法を提供することにある。また、第3の目的は、前記動力伝達シャフトを製造する際に使用する治具を提供することにある。
【0012】
【課題を解決するための手段】
前記第1の目的を達成するため、請求項1に記載の発明は、繊維強化プラスチック製の筒部材の両端に端部部材が結合された動力伝達シャフトである。前記端部部材の少なくとも一方は、前記筒部材との結合部分における外周面に係止部が形成され、前記筒部材の強化繊維は複数の層を構成するように前記外周面において前記端部部材に巻き付けられ、かつ最内層を構成する繊維束は互いに交差せずに配列され、前記係止部により前記端部部材に対する周方向への相対移動が規制されている。
【0013】
この発明では、端部部材をFRP製の筒部材に圧入せずに形成可能なため、FRP製チューブへのセレーションの圧入を行うための構成に起因する従来の不具合を解消できる。また、FRP製の筒部材を構成する繊維束は、端部部材の外周面に形成された係止部により前記端部部材に対する周方向への相対移動が規制され、回転トルクの伝達が良い。
【0014】
請求項2に記載の発明は、請求項1に記載の発明において、前記最内層は繊維束が互いに平行に配列され、かつ全長にわたって連続しているヘリカル巻にて構成されている。この発明では、繊維束が全長にわたって連続しているため、即ち切断されていないため、回転トルクの伝達が良い。
【0015】
請求項3に記載の発明は、請求項2に記載の発明において、前記複数の層を構成する繊維束のうちヘリカル巻で配列された繊維束は前記係止部を有する端部部材側の端部が切断されている。この発明では、ヘリカル巻層を形成する繊維束が端部部材の端部で折り返すように配列されていないため、回転バランス良く形成するのが容易となる。また、端部部材が金属製であれば筒部材との結合部から突出した部分にバランスピースを溶接することができる。仮に、端部部材が金属製でない場合でも、強化繊維を切断することなくバランスピースを容易に取り付けることができる。
【0016】
請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記複数の層を構成する繊維束のうちヘリカル巻で配列された繊維束は同一層において互いに平行に配列されている。この発明では、ヘリカル巻層を形成する際、1層分の繊維束を同時に巻き付けることが可能なため、巻き付け時間の短縮が可能となる。
【0017】
請求項5に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記係止部は前記最内層の繊維束の配列方向に沿って延びる複数の凸条で構成されている。この発明では、最内層を構成する全ての繊維束の配列方向と、係止部としての凸条の延びる方向とが平行なため、端部部材とFRP製の筒部材との相対移動の規制機能が高まり、回転トルクの伝達がより良好に行われる。
【0018】
請求項6に記載の発明は、請求項5に記載の発明において、前記係止部はセレーションで構成されている。この発明では、前記係止部の加工が容易となる。
請求項7に記載の発明は、請求項1〜請求項6のいずれか一項に記載の発明において、前記端部部材の両方に前記係止部が設けられている。この発明では、動力伝達シャフトの両側において、請求項1〜請求項6のいずれか一項に記載の発明と対応する効果が得られる。
【0019】
請求項8に記載の発明は、請求項7に記載の発明において、前記端部部材は少なくとも一方がヨークタイプの継手部を備えている。この発明では、プロペラシャフトとして使用する際、プロペラシャフトをドライブシャフトと連結するユニバーサルジョイントに一般的な十字軸を使用することができる。
【0020】
第2の目的を達成するため、請求項9に記載の発明は、FRP製シャフトの少なくとも一端に端部部材が結合された動力伝達シャフトの製造方法である。筒状の被巻付け部材の少なくとも一端に、外周面に係止部が形成された繊維束被巻付け部を備えた端部部材を取り付け、該端部部材の前記繊維束被巻付け部を除いた箇所を覆うカバー部を備えた治具を前記端部部材に対して前記被巻付け部材との結合側と反対側から取り外し可能に連結する。前記被巻付け部材を前記端部部材が取り付けられた側は前記治具を介してフィラメントワインディング装置の回転支持部に一体回転可能に支持する。前記治具が取り付けられない側は前記回転支持部に支持される軸部を有する軸部付き端部部材又は前記回転支持部に支持される軸部を有する支持部材を介して前記回転支持部に一体回転可能に支持する。そして、その状態でフィラメントワインディングを行った後、巻き付けられた樹脂含浸繊維束を硬化前又は硬化後に切断し、前記治具と端部部材との連結を解除し、前記支持部材を使用した場合は該支持部材も取り外す。
【0021】
この発明では、マンドレルを使用せずに、端部部材が取り付けられて製品の一部を構成する被巻付け部材及び端部部材の繊維束被巻付け部に樹脂含浸繊維束が巻き付けられて硬化されることにより、端部部材がFRP製の筒部材に結合される。端部部材は樹脂含浸繊維束が巻き付けられる必要が無い部分をカバー部で覆われた状態で治具を介してフィラメントワインディング装置の回転支持部に支持され、フィラメントワインディングが行われる。フィラメントワインディングの際、樹脂含浸繊維束は治具にも巻き付けられて治具と対応する箇所で折り返すことができ、端部部材に巻き付けながら樹脂含浸繊維束を端部部材で折り返す必要がなく、得られた動力伝達シャフトの回転バランスが良くなる。また、端部部材としてヨークタイプの継手部を備えたものを使用することにより、ヨークタイプの継手部を備えた動力伝達シャフトを容易に製造することができる。
【0022】
請求項10に記載の発明は、請求項9に記載の発明において、フィラメントワインディングは少なくとも最内層にヘリカル巻層が形成されるように行われ、前記係止部は前記最内層の繊維束の配列方向を所定方向に規制可能に規則的に設けられた複数の凸部によって構成されている。この発明では、端部部材に設けられた係止部により、樹脂含浸繊維束の端部部材への巻付け角度が適正な値に規制される。
【0023】
請求項11に記載の発明は、請求項10に記載の発明において、前記係止部は一定間隔で端部部材の軸方向に対して最内層に形成されるヘリカル巻層の樹脂含浸繊維束の配列角度と等しい角度で互いに平行に延びる複数の凸条で構成されている。そして、フィラメントワインディングは、ヘリカル巻層を形成する際には、ヘリカル巻層を構成する全ての樹脂含浸繊維束の巻付けが同時に行われる。この発明では、同じヘリカル巻層を構成する全ての樹脂含浸繊維束が同時に巻き付けられるため、樹脂含浸繊維束を巻き付けるのに必要な時間を短縮できて、生産性が向上する。
【0024】
請求項12に記載の発明は、請求項9〜請求項11のいずれか一項に記載の発明において、前記カバー部にはフィラメントワインディング時に樹脂含浸繊維束の配列を規制するピンが突設されている。フィラメントワインディング後、巻き付けられた樹脂含浸繊維束を、樹脂硬化前に前記ピンの突設位置より前記繊維束被巻付け部寄りの治具の表面と対向する位置で切断して繊維束供給部に繋がる繊維束から切り離す。その切断箇所より前記ピン側に巻き付けられた未硬化の樹脂含浸繊維束を除去した後、樹脂の加熱硬化を行う。その後、前記繊維束被巻付け部と治具の端部との間と対応する位置で繊維束を硬化樹脂とともに切断し、治具を端部部材から取り外す。
【0025】
この発明では、カバー部に突設されたピンの作用により、端部部材の繊維束被巻付け部に巻き付けられる樹脂含浸繊維束の巻付け角度が適正な値に規制される。また、樹脂含浸繊維束の巻付け完了後、治具に巻き付けられた樹脂含浸繊維束のうちピンと対応する箇所に巻き付けられた樹脂含浸繊維束は樹脂硬化前に除去されるため、硬化後に除去するのに比較して容易に除去できる。
【0026】
請求項13に記載の発明は、請求項9〜請求項12のいずれか一項に記載の発明において、前記端部部材は前記被巻付け部材の両端に取り付けられる。この発明では、被巻付け部材の両側において、請求項9〜請求項12のいずれか一項に記載の発明と対応する効果が得られる。
【0027】
第3の目的を達成するため、請求項14に記載の発明は、少なくとも一方の端部に端部部材が取着された被巻付け部材にフィラメントワインディング法により前記端部部材の一部及び前記被巻付け部材に樹脂含浸繊維束を巻き付ける際に、前記被巻付け部材をフィラメントワインディング装置の回転支持部に取り付けるための治具である。治具は、前記端部部材の樹脂含浸繊維束が密着して巻き付けられる部分を除いた部分を覆うとともに、フィラメントワインディング時に樹脂含浸繊維束の一部が巻き付けられる筒状のカバー部を備えている。また、治具は、前記カバー部と一体的に形成され、フィラメントワインディング装置の回転支持部に支持可能な軸部と、前記端部部材を前記軸部と前記被巻付け部材の回転中心とが同軸となる状態で支持可能で、前記軸部と一体回転可能な支持部とを備えている。
【0028】
この発明の治具を使用する場合は、治具はカバー部が端部部材の樹脂含浸繊維束が密着して巻き付けられる部分を除いた部分を覆う状態で端部部材に取り付けられる。治具は軸部においてフィラメントワインディング装置の回転支持部に支持される。そして、治具を構成する支持部が、端部部材を被巻き付け部材の回転中心と、軸部とが同軸となる状態で支持する。従って、少なくとも一方の端部に端部部材が取着された被巻付け部材は、フィラメントワインディング時に、治具を介してバランスの取れた状態で回転され、端部部材の必要な箇所に樹脂含浸繊維束が密着して巻き付けられる。
【0029】
請求項15に記載の発明は、請求項14に記載の発明において、前記カバー部の周面にはピンが一定ピッチで周方向に沿って環状に設けられている。この発明では、フィラメントワインディングによる樹脂含浸繊維束の巻付け時に、カバー部に設けられたピンにより樹脂含浸繊維束の巻き付け位置が規制されて、樹脂含浸繊維束を端部部材の軸方向に対して所定の角度で巻き付けるのが容易になる。また、樹脂含浸繊維束をピンに巻き掛けて折り返すように配列することが可能になる。
【0030】
請求項16に記載の発明は、請求項14又は請求項15に記載の発明において、前記支持部は、一端側に前記端部部材に取り外し可能に固定される固定部が設けられている。そして、前記固定部が前記端部部材に固定された状態で他端側が前記軸部に形成された孔から前記カバー部の外部に突出可能な長さのシャフトで構成され、該シャフトには前記軸部から突出する位置に雄ねじ部が形成されている。この発明では、支持部は、一端側に設けられた固定部が端部部材に固定され、他端側が治具の軸部に形成された孔から突出するシャフトの雄ねじ部にナットを螺合することにより、端部部材を所定の位置に支持する。
【0031】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明を動力伝達シャフトとしてのプロペラシャフトに具体化した第1の実施の形態を図1〜図5に従って説明する。図1(a)はプロペラシャフトの一部破断模式側面図、(b)は(a)のA−A線における模式断面図である。
【0032】
図1(a)に示すように、プロペラシャフト11は、FRP製の筒部材12と、その第1端部に接合された第1の端部部材13と、第2端部に接合された第2の端部部材14と、筒部材12の内側で第1及び第2の端部部材13,14間に配置された筒状の被巻付け部材15とを備えている。被巻付け部材15には紙製の円筒が使用されている。第1の端部部材13には自在継手を構成する継手としての金属製のヨークが使用され、第2の端部部材14には金属製の滑り継手が使用されている。筒部材12は、第1及び第2の端部部材13,14との結合部分12aが肉厚に形成されている。
【0033】
第1の端部部材13及び第2の端部部材14は、筒部材12との結合部分となる円筒状の繊維束被巻付け部13a,14aを備え、その外周面には係止部としてのセレーション16が形成されている。筒部材12の強化繊維は複数の層を構成するように巻き付けられた繊維束からなり、最内層にヘリカル巻層が設けられている。繊維束は同一層においては互いに平行に配列されており、セレーション16はその歯が繊維束の配列方向に沿って延びるように形成されている。ヘリカル巻層を構成する繊維束は、セレーション16により端部部材13,14に対する周方向への相対移動が規制されるとともに筒部材12の全長にわたって連続している。即ち、セレーション16が形成された端部部材をFRP製のパイプに後から圧入する構成と異なり、セレーション16と係合する繊維束が切断されていない。
【0034】
セレーション16の歯は、最内層のヘリカル巻層を構成する繊維束が第1及び第2の端部部材13,14の軸方向と成す角度(配列角度)に等しい角度で、第1及び第2の端部部材13,14の軸方向に対して延びるように形成されている。また、セレーション16の歯の高さ、即ち溝の深さは1層分の繊維束の厚さとほぼ同じに形成されている。
【0035】
第1の端部部材13は、繊維束被巻付け部13aの一端側に継手部13bが突設され、他端側に繊維束被巻付け部13aより小径の嵌合筒部13cが突設されている。継手部13bには、例えば十字軸式ジョイントを取り付けるための孔13dが形成されている。第2の端部部材14は、繊維束被巻付け部14aの一端側にシャフト状の継手部14bが突設され、他端側に繊維束被巻付け部14aより小径の嵌合筒部14cが突設されている。シャフト状の継手部14bには、筒部材12をフィラメントワインディング法で形成する際に使用する治具の固定に使用するねじ穴14dが先端に形成されている。第1及び第2の端部部材13,14の繊維束被巻付け部13a,14aと、継手部13b,14bとの間には、環状溝17が形成されている。環状溝17はバランスピース(図示せず)を溶接する必要がある場合に、該バランスピースが外側に突出しない幅及び深さに形成されている。なお、以後、フィラメントワインディングをFWと略す。
【0036】
被巻付け部材15はその端部が嵌合筒部13c,14cの外周に嵌合された状態で第1及び第2の端部部材13,14に連結されている。被巻付け部材15は紙製(例えば、ボール紙製)で円筒状に形成されている。被巻付け部材15は筒部材12をFW法で形成する際に、樹脂含浸繊維束が巻き付けられても所定の円筒形状を保つ強度があればよく、プロペラシャフト11が使用される際のトルク伝達に寄与する強度を有する必要はない。
【0037】
筒部材12は、第1及び第2の端部部材13,14との結合部分12aが肉厚に形成されている。筒部材12はFW法によって形成され、強化繊維としては炭素繊維のロービングが使用される。ロービングとは細い単繊維のフィラメントを多数本束ねた実質無撚りの繊維束を意味する。マトリックス樹脂としてはエポキシ樹脂が使用されている。
【0038】
筒部材12は主にヘリカル巻層で構成されているが、結合部分12a及びその近くにはフープ巻層が形成されている。また、筒部材12の最外層には炭素繊維束ではなく、ポリエステル糸が全長にわたってフープ巻で巻き付けられている。図1(b)に示すように、第1の端部部材13と筒部材12との結合部分の構成は、繊維束被巻付け部13aと接触する最内層側から順に、ヘリカル巻層18a、フープ巻層18b、ヘリカル巻層18c、ポリエステル糸層18dが設けられた構成となる。
【0039】
次に前記のように構成されたプロペラシャフト11の製造方法を説明する。図2は第1の端部部材13、第2の端部部材14、被巻付け部材15及び治具20の関係を示す模式分解斜視図であり、図3は第1の端部部材13、第2の端部部材14、被巻付け部材15及び治具20が組み付けられた状態の一部破断模式断面図である。
【0040】
プロペラシャフト11を製造する際は、マンドレルを使用せずに、治具20を使用して第1及び第2の端部部材13,14が両端に結合された被巻付け部材15をFW装置に支持してFWが行われる。
【0041】
図2に示すように、治具20は、各端部部材13,14の樹脂含浸繊維束が密着して巻き付けられる部分を除いた部分を覆うとともに、FW時に樹脂含浸繊維束の一部が巻き付けられる筒状のカバー部21を備えている。カバー部21は一端側が小径に形成され、FW装置の回転支持部に支持可能な軸部22がカバー部21の小径側の端部に連続して一体的に形成されている。カバー部21の周面にはピン23が一定ピッチで周方向に沿って環状に設けられている。
【0042】
また、第1の端部部材13に組み付けられる治具20は、第1の端部部材13を軸部22と被巻付け部材15の回転中心とが同軸となる状態で支持可能で、軸部22と一体回転可能な支持部24を備えている。支持部24は、一端側に端部部材13に取り外し可能に固定される固定部としてのT字状部24aが設けられたシャフトで構成され、他端側に雄ねじ部24bが形成されている。そして、T字状部24aが孔13dに挿通された状態で、軸部22から突出した雄ねじ部24bに螺合されるナット26が締め付けられることにより、軸部22の端部に一体に形成された座金部27を介して軸部22に固定されるようになっている。図3に示すように、治具20はカバー部21の端部内面が、継手部13bの段部に嵌合されて、治具20の芯出しが行われるようになっている。
【0043】
第2の端部部材14の支持部に組み付けられる治具20は、第2の端部部材14を軸部22と被巻付け部材15の回転中心とが同軸となる状態で支持可能で、軸部22と一体回転可能な支持部としてのボルト25を備えている。ボルト25は先端部に雄ねじ25aが設けられ、雄ねじ25aが端部部材14に取り外し可能に固定される固定部を構成する。ボルト25は雄ねじ25aがねじ穴14dに螺合される状態で締め付けられることにより、軸部22の端部に一体に形成された座金部27を介して軸部22に固定されるようになっている。図3に示すように、治具20はカバー部21の端部内面が、継手部14bの基端の段部に嵌合されて、治具20の芯出しが行われるようになっている。
【0044】
図4はFW装置の模式側面図、図5は図4のB−B線における模式部分断面図である。図4に示すように、フィラメントワインディング装置(以下、FW装置と称す)30はマンドレルや芯材あるいはタンクを製造する場合のライナ等の被繊維束巻付け部材31を回転可能に支持する一組の回転支持部材としてのチャック32を備えている。FW装置30は、本願出願人が先に提案した装置(特開2002−283467号公報に開示された装置)と同様な巻付けヘッド(ヘリカル巻用ヘッド及びフープ巻用ヘッド)33を備えており、図4ではヘリカル巻用ヘッドのみが図示されている。巻付けヘッド33はベースプレート34上に設けられたレール35(図5に図示)上をチャック32に支持された被繊維束巻付け部材31に沿って、図示しない駆動手段により移動可能となっている。チャック32は可変速モータ(図示せず)により回転駆動され、制御装置Cの指令によってチャック32が巻付けヘッド33の移動速度と同期した状態で回転駆動される。そして、図示しない繊維束供給部から樹脂含浸装置を経て供給される繊維束Rを、被繊維束巻付け部材31に対する巻付け角度を任意の角度に設定して被繊維束巻付け部材31に巻き付けることができるようになっている。
【0045】
図5に示すように、巻付けヘッド33は、被繊維束巻付け部材31に貫通される孔を有する支持板36を備えている。ヘリカル巻用ヘッドの支持板36には、複数本の繊維束を同時に被繊維束巻付け部材31に対してヘリカル巻で巻付け可能とするため、図5に示すように複数のガイド37が被繊維束巻付け部材31の周方向に沿って配列された状態で設けられている。この実施の形態では28本の繊維束を案内可能にそれぞれ28個の大小2種のガイド37が2個の同心円上に配列されている。フープ巻部を備えたフープ巻用ヘッドは、繊維束Rを被繊維束巻付け部材31に対して2本同時にフープ巻で巻付け可能とするためのガイドを備えている。ヘリカル巻用ヘッドとフープ巻用ヘッドとは一体的な移動と、独立した状態での移動とが可能に構成されている。そして、数本の繊維束Rを同時に被繊維束巻付け部材31に対してヘリカル巻で巻付け可能となり、ヘリカル巻用ヘッドが被繊維束巻付け部材31に沿って一回往動又は復動することで被繊維束巻付け部材31の全周面に亘って繊維束Rがヘリカル巻で巻き付けられる。
【0046】
両端に第1及び第2の端部部材13,14がそれぞれ連結された被巻付け部材15にFWを行う場合は、先ず第1及び第2の端部部材13,14にそれぞれ治具20を組み付ける。第1の端部部材13に治具20を組み付ける際は、支持部24のT字状部24aを孔13dに挿通した後、支持部24をカバー部21の大径部側から軸部22に挿通する。そして、軸部22から突出した雄ねじ部24bにナット26を螺合させて締め付けることにより、軸部22の端面とナット26との間に介装された座金部27を介して軸部22を第1の端部部材13側に押圧し、支持部24を介して治具20が第1の端部部材13に組み付けられる。
【0047】
第2の端部部材14に治具20を組み付ける際は、カバー部21を第2の端部部材14の継手部14b側を覆うように第2の端部部材14に当接させ、ボルト25を座金部27に挿通して軸部22側からカバー部21に挿通する。そして、雄ねじ25aを第2の端部部材14のねじ穴14dに螺合させて締め付けることにより、軸部22の端面とボルト25の頭部との間に介装された座金部27を介して軸部22を第2の端部部材14側に押圧し、ボルト25を介して治具20が第2の端部部材14に組み付けられる。そして、図3に示すように、被巻付け部材15、第1の端部部材13、第2の端部部材14及び治具20が組み付けられると、FW装置30の一組のチャック32間に支持される被繊維束巻付け部材31を構成する。
【0048】
そして、作業者により被繊維束巻付け部材31がFW装置30のチャック32に支持される。次に作業者は、繊維束供給部から繊維束Rを引き出し、開繊機構、樹脂含浸槽、張力調整部等を経て巻付けヘッド33に導き、巻付けヘッド33のガイド37に挿通した後、繊維束Rの端部をカバー部21の所定位置に固定する。繊維束Rの端部の固定作業は作業者が手作業で行い、例えば粘着テープを使用して行われる。
【0049】
また、作業者は、被繊維束巻付け部材31の回転速度、巻付けヘッド33の巻付け時の往復移動幅等の巻付け条件を制御装置Cに入力する。繊維束Rとして炭素繊維のロービングが使用される。ロービングとは細い単繊維のフィラメントを多数本束ねた実質無撚りの繊維束を意味する。
【0050】
次にFW装置30による繊維束Rの巻付け運転が開始される。FW装置30が駆動されると、被繊維束巻付け部材31が一定方向に回転され、巻付けヘッド33が被繊維束巻付け部材31の長手方向に沿って往復移動される。繊維束Rは少なくとも最内層となる一層目がヘリカル巻層を形成するように、被繊維束巻付け部材31の軸方向となす角度(巻付け角度)が所定の角度となるように巻き付けられる。巻付け角度は製品のFRPパイプに要求される、曲げ、ねじり、振動等の特性を満足する所定の値(例えば、10〜15°)に設定される。そして、この巻付け角度がセレーション16の歯の延びる方向と軸方向との成す角度と同じため、繊維束Rはセレーション16の溝内に配列されるように巻き付けられる。また、繊維束Rはカバー部21に設けられたピン23の間を通過するように巻き付けられ、ピン23によってカバー部21の周方向への移動が規制された状態で巻き付けられる。
【0051】
ヘリカル巻層が所定層(例えば4層)形成された後、第1及び第2の端部部材13,14と対応する部分及び被巻付け部材15の第1及び第2の端部部材13,14の近傍部に、繊維束Rの巻付け角度がほぼ90°に近い状態で巻き付けられる所謂フープ巻層が所定層(例えば1層)形成される。その後、再びヘリカル巻層が所定層(例えば2層)形成された段階で樹脂が含浸された繊維束Rの巻き付けが完了する。次にポリエステル糸がフープ巻で巻き付けられる。ポリエステル糸が巻き付けられる際に、内側に巻き付けられている繊維束Rに含浸されている樹脂の一部が染み出しポリエステル糸の表面が樹脂で被覆された状態となる。
【0052】
ポリエステル糸の巻付けが完了した後、被繊維束巻付け部材31上に形成された成形体38の両端部を、ピン23の突設位置より繊維束被巻付け部13a,14a寄りの治具20の表面と対向する位置でそれぞれ切断する。第1の端部部材13側の切断位置は、例えば、図6にAで示す位置となり、第2の端部部材14側の切断位置も同様な位置になる。そして、繊維束供給部に繋がる繊維束Rから成形体38が切り離された後、被繊維束巻付け部材31がFW装置30のチャック32から取り外され、成形体38の未硬化の段階で、前記切断位置より軸部22側に巻き付けられた樹脂含浸繊維束が除去される。
【0053】
その後、被繊維束巻付け部材31が成形体38と共に加熱炉に入れられ、所定温度で樹脂が硬化される。硬化温度は樹脂により異なるが、例えばエポキシ樹脂の場合は180℃程度である。加熱硬化後、成形体38が繊維束被巻付け部13a,14aと、カバー部21の先端との間に対応する位置、この実施の形態では環状溝17と対応する位置で切断される。図6に示すように、切断はカッター39により行われる。次に両治具20を取り外された後、回転バランスの検査が行われる。回転バランスが悪い場合は、バランスピースを第1及び第2の端部部材13,14の少なくとも一方に溶接して、バランス調整処理がなされて、筒部材12の端部に第1及び第2の端部部材13,14が結合されたプロペラシャフト11が完成する。
【0054】
治具20を取り外す場合、第1の端部部材13側では、ナット26を緩めて支持部24から取り外し、次にカバー部21を取り外し、最後にT字状部24aを孔13dから取り外す。第2の端部部材14側では、ボルト25の雄ねじ25aと第2の端部部材14のねじ穴14dとの螺合を解除した後、カバー部21を取り外すことで治具20の除去が完了する。
【0055】
この実施の形態では以下の効果を有する。
(1) FRP製の筒部材12の両端に結合された第1及び第2の端部部材13,14の筒部材12との結合部分における外周面に、最内層の繊維束の配列方向に沿って延びる複数の凸条で構成された係止部(セレーション16)が形成されている。そして、筒部材12の強化繊維は最内層にヘリカル巻層が設けられた複数層に構成され、強化繊維を構成する繊維束Rは最内層において前記係止部により第1及び第2の端部部材13,14に対する周方向への相対移動が規制されるとともに全長にわたって連続するように配列されている。即ち、FRP製の筒部材に端部部材のセレーションを圧入して製造する場合と異なり、繊維が切断されていない。従って、第1及び第2の端部部材13,14間のねじり強度が、FRP製の筒部材に端部部材のセレーションを圧入して製造されたプロペラシャフトに比較して大きくなり、回転トルクの伝達が良好に行われる。
【0056】
(2) 前記係止部はセレーション16で構成されている。従って、複数の凸条をセレーション16と異なり規則性のない状態で設ける場合に比較して、前記係止部の加工が容易となる。
【0057】
(3) 被巻付け部材15が紙製のため、金属製や樹脂製とした場合に比較して軽量化できるとともにコストも安くなる。
(4) 筒部材12の一端にヨークタイプの継手部13bを備えているため、プロペラシャフトをドライブシャフトと連結するユニバーサルジョイントに一般的な十字軸を使用することができる。
【0058】
(5) プロペラシャフト11を製造する際は、筒状の被巻付け部材15の両端に、第1及び第2の端部部材13,14を連結し、該端部部材13,14の繊維束被巻付け部13a,14aを除いた箇所を覆うカバー部21を備えた治具20を使用してFWを行う。そして、FWを行った後、巻き付けられた樹脂含浸繊維束を硬化前又は硬化後に切断し、治具20と端部部材13,14との連結を解除することにより、筒部材12の両端に第1及び第2の端部部材13,14が結合されたプロペラシャフト11が製造される。
【0059】
従って、FWの際にマンドレルを使用しないため、マンドレルからの脱型工程が不要となる。その結果、マンドレルの径の管理やその補修(再メッキ等)が不要となるとともに、筒部材12の寸法精度(内径、端面直角度、面粗度)が高くなくてもよく、製造コストが低くなる。また、第1及び第2の端部部材13,14のセレーション16をFRP製の筒部材12に圧入しないため、その分低コストになるとともに、FRP製チューブへセレーションの圧入を行う構成に起因する従来の不具合を解消できる。即ち、端部部材の圧入によりクラックが発生する虞がなく、クラック発生を防止するためにFRP製の筒部材12の精度を高める必要がなく、セレーション加工の精度を高める必要もない。例えば、セレーション16の歯の加工にホブを使用せずに転造でよくなる。また、樹脂含浸繊維束がセレーションの溝内を埋めるように配列された後、樹脂が硬化されるため、筒部材12の内面とセレーション16の溝の底部との間に隙間が存在しないため、端面から水分が侵入するのを防止するシールが不要となる。さらに、セレーション16が熱硬化性樹脂に埋まった状態で熱硬化性樹脂が硬化されるため、従来のFRP製のパイプに後からセレーションを圧入する場合に比較して、セレーション16と熱硬化性樹脂との接着面積が大きくなり、ねじり強度がより大きくなる。
【0060】
(6) 第1及び第2の端部部材13,14は樹脂含浸繊維束が巻き付けられる必要が無い部分をカバー部21で覆われた状態で治具20を介してFW装置30のチャック32に支持され、FWが行われる。従って、FWの際、樹脂含浸繊維束は治具20にも巻き付けられて治具20と対応する箇所で折り返すことができ、第1及び第2の端部部材13,14に巻き付けながら樹脂含浸繊維束を第1及び第2の端部部材13,14で折り返す必要がない。その結果、得られるプロペラシャフト11の回転バランスが良くなる。また、特許文献2に記載の方法と異なり、第1の端部部材13の継手部13bのようにヨークタイプの継手部13bであっても支障なく設けることができる。さらに、第1及び第2の端部部材13,14が金属製で、筒部材12との結合部から突出した部分が存在するため、バランスピースを溶接することができる。
【0061】
(7) FWは少なくとも最内層にヘリカル巻層が形成されるように行われる。第1及び第2の端部部材13,14の繊維束被巻付け部13a,14aの外周面には、一定間隔で第1及び第2の端部部材13,14の軸方向に対して、最内層に形成されるヘリカル巻層の樹脂含浸繊維束の配列角度と等しい角度で互いに平行に延びる複数の凸条(セレーション16)が形成されている。そして、FWは、ヘリカル巻層を形成する際には、ヘリカル巻層を構成する全ての樹脂含浸繊維束の巻付けが同時に行われる。従って、樹脂含浸繊維束を巻き付けるのに必要な時間を短縮できて、生産性が向上する。
【0062】
(8) カバー部21にはFW時に樹脂含浸繊維束の配列を規制するピン23が突設されている。従って、第1及び第2の端部部材13,14の繊維束被巻付け部13a,14aに巻き付けられる樹脂含浸繊維束の巻付け角度が適正な値に規制され、プロペラシャフト11のねじり強度の向上に寄与する。
【0063】
(9) FW後、被繊維束巻付け部材31に巻き付けられた樹脂含浸繊維束を、樹脂硬化前にピン23の突設位置より繊維束被巻付け部13a,14a寄りの治具20の表面と対向する位置で切断して繊維束供給部に繋がる繊維束Rから切り離す。その切断箇所よりピン23側に巻き付けられた未硬化の樹脂含浸繊維束を除去した後、樹脂の加熱硬化を行う。従って、治具20に巻き付けられた樹脂含浸繊維束のうちピン23と対応する箇所に巻き付けられた樹脂含浸繊維束は樹脂硬化前に除去されるため、硬化後に除去するのに比較して容易に除去でき、治具20を再使用するための手間が少なくなる。例えば、樹脂硬化後にピン23が突出している部分のFRPを除去するには、ピン23を取り外し可能に構成し、ピン23をカバー部21から取り外した後、前記FRPを除去する必要があり、作業が面倒になる。
【0064】
(10) セレーション16は歯の高さが、1層分の繊維束Rの厚さとほぼ同じに形成されているため、1層目のヘリカル巻層と配列方向が軸線に対して対称な2層目を構成する繊維束Rの配列に支障を与えない。
【0065】
(11) 第1及び第2の端部部材13,14に環状溝17が形成されており、治具20が第1及び第2の端部部材13,14に連結された状態では、環状溝17はカバー部21に覆われず、繊維束Rは環状溝17を跨いで巻き付けられる。従って、成形体38の加熱硬化後に環状溝17と対応する位置で成形体38を切断することにより、切断時にカッター39の刃が傷ついたり、あるいは第1及び第2の端部部材13,14が傷つけられることを回避できる。また、バランスピースを環状溝17内に溶接すれば、バランスピースが第1及び第2の端部部材13,14の周面から突出するのを回避できる。
【0066】
(12) 治具20は、カバー部21と一体的に形成され、FW装置30のチャック32に支持可能な軸部22を備えており、第2の端部部材14のように、軸状の継手部14bを有する端部部材であっても、端部部材の軸部はFW装置30のチャック32に支持されることはない。従って、製品の軸部(シャフト)をFW装置30のチャック32で支持してFWを行う特許文献2に開示された方法と異なり、製品の軸部(継手部14b)が傷つく虞がない。
【0067】
(13) 第1の端部部材13と治具20とを連結固定する支持部24は、T字状のシャフトで構成されている。そして、T字状部24aが第1の端部部材13の孔13dと係合した状態で、軸部22から突出した雄ねじ部24bに螺合するナット26を締め付けることで第1の端部部材13と治具20とが連結固定され、ナット26を緩めると、カバー部21と第1の端部部材13との係合が解除される。従って、治具20の第1の端部部材13への組み付け、取り外しが簡単である。
【0068】
(14) 第2の端部部材14と治具20とを連結固定する支持部はボルト25で構成され、その先端部に形成された雄ねじ25aを第2の端部部材14の継手部14bに形成されたねじ穴14dに螺合させて締め付けることで、第2の端部部材14と治具20とが連結固定される。そして、ボルト25を緩めると、カバー部21と第2の端部部材14との係合が解除される。従って、治具20の第2の端部部材14への組み付け、取り外しが簡単である。
【0069】
(第2の実施の形態)
次に第2の実施の形態を図7及び図8に従って説明する。この実施の形態では第1の端部部材13のヨーク径、即ち継手部13bを構成する一組の支持片40aが突設される大径部40の外径が、繊維束被巻付け部13aの外径より大きな場合の製造方法に関するものである。ヨーク径が繊維束被巻付け部13aの外径より大きいと、第1の端部部材13の継手部13bをカバー部21で覆った状態で治具20を第1の端部部材13に連結したときに、カバー部21と繊維束被巻付け部13aとの間に段差部が存在する状態となる。従って、樹脂が含浸された繊維束Rを被繊維束巻付け部材31にFWで巻き付けると、繊維束被巻付け部13aのカバー部21寄りにおいて、繊維束Rがセレーション16の溝内に配列するのが困難となる。
【0070】
この実施の形態はそのような不具合を解消することができる製造方法に関するものである。そして、第1の端部部材13が繊維束被巻付け部13a側と継手部13b側とに分割され、FWによる繊維束Rの巻付け、成形体38の硬化及び治具20の取り外しが完了した後、継手部13b側が繊維束被巻付け部13a側に結合される点が第1の実施の形態と大きく異なっている。第1の実施の形態と同様な部分は同一符号を付して詳しい説明を省略する。図7はプロペラシャフト11の第1の端部部材13側の部分模式分解側面図、図8は治具の連結状態を示す模式部分断面図である。
【0071】
図7に示すように、第1の端部部材13は繊維束被巻付け部13aが形成された支持筒41と、継手部13bとから構成され、筒部材12の形成が完了した後、支持筒41と継手部13bとが摩擦圧接で接合される。支持筒41には、筒部材12に結合された状態で筒部材12から突出する突出部41aが形成されている。また、支持筒41の中心には、ねじ孔41cが形成されている。継手部13bの大径部40には突出部41aの先端の環状部と同径の接合部40bが突設されている。
【0072】
図8に示すように、第1の端部部材13に連結される治具20は第1の実施の形態と異なり、第1の端部部材13を軸部22と被巻付け部材15の回転中心とが同軸となる状態で支持可能で、軸部22と一体回転可能な支持部としてボルト25を備えている。従って、治具20は第2の端部部材14側の治具20と同様な構成となる。ボルト25は雄ねじ25aがねじ孔41cに螺合可能な太さに形成されている。
【0073】
この実施の形態では被巻付け部材15の一端に支持筒41が、他端に第2の端部部材14がそれぞれ嵌合され、支持筒41及び第2の端部部材14に治具20が組み付けられて被繊維束巻付け部材31が構成される。支持筒41に対する治具20の組み付けは、図8に示すように、カバー部21を支持筒41の突出部41aを覆うように支持筒41に当接させ、ボルト25を座金部27に挿通して軸部22側からカバー部21に挿通する。そして、雄ねじ25aを支持筒41のねじ孔41cに螺合させて締め付けることにより、軸部22の端面とボルト25の頭部との間に介在する座金部27を介して軸部22を支持筒41側に押圧し、ボルト25を介して治具20が支持筒41に組み付けられる。
【0074】
そして、前記のように構成された被繊維束巻付け部材31が第1の実施の形態と同様にFW装置30のチャック32に支持された状態でFWが行われ、被繊維束巻付け部材31上に成形体38が形成される。次に、成形体38の未硬化の段階で、カバー部21上に巻き付けられている樹脂含浸繊維束の大部分が除去された後、成形体38が硬化され、加熱硬化後、成形体38が所定の位置で切断される。
【0075】
次に、筒部材12に結合された支持筒41の突出部41aに継手部13bが摩擦圧接によりに溶着される。継手部13bを突出部41aに溶着する際には、筒部材12を固定し、継手部13b側を回転させた状態で、継手部13bの接合部40bの端面を突出部41aの端面に圧接させる。摩擦圧接装置(図示せず)には、図7に鎖線で示すように、突出部41aと係合して支持筒41を芯出しした状態で支持する金属製の芯出し支持部42が設けられている。そして、芯出し支持部42が突出部41aと係合することにより、支持筒41はその回転が阻止された状態で支持されて摩擦圧接が行われる。継手部13bの溶着が完了すると、プロペラシャフト11が完成する。
【0076】
この実施の形態の製造方法では、第1の実施の形態の(5)〜(12),(14)と同様の効果を有する他に次の効果を有する。
(15) ヨークタイプの継手部13bを備えた第1の端部部材13は、FWにより支持筒41が結合された筒部材12の完成後に、継手部13bが支持筒41に溶着される。従って、継手部13bの大径部40の外径が繊維束被巻付け部13aの外径より大きな場合でも、繊維束被巻付け部13aのセレーション16の溝内に最内層の繊維束Rが確実に充填された状態に配列することができる。
【0077】
(16) 継手部13bの大径部40の外径が繊維束被巻付け部13aの外径より小さな場合でも、継手部13b以外の部分を予め製造して保管しておき、必要なときに継手部13bを溶着することにより、継手部13bの形状が車種に対応して多種存在する場合に対応し易くなる。また、継手部13bを除いた他の部分からなる中間製品の状態で、部品メーカーから組立メーカーに納品し、組立メーカーが独自の継手部13bを溶着することも可能となる。
【0078】
(17) 第1の端部部材13を軸部22と一体回転可能に支持するためのT字状部24aを設ける必要がなく、第1及び第2の端部部材13,14に組み付ける治具20の構成を同じ構成にすることが可能となる。
【0079】
(18) 継手部13bと支持筒41との溶着が摩擦圧接により行われる。従って、溶着作業の際に火花が飛ぶ虞がなく、火花の飛散防止処置が不要になる。(19) 筒部材12は熱に比較的弱いため、筒部材12に結合された支持筒41に金属製の継手部13bを摩擦圧接により溶着する際、摩擦圧接による熱で筒部材12が加熱されるのを抑制する必要がある。この実施の形態では、金属製の芯出し支持部42が支持筒41に接触した状態で摩擦圧接が行われるため、摩擦圧接の際に発生する熱が芯出し支持部42を介して逃げる状態となり、筒部材12が加熱されるのを抑制することができる。
【0080】
なお、実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 筒部材12の最内層を構成し、互いに交差せずに配列される繊維束は、ヘリカル巻に限らず、フープ巻であってもよい。この場合、第1及び第2の端部部材13,14の繊維束被巻付け部13a,14aの外周面に形成される係止部として、ねじ状の溝が形成される。また、フープ巻の範囲はFRP製の筒部材12の全長に亘ってもよいし、繊維束被巻付け部13a,14aを覆う部分のみでもよい。
【0081】
○ 繊維束被巻付け部13a,14aの外周面に形成される係止部は、最内層に形成されるヘリカル巻層を構成する繊維束Rが該係止部により第1及び第2の端部部材13,14に対する周方向への相対移動を規制可能な形状であればよく、セレーション16に限らない。例えば、繊維束Rの配列方向に沿って延びるように形成された複数の凸条を設けてもよい。凸条は繊維束被巻付け部13a,14aの軸方向全長に連続している必要はなく、また、隣接する凸条間の周方向における間隔も一定でなくてもよい。この場合も、同一層においては繊維束Rが互いに平行に配列される構成において、最内層のヘリカル巻層が所定の巻付け角度で巻き付けられるのに凸条が寄与する。
【0082】
〇 繊維束被巻付け部13a,14aの外周面に形成される係止部は、最内層に配列される繊維束Rの配列方向に沿って延びる凸条に限らず、軸方向に対する配列角度が互いに反対となるヘリカル巻層を構成するいずれの繊維束Rに対してもその配列を案内可能な多数の凸部を係止部として設けてもよい。例えば、図9(a)に示すように、繊維束被巻付け部13aの表面に多数のピン43を突設したり、図9(b)に示すように、溝が繊維束Rの配列角度と同じ方向に延びるローレット44を形成してもよい。繊維束被巻付け部14aについても同様なピン43やローレット44を設けてもよい。図9(a)ではピン43の長さを誇張して表しているが、ピン43は少なくともヘリカル巻層1層分の厚さに相当する長さ以上で、最外層に配列された繊維束Rの外側に突出しない長さが好ましい。ローレット44の溝の深さは、ヘリカル巻層1層分の厚さに相当する深さが加工の容易性の点から好ましい。
【0083】
これらの係止部(ピン43又はローレット44)が設けられた第1及び第2の端部部材13,14を使用した場合は、同一層において繊維束Rが互いに平行に配列される構成は必ずしも必要ではない。同時に巻き付ける繊維束の本数が1本の一般的なFW装置を使用してヘリカル巻層を形成すると、ヘリカル巻層を構成する繊維束は同じ層内で互いに交差するように配列される。従って、係止部がヘリカル巻層を構成する繊維束Rの配列方向に沿って延びる凸条の場合は、繊維束Rを該凸条が存在する面内で交差するように配列することが阻止されるため一般的なFW装置を使用してヘリカル巻層を形成すると、繊維束の配列が円滑に行われない。しかし、前記構成のピン43やローレット44が設けられた場合は、同時に巻き付ける繊維束の本数が1本の一般的なFW装置を使用してヘリカル巻層を形成しても、繊維束が係止部によって案内されて所定の巻付け角度で良好に配列される。
【0084】
○ 繊維束被巻付け部13a,14aの外周面に形成される係止部として、外周面をサンドブラスト等で粗面化した構成としてもよい。この場合も、最内層に形成されるヘリカル巻層を構成する繊維束の周方向への移動が規制される。
【0085】
〇 第1及び第2の端部部材13,14の繊維束被巻付け部13a,14aの外径は一定に限らず、例えば、図10(a)〜(d)に示すように、テーパ部を有する形状に形成してもよい(第1の端部部材13のみ図示)。なお、図ではテーパを誇張して表している。繊維束被巻付け部13a,14aが継手部13b,14b側に向かって拡径となるテーパ部を有する第1及び第2の端部部材13,14を使用した場合は、第1及び第2の端部部材13,14が筒部材12から抜け難くなる。
【0086】
○ 第1及び第2の端部部材13,14に環状溝17を設けなくてもよい。しかし、成形体38を切断する際にカッター39が第1及び第2の端部部材13,14に当たるのを防止するため段差部を設けるとともに、段差部にカバー部21の端部が、繊維束被巻付け部13a,14aの端面に当接するのを規制する凸部(例えばピン)を設けてもよい。
【0087】
○ 第2の実施の形態において、成形体38の切断時にカッター39がカバー部21に当たるのを防止するため、カバー部21の外周面に環状溝を設けたり、段差部を設けてもよい。
【0088】
〇 被巻付け部材15は紙製の円筒に限らず、樹脂製としてもよい。耐熱性が不充分な熱可塑性の樹脂製とした場合は、成形体38を硬化させる際に被巻付け部材15が溶融し、筒部材12の内面に偏った状態で付着して回転バランス不良となり易い。従って、熱硬化性樹脂製もしくは耐熱性の熱可塑性樹脂とする方がよい。耐熱性の熱可塑性樹脂とする場合、FRPマトリックス樹脂の硬化温度(百数十℃)より耐熱温度が高い樹脂がより好ましいが、マトリックス樹脂の初期硬化温度(100℃程度)より耐熱温度が高ければ適用可能である。被巻付け部材15が紙製の場合は、プロペラシャフト11を使用する際、被巻付け部材15の部分は回転トルクの伝達に殆ど寄与しないが、樹脂製とすることにより回転トルクの伝達に寄与する。また、樹脂製の方が紙製より被巻付け部材15の真円精度が高く、回転バランスが良い。熱硬化性樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン樹脂等が挙げられる。耐熱性の熱可塑性樹脂のうち、エポキシ(マトリックス)硬化温度以上の耐熱性があるものとして、例えば、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリアミドイミド(PAI)、熱可塑性ポリイミド(PI)、ポリフェニレンサルファイド(PPS)、ポリサルホン(PSF)、ポリエーテルスルホン(PES)、ポリアリレート(PAR)、ポリエーテルイミド(PEI)等の所謂スーパーエンプラが挙げられる。また、エポキシ初期硬化温度より耐熱性がある熱可塑性樹脂としては、ポリアミド=ナイロン(PA)、ポリカーボネート(PC)、ポリエチレンテレフタレート=ポリエステル(PET)等の汎用エンプラで耐熱性が比較的高いものが挙げられる。
【0089】
〇 被巻付け部材15として熱硬化性樹脂を含浸、硬化させた紙製としてもよい。この場合も樹脂製の被巻付け部材15を使用した場合と同様な効果が得られる他に、熱硬化性樹脂だけで被巻付け部材15を製造する場合に比較して製造が簡単になる。
【0090】
〇 被巻付け部材15としてFRP製の円筒を使用してもよい。強化繊維としては炭素繊維が好ましい。また、本硬化したFRP製の円筒に限らず、プレキュア(前硬化)された状態のFRP製の円筒を使用してもよい。プレキュアされた状態のFRP製の円筒は成形体38の硬化時に本硬化されるため、製品であるプロペラシャフト11として完成した段階では、回転トルクの伝達に寄与する。そして、炭素繊維強化のFRP製の円筒を使用した場合は、被巻付け部材15に巻き付けられた繊維束Rによって形成されるヘリカル巻層の層数を減らすことも可能になり、小径化、軽量化に寄与する。また、プレキュアされた状態のFRP製の円筒の場合、その上に巻き付けられる樹脂含浸繊維束との接着強度が、本硬化されたFRP製の円筒に巻き付ける場合に比較して高くなる。
【0091】
〇 被巻付け部材15として金属製の円筒を使用してもよい。金属製とする場合は、軽量で耐熱性及び剛性の高い金属で形成されたものが好ましい。この場合も紙製より被巻付け部材15の真円精度が高く、回転バランスが良くなる。
【0092】
○ 被巻付け部材15の外周面に係止部を設けてもよい。係止部としては例えば、表面を荒らして多数の凹凸を形成したものや、繊維束Rの配列方向に沿って延びる溝を有するローレット加工を施したものが挙げられる。この場合、前記係止部により繊維束Rの巻き付け時に繊維束を所定の位置に巻き付け易くなる。また、前記係止部により繊維束Rが被巻付け部材15の周方向に相対移動するのが規制されるため、被巻付け部材15を金属製や樹脂製として被巻付け部材15にもトルク伝達機能を持たせる構成においてより有効となる。
【0093】
○ 被巻付け部材15と第1及び第2の端部部材13,14との結合は、13,14の嵌合筒部13c,14cの外周面に被巻付け部材15の端部を嵌合させるのではなく、嵌合筒部13c,14cの内面に被巻付け部材15の端部を嵌合させてもよい。また、嵌合筒部13c,14cを突設せずに、繊維束被巻付け部13a,14aの端面に被巻付け部材15の端部が嵌合される嵌合穴を形成してもよい。それらの場合、被巻付け部材15を一定径とせずに、端部を小径としてもよい。
【0094】
○ 被巻付け部材15に制振作用を持たせてもよい。プロペラシャフト11が自動車に組み付けられた場合、露出状態で使用されるため、走行中にタイヤが跳ねた小石等の異物が当たることがあり、その際、大きな音が発生する。被巻付け部材15に制振作用を持たせることにより、前記異物が当たった際の振動を吸収して大きな音の発生を抑制することができる。例えば、ボール紙製や段ボール製の筒の表面に樹脂の含浸を阻止する処理を施したり、被巻付け部材15の材質を独立気泡の発泡体で形成する。独立気泡の発泡体としては、例えばポリイミド系の発泡プラスチックなどが適用可能である。
【0095】
〇 端部部材の組み合わせは、ヨークタイプの第1の端部部材13と、シャフトを有するタイプの第2の端部部材14との組み合わせに限られない。例えば、プロペラシャフト11の使用態様に応じて、ヨークタイプの第1の端部部材13が筒部材12の両端に結合された構成や、シャフトを有するタイプの第2の端部部材14が筒部材12の両端に結合された構成としてもよい。これらのプロペラシャフト11も前記各実施の形態と同様にして製造することができる。
【0096】
○ 筒部材12は必ずしも結合部分12aの肉厚が厚く形成されるものに限らず、全長にわたって一定の厚さであってもよい。両端部部材13,14はFRP製の筒部材12に後から圧入するのではなく、各端部部材13,14の繊維束被巻付け部13a,14aに樹脂が含浸された繊維束Rを巻き付けて硬化させるため、圧入時にFRP製の筒部材12に掛かる応力に対抗する機能を有するフープ巻層18bの層数を少なくしたり省略してもよい。省略した場合は、筒部材12は全長にわたって一定の厚さとなり、軽量化にも寄与する。
【0097】
〇 成形体38の一部(樹脂含浸繊維束)を硬化前にカバー部21から除去する際、ピン23を抜いた後に除去してもよい。
〇 成形体38の硬化前には繊維束供給部に繋がる繊維束の切断だけを行い、不要な部分の除去は成形体38の硬化後に、ピン23を抜いた状態で除去するようにしてもよい。ピン23が取り外し不能な場合は、成形体38の硬化後に不要な部分を除去するには、不要な部分を細かく破壊して除去する必要があるが、ピン23を取り外し可能にすることにより、成形体38の硬化後に不要な部分を除去するのが容易となる。
【0098】
〇 カバー部21のピン23を省略してもよい。ピン23を省略した構成では、成形体38の硬化後に不要な部分の除去を行う場合でも、ピン23の抜き取り作業が不要となり、成形体38の不要部分の除去作業が容易になる。
【0099】
〇 ヨークタイプの第1の端部部材13に組み付ける治具20において、繊維束被巻付け部13a側と継手部13b側との間にある壁にねじ孔を形成し、支持部としてボルトを使用してもよい。この場合、T字状部24aを備えた支持部24より構造が簡単になる。
【0100】
○ 治具20は、第1及び第2の端部部材13,14を軸部22と被巻付け部材15の回転中心とが同軸となる状態で支持可能で、軸部22と一体回転可能な支持部と、カバー部21とを一体に形成してもよい。例えば、カバー部の内側において軸部22と同軸にシャフトを設けその先端に雄ねじ部を設ける。そして、第1の端部部材13には前記雄ねじ部が螺合されるねじ孔を又はねじ穴を設ける。
【0101】
○ 治具20の軸部22をカバー部21と分離可能とし、軸部22と前記支持部とを一体に形成してもよい。例えば、カバー部21の端部に軸部22が嵌合される孔を形成し、軸部22をその孔に嵌合した状態で雄ねじ部を第1及び第2の端部部材13,14のねじ孔又はねじ穴に螺合させる。
【0102】
○ 第2の端部部材14に取り付ける治具20の芯出しは、カバー部21の端部内面を、継手部14bの基端の段部に嵌合することにより行う構成に代えて、継手部14bの軸部が治具20の軸部22の内面と嵌合することで芯出しが行われる構成としてもよい。
【0103】
○ 治具20と端部部材13,14とを固定する方法は、上記実施の形態に限らない。例えば、第1の端部部材13を固定する方法として、カバー部21にヨークタイプの継手部13bに形成されている孔13dと対応する孔を形成する。そして、カバー部21が継手部13bの段部と嵌合した状態で、その孔及び孔13dが対応し、その状態で孔及び孔13dを貫通するようにピンを挿入して、治具20と第1の端部部材13とを固定してもよい。
【0104】
また、第2の端部部材14と治具20とを固定する場合、継手部14bのシャフト部にねじ穴14dを設けずに、第2の端部部材14と治具20とを固定する補助部材を使用する。補助部材は板材の両端が直角に折り曲げられて形成され、継手部14bのシャフト部の中間位置に形成された溝部に係止される係止部が一端に形成され、ボルト25の雄ねじ25aが螺合されるねじ孔が他端に形成されている。そして、係止部が前記溝部に係止されて第2の端部部材14に固定された状態で、ボルト25の雄ねじ25aがねじ孔に螺合されることにより第2の端部部材14と治具20とが固定される。
【0105】
○ 筒部材12に巻き付けられる繊維束Rのうち、少なくとも最内層に配列されるヘリカル巻層を構成する繊維束Rが同一層内において互いに平行に配列されていれば、他の層は互いに平行に配列されていなくてもよい。例えば、最内層のヘリカル巻層のみ全周一斉に繊維束Rを配列し、他の層は1〜3本の繊維束の巻付けにより構成してもよい。
【0106】
○ FW後、巻き付けられた樹脂含浸繊維束を、樹脂硬化前に治具20の端部と繊維束被巻付け部13a,14aとの間と対応する位置で切断する。そして、治具20を第1及び第2の端部部材13,14から取り外し、被巻付け部材15及び第1及び第2の端部部材13,14に巻き付けられた樹脂含浸繊維束(成形体38)を硬化する。切断前に切断箇所を含む一定幅の領域にテープを巻き付け、テープの上から成形体38を切断する。この場合、切断作業が1回で済む。また、テープを巻き付けた状態で成形体38を切断するため、未硬化の状態でも、切断端部の繊維束Rが毛羽立つのが抑制される。
【0107】
○ 筒部材12との結合部分にセレーション16等の係止部が形成された端部部材が筒部材12の一端に結合され、他端にはセレーションが形成された継手を筒部材12が形成された後から圧入する構成としてもよい。この構成のプロペラシャフト11を製造する場合は、被巻付け部材15の一端に第1及び第2の端部部材13,14の一方を嵌合するとともに治具20を組み付け、他端にはFW装置30のチャック32に支持される軸部を有する支持部材組み付けて被繊維束巻付け部材31を構成する。そして、FW法により一端に端部部材が結合されたFRP製の筒部材12を形成し、セレーションが形成された継手を筒部材12の他端に圧入する。この場合でも、セレーションが形成された継手をFRP製のパイプの両端に圧入する構成に比較して、圧入に起因する不具合を抑制することができる。
【0108】
○ 筒部材12との結合部分にセレーション16等の係止部が形成された端部部材が筒部材12の両端に結合されたプロペラシャフト11であっても、FWの際に片側のみ治具20を介してFW装置30に支持し、片側は治具20を介さずにチャック32に支持してもよい。例えば、治具20を組み付けない側の端部部材は、チャック32に支持される軸部を有する軸部付き端部部材を使用する。そして、FWにより樹脂含浸繊維束が被巻付け部材15及び端部部材に巻き付けられる。治具20を使用しない側は、端部部材で折り返すように繊維束が巻き付けられるが、両側とも端部部材に巻き掛けられて繊維束が折り返す構成に比較して、プロペラシャフト11の回転バランスは良くなる。
【0109】
○ セレーション16の歯の高さ、即ち溝の深さは1層分の繊維束の厚さとほぼ同じに限らず、最内層の繊維束の厚さの1/4層程度〜1層分あれば充分である。
【0110】
○ 治具20を第1及び第2の端部部材13,14に連結する際、第1及び第2の端部部材13,14に当接されるカバー部21の端面と、第1及び第2の端部部材13,14との隙間から、樹脂がカバー部21の内側に入り込むのを防止した状態で繊維束Rの巻き付けを行ってもよい。例えば、カバー部21の端部の外周面に、耐熱性のテープを第1及び第2の端部部材13,14の境に跨るように巻き付ける。ここで言う「耐熱性のテープ」とは、FWの後の樹脂の硬化時の温度で溶融しないテープを意味する。カバー部21の端部を第1及び第2の端部部材13,14に当接させて治具20を第1及び第2の端部部材13,14連結したただけでは、加熱硬化時に当接部から樹脂がカバー部21の内側に侵入する虞がある。しかし、耐熱性のテープを巻き付けることにより、FW後に、成形体38を硬化させる際、樹脂がカバー部21の端面と、第1及び第2の端部部材13,14との隙間から、カバー部21の内側に入り込んで硬化することを防止できる。その結果、治具20と第1及び第2の端部部材13,14との連結を解除する際、カバー部21の取り外しが難くなるのを防止することができる。
【0111】
○ 樹脂がカバー部21の内側に入り込むのを防止する手段として、治具20を第1及び第2の端部部材13,14に連結する際、第1及び第2の端部部材13,14に当接されるカバー部21の端面と、第1及び第2の端部部材13,14との間に耐熱性のシールリングを介装してもよい。耐熱性のシールリングとはFWの後の樹脂の硬化時の温度に耐え得るものであり、例えばシリコーンゴム製、フッ素樹脂製のものが挙げられる。この場合も、FW後に、成形体38を硬化させる際、樹脂がカバー部21の端面と、第1及び第2の端部部材13,14との隙間から、カバー部21の内側に入り込んで硬化することを防止できる。図8のように、カバー部21の外周面と、第1及び第2の端部部材13,14の外周面との間に段差がある状態でカバー部21を第1及び第2の端部部材13,14に当接させる場合、耐熱性のテープを巻き付けたのでは、シールを良好に行うことが難しい。しかし、シールリングを使用すると、段差がある場合でもシールを良好に行うことができる。
【0112】
○ 摩擦圧接により支持筒41と継手部13bとを接合して第1の端部部材13を構成する場合、支持筒41を摩擦圧接に必要な力で保持できれば、突出部41aの形状は任意である。例えば、突出部41aの外周面にギヤ部や多角形の把持部を設けてもよい。
【0113】
〇 第1及び第2の端部部材13,14の材質は金属に限らず、セラミックスでもよい。しかし、金属の方がバランスピースの取付けが容易、動力伝達シャフトの取り扱いの際に第1及び第2の端部部材13,14がどこかにぶっかっても壊れ難い等の利点がある。
【0114】
○ 動力伝達用シャフトは、プロペラシャフト11用に限定されず、その他の動力伝達用シャフトに適用してもよい。
○ 筒部材12の形状は全体を円筒状とするものに限定されず、両端部を円筒状とし、中間部を多角形筒状としてもよい。その場合、被巻付け部材15も対応する多角形筒状に形成される。
【0115】
○ 筒部材12の材料であるFRPは、強化繊維として炭素繊維を、マトリックス樹脂としてエポキシ樹脂を使用したものに限らない。例えば、強化繊維として、アラミド繊維、ガラス繊維等の一般に高弾性・高強度といわれるその他の繊維を採用したり、マトリックス樹脂として、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂等のその他の熱硬化性樹脂を採用してもよい。しかし、プロペラシャフト11の場合は、炭素繊維とエポキシ樹脂の組み合わせが強度やコストの点で好ましい。
【0116】
○ FRPのマトリックス樹脂が熱硬化性樹脂であることに限定されない。例えば紫外線硬化樹脂をマトリックス樹脂として使用してもよい。
以下の技術的思想(発明)は前記実施の形態から把握できる。
【0117】
(1) 請求項7に記載の発明において、前記端部部材は少なくとも一方がヨークタイプの継手である。
(2) 請求項9に記載の発明において、FW時に1〜3本の繊維束が同時に巻き付けられる。
【0118】
(3) 請求項9又は前記技術的思想(2)に記載の発明において、前記凸部はピンによって構成されている。
(4) 請求項9又は前記技術的思想(2)に記載の発明において、前記係止部は繊維束の巻き付け角度に対応したローレットによって構成されている。
【0119】
(5) 請求項9に記載の発明において、前記係止部は一定間隔で端部部材の軸方向に対して最内層に形成されるヘリカル巻層の樹脂含浸繊維束の配列角度と等しい角度で互いに平行に延びる複数の凸条で構成され、FWは少なくとも最内層のヘリカル巻層を形成する際は、当該最内層を構成する全ての樹脂含浸繊維束の巻付けが同時に行われる。
【0120】
(6) 請求項8〜請求項10のいずれか一項に記載の発明において、FW後、巻き付けられた樹脂含浸繊維束を、樹脂硬化前に前記治具の端部と前記繊維束被巻付け部との間と対応する位置で切断した後、治具を端部部材から取り外し、被巻付け部及び端部部材に巻き付けられた樹脂含浸繊維束を硬化する。
【0121】
(7) 請求項14に記載の発明において、前記ピンは前記カバー部に取り外し可能に設けられている。
(8) 繊維強化プラスチック製シャフトの少なくとも一端に端部部材が結合された動力伝達シャフトの製造方法であって、
被巻付け部材の少なくとも一端に繊維束被巻付け部を備えた端部部材を取り付け、該端部部材の前記繊維束被巻付け部を除いた箇所をカバー部を備えた治具で覆った状態でFWを行い、その後前記治具を取り外す動力伝達シャフトの製造方法。
【0122】
(9) 請求項8〜請求項12及び前記技術的思想(2)〜(5)に記載の発明において、前記治具を前記端部部材に連結する際、前記端部部材に当接される前記カバー部の端面と、前記端部部材との隙間から、樹脂がカバー部の内側に入り込むのを防止した状態でフィラメントワインディングを行う。
【0123】
【発明の効果】
以上、詳述したように、請求項1〜請求項8に記載の発明の動力伝達シャフトによれば、FRP製チューブへのセレーションの圧入を行うための構成に起因する不具合を解消でき、しかも、回転トルクの伝達が良い。また、請求項9〜請求項13に記載の発明によれば、前記の効果を有する動力伝達シャフトを容易に製造することができ、ヨークタイプの継手を設けることが可能になる。また、請求項14〜請求項16に記載の発明の治具を使用することで、前記動力伝達シャフトの製造が容易になる。
【図面の簡単な説明】
【図1】(a)は第1の実施の形態のプロペラシャフトの一部破断側面図、(b)は(a)のA−A線における模式断面図。
【図2】模式分解斜視図。
【図3】治具が組み付けられた状態の一部破断模式断面図。
【図4】FW装置の部分概略図。
【図5】図4のB−B線における模式拡大断面図。
【図6】樹脂含浸繊維束の切断位置を示す模式断面図。
【図7】第2の実施の形態の部分模式分解断面図。
【図8】治具の連結状態を示す模式部分断面図。
【図9】(a)は別の実施の形態の端部部材の斜視図、(b)は別の端部部材の側面図。
【図10】(a)〜(d)は別の実施の形態の端部部材の側面図。
【図11】(a)は従来技術のプロペラシャフトの部分分解断面図、(b)はプロペラシャフトの断面図、(c)は(b)の部分拡大図。
【図12】(a),(b)は別の従来技術のプロペラシャフトの製法を示す模式斜視図。
【符号の説明】
R…繊維束、11…動力伝達シャフトとしてのプロペラシャフト、12…筒部材、12a…結合部分、13,14…端部部材、13a,14a…繊維束被巻付け部、13b,14b…継手部、13d…孔、15…被巻付け部材、16…セレーション、18a,18c…ヘリカル巻層、20…治具、21…カバー部、22…軸部、23…ピン、24…支持部、24a…固定部としてのT字状部、24b…雄ねじ部、25…支持部としてのボルト、30…フィラメントワインディング装置(FW装置)、32…回転支持部としてのチャック、43…係止部としてのピン、44…係止部としてのローレット。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power transmission shaft in which an end member is connected to at least one end of a tubular member made of fiber reinforced plastic (hereinafter, referred to as FRP), a method of manufacturing the same, and a jig.
[0002]
[Prior art]
Generally, a propeller shaft that transmits rotational power generated by a vehicle engine to driving wheels of a vehicle is welded to both ends of a metal shaft member with a yoke of a metal universal joint (universal joint) connected to a drive shaft or a driven shaft. (Hereinafter referred to as a metal propeller shaft) is used.
[0003]
In recent years, further weight reduction of each structural member has been required in order to reduce the weight of the vehicle, and the weight reduction by switching to a FRP-made propeller shaft has also been studied and partially implemented. As shown in FIG. 11 (a), as an FRP propeller shaft 51, a metal for connecting the FRP pipe 52 to a drive shaft, a driven shaft or the like (not shown) at both ends (only one side is shown) of the FRP pipe 52. (Joint yoke) 53 is generally press-fitted and joined (for example, see Patent Document 1).
[0004]
As shown in FIG. 11B, a serration 54 having an outer diameter larger than the inner diameter of the end of the FRP pipe 52 is formed on the outer peripheral surface of the joint 53 which is to be joined to the FRP pipe 52. Then, by press-fitting the joint portion of the joint 53 into the FRP pipe 52, a groove is engraved on the inner peripheral surface of the FRP pipe 52 by the teeth of the serration 54 of the joint 53, and the teeth bite into the groove. The joint strength for integrally rotating the 53 and the FRP pipe 52 is ensured. As shown in FIG. 11C, the joint 53 is connected to the FRP pipe 52 in a state where a gap exists between the inner surface of the FRP pipe 52 and the bottom of the groove of the serration 54.
[0005]
Further, as shown in FIG. 12A, a method of manufacturing by a filament winding method using a thin cylinder 57 in which end fittings 56 having a central shaft 55 protruding from the outer end thereof are fitted to both ends, respectively, has also been proposed. (For example, see Patent Document 2). In this manufacturing method, as shown in FIG. 12 (b), a resin impregnated carbon fiber 58 is continuously wound from an end fitting 56 to a thin cylinder 57 to form a resin impregnated carbon fiber layer, and then cured and formed as it is. After that, if necessary, the central shaft 55 is removed to manufacture a propeller shaft.
[0006]
Further, a metal joint member whose shaft portion protrudes from the center of the end face portion is fitted to both ends of the FRP inner shaft member, and a filament winding method is applied to the cylindrical portion of the inner shaft member and the metal joint member. A method of winding and manufacturing a resin-coated fiber bundle has also been proposed (for example, see Patent Document 3).
[0007]
[Patent Document 1]
JP-A-5-139170 (paragraphs [0014], [0018], [0020] of the specification, FIGS. 1 and 2)
[Patent Document 2]
JP-A-55-118831 (page 2, FIG. 3, FIG. 4)
[Patent Document 3]
JP-A-59-50216 (pages 2, 3; FIG. 2)
[0008]
[Problems to be solved by the invention]
In a configuration in which the joint 53 is press-fitted into the FRP pipe 52 as in the case of the FRP propeller shaft 51 disclosed in Patent Document 1, it is necessary to take measures against a large amount of stress applied to the FRP pipe 52 at the time of press-fitting. In addition, since there is a gap between the inner surface of the FRP pipe 52 and the bottom of the groove of the serration 54, measures such as sealing are required to prevent moisture from entering from the end face of the FRP pipe 52. . Further, when manufacturing the FRP pipe 52 by the filament winding method, a step of releasing the mandrel was required.
[0009]
On the other hand, in the propeller shaft disclosed in Patent Document 2, since the step of press-fitting the end fitting 56 corresponding to the joint 53 into the FRP pipe is unnecessary, serration processing and mandrel removal are not required, and the sealing step is also eliminated. It becomes unnecessary. However, in the propeller shaft disclosed in Patent Document 2, since the center shaft 55 is indispensable for the end fitting 56, a yoke type joint 53 having a pair of support portions having holes (the one disclosed in Patent Document 1). ) Cannot be provided. As a result, there is a problem that a universal joint for connecting the propeller shaft to the drive shaft requires a special structure instead of a general cross shaft. Further, there is a problem that the rotational balance of the folded portion of the carbon fiber 58 wound around the end fitting 56 is poor. In addition, in the case of a propeller shaft, generally, a balance piece is attached to a joint by welding in order to accurately adjust the rotational balance. However, in the propeller shaft having the configuration disclosed in Patent Document 2, since the entire joint is covered with FRP, when the balance piece is attached by welding, the FRP is configured to attach the balance piece. It is necessary to cut the existing fiber, and there is a problem that the strength is reduced. When the balance piece was attached to the FRP surface by bonding, the attachment strength was insufficient.
[0010]
Further, the manufacturing method disclosed in Patent Document 3 also has a problem that a yoke type joint 53 (disclosed in Patent Document 1) cannot be provided. Furthermore, in the manufacturing method disclosed in Patent Document 3, since the winding of the fiber bundle is wound only on the cylindrical portion of the inner shaft member and the metal joint member, when performing helical winding, the winding angle cannot be reduced, There is a problem that it is difficult to increase the compression and tensile strength.
[0011]
A first object of the present invention is to provide a power transmission shaft that can eliminate the problems caused by the configuration for press-fitting serrations into an FRP tube and that can transmit rotational torque well. A second object is to provide a manufacturing method capable of easily manufacturing the power transmission shaft and providing a yoke type joint. A third object is to provide a jig used when manufacturing the power transmission shaft.
[0012]
[Means for Solving the Problems]
In order to achieve the first object, the invention according to claim 1 is a power transmission shaft in which end members are connected to both ends of a tubular member made of fiber reinforced plastic. At least one of the end members has a locking portion formed on an outer peripheral surface at a joint portion with the cylindrical member, and the reinforcing member of the cylindrical member has the end member on the outer peripheral surface so as to form a plurality of layers. And the fiber bundles constituting the innermost layer are arranged so as not to intersect with each other, and the relative movement in the circumferential direction with respect to the end member is regulated by the locking portion.
[0013]
According to the present invention, since the end member can be formed without press-fitting into the FRP tubular member, the conventional disadvantage caused by the configuration for press-fitting the serration into the FRP tube can be solved. Further, the relative movement of the fiber bundle constituting the FRP tubular member in the circumferential direction with respect to the end member is restricted by the locking portion formed on the outer peripheral surface of the end member, and the transmission of the rotational torque is good.
[0014]
According to a second aspect of the present invention, in the first aspect, the innermost layer is formed by a helical winding in which fiber bundles are arranged in parallel with each other and are continuous over the entire length. In the present invention, since the fiber bundle is continuous over the entire length, that is, not cut, the transmission of the rotational torque is good.
[0015]
According to a third aspect of the present invention, in the second aspect of the invention, among the fiber bundles constituting the plurality of layers, the fiber bundle arranged in a helical winding is an end on the end member side having the locking portion. The part is disconnected. In the present invention, since the fiber bundles forming the helical winding layer are not arranged so as to be folded back at the end of the end member, it is easy to form with good rotational balance. If the end member is made of metal, the balance piece can be welded to a portion protruding from the joint with the cylindrical member. Even if the end member is not made of metal, the balance piece can be easily attached without cutting the reinforcing fibers.
[0016]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the fiber bundles arranged in a helical winding among the fiber bundles constituting the plurality of layers are in the same layer. They are arranged parallel to each other. According to the present invention, when forming the helical winding layer, one layer of the fiber bundle can be simultaneously wound, so that the winding time can be reduced.
[0017]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the locking portion is a plurality of ridges extending along an arrangement direction of the innermost fiber bundle. It is configured. In the present invention, since the arrangement direction of all the fiber bundles constituting the innermost layer is parallel to the extending direction of the ridge as the locking portion, the function of restricting the relative movement between the end member and the FRP tubular member is provided. And transmission of the rotational torque is performed more favorably.
[0018]
According to a sixth aspect of the present invention, in the fifth aspect of the invention, the locking portion is formed of serrations. According to the present invention, the processing of the locking portion is facilitated.
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the locking portions are provided on both of the end members. According to this invention, an effect corresponding to the invention described in any one of claims 1 to 6 can be obtained on both sides of the power transmission shaft.
[0019]
The invention according to claim 8 is the invention according to claim 7, wherein at least one of the end members has a yoke type joint. According to the present invention, when used as a propeller shaft, a general cross shaft can be used for a universal joint that connects the propeller shaft to the drive shaft.
[0020]
In order to achieve the second object, the invention according to claim 9 is a method of manufacturing a power transmission shaft in which an end member is connected to at least one end of an FRP shaft. At least one end of the tubular member to be wound is provided with an end member provided with a fiber bundle wound portion having an engagement portion formed on an outer peripheral surface, and the fiber bundle wound portion of the end member is attached to the end member. A jig provided with a cover for covering the removed portion is detachably connected to the end member from a side opposite to a side connected to the member to be wound. The side to which the end member is attached is supported by the rotation supporting portion of the filament winding device via the jig so as to be integrally rotatable. The side on which the jig is not attached is connected to the rotation support section via an end member with a shaft having a shaft section supported by the rotation support section or a support member having a shaft section supported by the rotation support section. It is supported so that it can rotate integrally. Then, after performing the filament winding in that state, the wound resin-impregnated fiber bundle is cut before or after curing, the connection between the jig and the end member is released, and when the support member is used, The support member is also removed.
[0021]
According to the present invention, the resin-impregnated fiber bundle is wound around the wound member constituting the part of the product to which the end member is attached and the fiber bundle wound portion of the end member, without using the mandrel, and is cured. By doing so, the end member is joined to the FRP tubular member. The end member is supported by a rotation support portion of a filament winding device via a jig in a state where a portion where the resin-impregnated fiber bundle does not need to be wound is covered with a cover portion, and filament winding is performed. At the time of filament winding, the resin-impregnated fiber bundle is wound around a jig and can be folded back at a location corresponding to the jig, so there is no need to turn the resin-impregnated fiber bundle at the end member while winding it around the end member. The rotation balance of the power transmission shaft is improved. Further, by using a member having a yoke type joint as the end member, a power transmission shaft having a yoke type joint can be easily manufactured.
[0022]
According to a tenth aspect of the present invention, in the ninth aspect of the present invention, the filament winding is performed so that a helical winding layer is formed at least on an innermost layer, and the locking portions are arranged in a fiber bundle of the innermost layer. It is constituted by a plurality of projections provided regularly so that the direction can be regulated in a predetermined direction. In the present invention, the angle at which the resin-impregnated fiber bundle is wound around the end member is regulated to an appropriate value by the locking portion provided on the end member.
[0023]
According to an eleventh aspect of the present invention, in the invention according to the tenth aspect, the locking portion is formed of a resin-impregnated fiber bundle of a helical winding layer formed on the innermost layer in the axial direction of the end member at regular intervals. It is composed of a plurality of ridges extending parallel to each other at an angle equal to the arrangement angle. In the filament winding, when forming the helical winding layer, all the resin-impregnated fiber bundles constituting the helical winding layer are simultaneously wound. In the present invention, all the resin-impregnated fiber bundles constituting the same helical winding layer are simultaneously wound, so that the time required for winding the resin-impregnated fiber bundle can be reduced, and the productivity is improved.
[0024]
According to a twelfth aspect of the present invention, in the invention according to any one of the ninth to eleventh aspects, a pin that protrudes from the cover portion to regulate the arrangement of the resin-impregnated fiber bundle during filament winding is provided. I have. After the filament winding, the wound resin-impregnated fiber bundle is cut at a position facing the surface of the jig closer to the fiber bundle-wound portion from the projecting position of the pin before the resin is cured, and the fiber-impregnated fiber bundle is fed to the fiber bundle supply unit. Separate from the connected fiber bundle. After removing the uncured resin-impregnated fiber bundle wound around the pin side from the cut portion, the resin is cured by heating. Thereafter, the fiber bundle is cut together with the cured resin at a position corresponding to a position between the wound portion of the fiber bundle and the end of the jig, and the jig is removed from the end member.
[0025]
According to the present invention, the winding angle of the resin-impregnated fiber bundle wound around the fiber bundle-wound portion of the end member is regulated to an appropriate value by the action of the pin protruding from the cover portion. After the winding of the resin-impregnated fiber bundle is completed, the resin-impregnated fiber bundle wound around the portion corresponding to the pin in the resin-impregnated fiber bundle wound around the jig is removed before the resin is cured, and thus is removed after curing. Can be easily removed as compared to
[0026]
According to a thirteenth aspect of the present invention, in the first aspect of the present invention, the end member is attached to both ends of the wound member. According to this invention, an effect corresponding to the invention according to any one of claims 9 to 12 can be obtained on both sides of the wound member.
[0027]
In order to achieve a third object, the invention according to claim 14 is a method for manufacturing a part to which a member having an end member attached to at least one end by a filament winding method and a part of the end member. A jig for attaching the wound member to a rotation support portion of a filament winding device when the resin-impregnated fiber bundle is wound around the wound member. The jig covers a portion of the end member except for a portion around which the resin-impregnated fiber bundle is tightly wound, and has a cylindrical cover portion around which a part of the resin-impregnated fiber bundle is wound during filament winding. . Also, the jig is formed integrally with the cover portion, and a shaft portion that can be supported by a rotation support portion of the filament winding device, and the end member is formed by the shaft portion and the rotation center of the wound member. It is provided with a support portion that can be supported coaxially and that can rotate integrally with the shaft portion.
[0028]
When the jig of the present invention is used, the jig is attached to the end member in a state where the cover covers a portion of the end member except for a portion where the resin-impregnated fiber bundle is tightly wound. The jig is supported on a rotating support of the filament winding device at the shaft. Then, the support portion constituting the jig supports the end member in a state where the rotation center of the wound member and the shaft portion are coaxial. Therefore, the wound member having the end member attached to at least one end is rotated in a balanced state via a jig during filament winding, and a necessary portion of the end member is impregnated with the resin. The fiber bundle is tightly wound.
[0029]
According to a fifteenth aspect of the present invention, in the invention according to the fourteenth aspect, pins are provided on the peripheral surface of the cover portion at a constant pitch in an annular shape along the circumferential direction. In this invention, at the time of winding the resin-impregnated fiber bundle by filament winding, the winding position of the resin-impregnated fiber bundle is regulated by the pin provided on the cover, and the resin-impregnated fiber bundle is moved in the axial direction of the end member. It becomes easy to wind at a predetermined angle. In addition, it becomes possible to arrange the resin-impregnated fiber bundle so as to be wound around a pin and folded back.
[0030]
According to a sixteenth aspect of the present invention, in the invention of the fourteenth aspect or the fifteenth aspect, the support portion is provided at one end thereof with a fixing portion detachably fixed to the end member. And the other end side is constituted by a shaft having a length capable of protruding from the hole formed in the shaft portion to the outside of the cover portion in a state where the fixing portion is fixed to the end member. A male screw portion is formed at a position protruding from the shaft portion. In this invention, the support portion has a fixing portion provided on one end side fixed to the end member, and the other end side is screwed with a nut to a male screw portion of a shaft protruding from a hole formed in the shaft portion of the jig. Thus, the end member is supported at a predetermined position.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
A first embodiment in which the present invention is embodied in a propeller shaft as a power transmission shaft will be described below with reference to FIGS. FIG. 1A is a partially cut-away schematic side view of a propeller shaft, and FIG. 1B is a schematic cross-sectional view taken along line AA of FIG.
[0032]
As shown in FIG. 1A, a propeller shaft 11 includes a FRP tubular member 12, a first end member 13 joined to a first end thereof, and a second end joined to a second end. And a cylindrical member to be wound 15 disposed between the first and second end members 13 and 14 inside the cylindrical member 12. A paper cylinder is used for the wound member 15. A metal yoke as a joint constituting a universal joint is used for the first end member 13, and a metal sliding joint is used for the second end member 14. The connecting portion 12a of the tubular member 12 with the first and second end members 13 and 14 is formed thick.
[0033]
The first end member 13 and the second end member 14 include cylindrical fiber bundle wrapped portions 13a and 14a to be joined to the tubular member 12, and the outer peripheral surfaces thereof serve as locking portions. Are formed. The reinforcing fibers of the tubular member 12 are formed of a fiber bundle wound so as to form a plurality of layers, and a helical winding layer is provided on the innermost layer. The fiber bundles are arranged parallel to each other in the same layer, and the serrations 16 are formed such that their teeth extend along the direction in which the fiber bundles are arranged. The fiber bundle constituting the helical winding layer is regulated by the serrations 16 to restrict the relative movement in the circumferential direction with respect to the end members 13 and 14 and is continuous over the entire length of the tubular member 12. That is, unlike the configuration in which the end member having the serrations 16 formed therein is later pressed into an FRP pipe, the fiber bundle that engages with the serrations 16 is not cut.
[0034]
The teeth of the serrations 16 have an angle equal to the angle (arrangement angle) between the fiber bundles constituting the innermost helical winding layer and the axial direction of the first and second end members 13 and 14, and the teeth of the first and second teeth. Are formed so as to extend in the axial direction of the end members 13, 14. The height of the teeth of the serration 16, that is, the depth of the groove is formed to be substantially the same as the thickness of the fiber bundle for one layer.
[0035]
The first end member 13 has a joint portion 13b projecting from one end of the fiber bundle wound portion 13a and a fitting cylindrical portion 13c having a smaller diameter than the fiber bundle wound portion 13a projecting from the other end. Have been. A hole 13d for attaching, for example, a cross-shaft joint is formed in the joint portion 13b. The second end member 14 has a shaft-shaped joint portion 14b protruding at one end of the fiber bundle wound portion 14a, and a fitting cylindrical portion 14c having a smaller diameter than the fiber bundle wound portion 14a at the other end. Is protruding. A screw hole 14d used for fixing a jig used when forming the tubular member 12 by the filament winding method is formed at the tip of the shaft-shaped joint portion 14b. An annular groove 17 is formed between the fiber bundle wound portions 13a and 14a of the first and second end members 13 and 14 and the joint portions 13b and 14b. The annular groove 17 is formed to have a width and depth so that the balance piece (not shown) does not protrude outward when it is necessary to weld the balance piece. Hereinafter, filament winding is abbreviated as FW.
[0036]
The wound member 15 is connected to the first and second end members 13 and 14 with its ends fitted to the outer circumferences of the fitting cylindrical portions 13c and 14c. The wound member 15 is made of paper (for example, made of cardboard) and formed in a cylindrical shape. When the tubular member 12 is formed by the FW method, the wound member 15 only needs to have a strength that maintains a predetermined cylindrical shape even when the resin-impregnated fiber bundle is wound, and torque transmission when the propeller shaft 11 is used. It is not necessary to have a strength that contributes to
[0037]
The connecting portion 12a of the tubular member 12 with the first and second end members 13 and 14 is formed thick. The tubular member 12 is formed by the FW method, and roving of carbon fiber is used as the reinforcing fiber. Roving means a substantially non-twisted fiber bundle obtained by bundling a number of thin filaments of a single fiber. Epoxy resin is used as the matrix resin.
[0038]
The tubular member 12 is mainly composed of a helical winding layer, but a hoop winding layer is formed at and near the joint portion 12a. The outermost layer of the tubular member 12 is not a carbon fiber bundle but a polyester yarn wound around the entire length by a hoop. As shown in FIG. 1B, the configuration of the connecting portion between the first end member 13 and the tubular member 12 is such that the helical winding layer 18a, in order from the innermost layer in contact with the fiber bundle wound portion 13a, The hoop winding layer 18b, the helical winding layer 18c, and the polyester yarn layer 18d are provided.
[0039]
Next, a method of manufacturing the propeller shaft 11 configured as described above will be described. FIG. 2 is a schematic exploded perspective view showing the relationship between the first end member 13, the second end member 14, the member to be wound 15 and the jig 20, and FIG. FIG. 5 is a partially broken schematic cross-sectional view showing a state where a second end member 14, a member to be wound 15 and a jig 20 are assembled.
[0040]
When manufacturing the propeller shaft 11, the wrapping member 15 having the first and second end members 13 and 14 coupled to both ends using a jig 20 without using a mandrel is used for an FW device. FW is performed with support.
[0041]
As shown in FIG. 2, the jig 20 covers portions of the end members 13 and 14 except for a portion around which the resin-impregnated fiber bundle is tightly wound and a part of the resin-impregnated fiber bundle is wound at the time of FW. A cylindrical cover portion 21 to be provided. One end of the cover portion 21 is formed to have a small diameter, and a shaft portion 22 that can be supported by the rotation support portion of the FW device is formed integrally and continuously with an end portion of the cover portion 21 on the small diameter side. Pins 23 are annularly provided on the peripheral surface of the cover 21 at a constant pitch along the circumferential direction.
[0042]
The jig 20 assembled to the first end member 13 can support the first end member 13 in a state where the shaft 22 and the rotation center of the member to be wound 15 are coaxial. A support portion 24 that can rotate integrally with the support portion 22 is provided. The support portion 24 is formed of a shaft provided with a T-shaped portion 24a as a fixing portion detachably fixed to the end member 13 on one end side, and a male screw portion 24b on the other end side. Then, in a state where the T-shaped portion 24a is inserted through the hole 13d, the nut 26 screwed into the male screw portion 24b protruding from the shaft portion 22 is tightened, so that the nut 26 is integrally formed at the end of the shaft portion 22. The shaft 22 is fixed to the shaft 22 via the washer 27. As shown in FIG. 3, the inner surface of the end of the cover 21 of the jig 20 is fitted to the step of the joint 13b so that the jig 20 is centered.
[0043]
The jig 20 assembled to the support portion of the second end member 14 can support the second end member 14 in a state where the shaft portion 22 and the rotation center of the wound member 15 are coaxial. A bolt 25 is provided as a support part that can rotate integrally with the part 22. The bolt 25 has a male screw 25a provided at the tip, and forms a fixing portion to which the male screw 25a is detachably fixed to the end member 14. The bolt 25 is fixed to the shaft 22 via a washer 27 formed integrally with the end of the shaft 22 by being tightened with the male screw 25a screwed into the screw hole 14d. I have. As shown in FIG. 3, the jig 20 is configured such that the inner surface of the end portion of the cover portion 21 is fitted to the step at the base end of the joint portion 14b so that the jig 20 is centered.
[0044]
FIG. 4 is a schematic side view of the FW device, and FIG. 5 is a schematic partial sectional view taken along line BB of FIG. As shown in FIG. 4, a filament winding device (hereinafter, referred to as a FW device) 30 is a set of rotatably supporting a fiber bundle winding member 31 such as a mandrel, a core material, or a liner for manufacturing a tank. A chuck 32 is provided as a rotation support member. The FW device 30 includes a winding head (a helical winding head and a hoop winding head) 33 similar to the device (the device disclosed in Japanese Patent Application Laid-Open No. 2002-283467) previously proposed by the present applicant. FIG. 4 shows only the helical winding head. The winding head 33 is movable on a rail 35 (shown in FIG. 5) provided on a base plate 34 along a fiber bundle winding member 31 supported by a chuck 32 by driving means (not shown). . The chuck 32 is rotationally driven by a variable speed motor (not shown), and is rotationally driven in synchronization with the moving speed of the winding head 33 by a command from the control device C. Then, the fiber bundle R supplied from the fiber bundle supply unit (not shown) through the resin impregnating device is wound around the fiber bundle winding member 31 with the winding angle with respect to the fiber bundle winding member 31 set to an arbitrary angle. You can do it.
[0045]
As shown in FIG. 5, the winding head 33 includes a support plate 36 having a hole penetrated by the fiber bundle winding member 31. The support plate 36 of the helical winding head is covered with a plurality of guides 37 as shown in FIG. 5 so that a plurality of fiber bundles can be helically wound around the fiber bundle winding member 31 at the same time. It is provided in a state of being arranged along the circumferential direction of the fiber bundle winding member 31. In this embodiment, 28 large and small types of guides 37 are respectively arranged on two concentric circles so that 28 fiber bundles can be guided. The hoop winding head provided with the hoop winding portion is provided with a guide for enabling two fiber bundles R to be simultaneously wound around the fiber bundle winding member 31 by the hoop winding. The helical winding head and the hoop winding head are configured to be able to move integrally and independently. Then, several fiber bundles R can be simultaneously wound by helical winding on the fiber bundle winding member 31, and the helical winding head moves forward or backward once along the fiber bundle winding member 31. By doing so, the fiber bundle R is helically wound around the entire peripheral surface of the fiber bundle winding member 31.
[0046]
When performing FW on the wound member 15 having the first and second end members 13 and 14 connected to both ends, first, the jig 20 is attached to the first and second end members 13 and 14, respectively. Assemble. When assembling the jig 20 to the first end member 13, after inserting the T-shaped portion 24 a of the support portion 24 into the hole 13 d, the support portion 24 is connected to the shaft portion 22 from the large-diameter portion side of the cover portion 21. Insert. Then, the nut 26 is screwed into the male screw portion 24 b protruding from the shaft portion 22 and tightened, so that the shaft portion 22 is formed through the washer 27 interposed between the end surface of the shaft portion 22 and the nut 26. The jig 20 is pressed to the first end member 13 side, and the jig 20 is assembled to the first end member 13 via the support portion 24.
[0047]
When assembling the jig 20 to the second end member 14, the cover 21 is brought into contact with the second end member 14 so as to cover the joint 14 b side of the second end member 14, and the bolt 25 Through the washer 27 and into the cover 21 from the shaft 22 side. Then, by screwing the male screw 25a into the screw hole 14d of the second end member 14 and tightening the same, the washer 27 is interposed between the end face of the shaft 22 and the head of the bolt 25. The shaft 22 is pressed toward the second end member 14, and the jig 20 is assembled to the second end member 14 via the bolt 25. Then, as shown in FIG. 3, when the member to be wound 15, the first end member 13, the second end member 14, and the jig 20 are assembled, the FW device 30 is placed between a pair of chucks 32. The supported fiber bundle winding member 31 is configured.
[0048]
Then, the fiber bundle winding member 31 is supported by the chuck 32 of the FW device 30 by the operator. Next, the worker pulls out the fiber bundle R from the fiber bundle supply unit, guides the fiber bundle R to the winding head 33 via a fiber opening mechanism, a resin impregnation tank, a tension adjusting unit, and the like, and inserts the fiber bundle R into the guide 37 of the winding head 33. The end of the fiber bundle R is fixed to a predetermined position of the cover 21. The fixing operation of the end of the fiber bundle R is manually performed by an operator, for example, using an adhesive tape.
[0049]
In addition, the operator inputs to the control device C winding conditions such as the rotation speed of the fiber bundle winding member 31 and the reciprocating width at the time of winding the winding head 33. Roving of carbon fiber is used as the fiber bundle R. Roving means a substantially non-twisted fiber bundle obtained by bundling a number of thin filaments of a single fiber.
[0050]
Next, the winding operation of the fiber bundle R by the FW device 30 is started. When the FW device 30 is driven, the fiber bundle winding member 31 is rotated in a fixed direction, and the winding head 33 is reciprocated along the longitudinal direction of the fiber bundle winding member 31. The fiber bundle R is wound so that the angle formed by the axial direction of the fiber bundle winding member 31 (winding angle) becomes a predetermined angle so that at least the first innermost layer forms a helical winding layer. The winding angle is set to a predetermined value (for example, 10 to 15 °) that satisfies the characteristics such as bending, torsion, and vibration required for the FRP pipe of the product. Since the winding angle is the same as the angle between the direction in which the teeth of the serrations 16 extend and the axial direction, the fiber bundles R are wound so as to be arranged in the grooves of the serrations 16. Further, the fiber bundle R is wound so as to pass between the pins 23 provided on the cover portion 21, and is wound in a state where the movement of the cover portion 21 in the circumferential direction is restricted by the pins 23.
[0051]
After the helical winding layer is formed in a predetermined layer (for example, four layers), portions corresponding to the first and second end members 13 and 14 and the first and second end members 13 and A so-called hoop winding layer (for example, one layer) is formed in the vicinity of 14 so that the winding angle of the fiber bundle R is almost 90 °. Thereafter, the winding of the fiber bundle R impregnated with the resin is completed at the stage where the helical winding layer is formed again in a predetermined layer (for example, two layers). Next, the polyester yarn is wound in a hoop winding. When the polyester yarn is wound, a part of the resin impregnated into the fiber bundle R wound inside is exuded, and the surface of the polyester yarn is covered with the resin.
[0052]
After the winding of the polyester yarn is completed, the ends of the molded body 38 formed on the fiber bundle winding member 31 are fixed to the fiber bundle winding parts 13a and 14a from the projecting position of the pin 23 by a jig. 20 is cut at a position facing the surface of the substrate 20, respectively. The cutting position on the first end member 13 side is, for example, a position indicated by A in FIG. 6, and the cutting position on the second end member 14 is also the same position. Then, after the molded body 38 is cut off from the fiber bundle R connected to the fiber bundle supply unit, the fiber bundle wound member 31 is removed from the chuck 32 of the FW device 30, and at the uncured stage of the molded body 38, The resin-impregnated fiber bundle wound around the shaft portion 22 from the cutting position is removed.
[0053]
Thereafter, the fiber bundle winding member 31 is put into a heating furnace together with the molded body 38, and the resin is cured at a predetermined temperature. The curing temperature differs depending on the resin. For example, in the case of an epoxy resin, it is about 180 ° C. After the heat curing, the molded body 38 is cut at a position corresponding to a position between the fiber bundle wrapped portions 13a and 14a and the tip of the cover portion 21, that is, a position corresponding to the annular groove 17 in this embodiment. As shown in FIG. 6, the cutting is performed by a cutter 39. Next, after the two jigs 20 are removed, a rotation balance inspection is performed. If the rotational balance is poor, the balance piece is welded to at least one of the first and second end members 13 and 14 to perform balance adjustment processing, and the first and second end pieces are attached to the end of the tubular member 12. The propeller shaft 11 to which the end members 13 and 14 are connected is completed.
[0054]
When the jig 20 is removed, on the first end member 13 side, the nut 26 is loosened and removed from the support portion 24, then the cover portion 21 is removed, and finally the T-shaped portion 24a is removed from the hole 13d. On the second end member 14 side, after the male screw 25a of the bolt 25 is disengaged from the screw hole 14d of the second end member 14, the cover 21 is removed to complete the removal of the jig 20. I do.
[0055]
This embodiment has the following effects.
(1) The first and second end members 13 and 14 connected to both ends of the FRP tubular member 12 are provided on the outer peripheral surfaces of the connecting portions with the tubular member 12 along the arrangement direction of the innermost fiber bundle. A locking portion (serration 16) formed of a plurality of protruding ridges is formed. The reinforcing fibers of the tubular member 12 are composed of a plurality of layers in which a helical winding layer is provided on the innermost layer, and the fiber bundle R constituting the reinforcing fibers is first and second end portions of the innermost layer by the locking portion. The members 13 and 14 are arranged so that relative movement in the circumferential direction with respect to the members 13 and 14 is restricted and continuous over the entire length. That is, unlike the case where the serration of the end member is press-fitted into the cylindrical member made of FRP, the fiber is not cut. Accordingly, the torsional strength between the first and second end members 13 and 14 is larger than that of a propeller shaft manufactured by press-fitting the serrations of the end members into a FRP cylindrical member, and the rotational torque is reduced. Transmission is good.
[0056]
(2) The locking portion is constituted by serrations 16. Therefore, as compared with the case where a plurality of ridges are provided in a state having no regularity unlike the serrations 16, the processing of the locking portion is facilitated.
[0057]
(3) Since the member to be wound 15 is made of paper, the weight can be reduced and the cost can be reduced as compared with the case where the member 15 is made of metal or resin.
(4) Since the yoke type joint 13b is provided at one end of the tubular member 12, a general cross shaft can be used for a universal joint that connects the propeller shaft to the drive shaft.
[0058]
(5) When manufacturing the propeller shaft 11, the first and second end members 13 and 14 are connected to both ends of the tubular wound member 15, and the fiber bundles of the end members 13 and 14 are connected. FW is performed using a jig 20 provided with a cover portion 21 covering a portion excluding the wound portions 13a and 14a. After the FW is performed, the wound resin-impregnated fiber bundle is cut before or after curing, and the connection between the jig 20 and the end members 13 and 14 is released, so that the jig 20 is connected to both ends of the tubular member 12. The propeller shaft 11 having the first and second end members 13 and 14 coupled thereto is manufactured.
[0059]
Therefore, since the mandrel is not used at the time of FW, a step of removing the mandrel from the mandrel becomes unnecessary. As a result, mandrel diameter management and repair (replating, etc.) are not required, and the dimensional accuracy (inner diameter, end face perpendicularity, surface roughness) of the cylindrical member 12 does not need to be high, and the manufacturing cost is low. Become. Further, since the serrations 16 of the first and second end members 13 and 14 are not pressed into the FRP tubular member 12, the cost is reduced accordingly, and the serrations are pressed into the FRP tubes. Conventional problems can be solved. That is, there is no risk of cracks being generated by press-fitting the end members, and it is not necessary to increase the accuracy of the FRP tubular member 12 in order to prevent the occurrence of cracks, and it is not necessary to increase the serration processing accuracy. For example, rolling can be performed without using a hob for processing the teeth of the serrations 16. Further, after the resin-impregnated fiber bundles are arranged so as to fill the grooves of the serrations, the resin is cured, and there is no gap between the inner surface of the cylindrical member 12 and the bottom of the grooves of the serrations 16. There is no need to provide a seal for preventing moisture from entering from above. Further, since the thermosetting resin is cured while the serrations 16 are buried in the thermosetting resin, the serrations 16 and the thermosetting resin are harder than when the serrations are pressed into a conventional FRP pipe later. And the torsional strength is further increased.
[0060]
(6) The first and second end members 13 and 14 are attached to the chuck 32 of the FW device 30 via the jig 20 in a state where portions where the resin-impregnated fiber bundle does not need to be wound are covered with the cover portion 21. Supported, FW is performed. Therefore, at the time of FW, the resin-impregnated fiber bundle can be wound around the jig 20 and folded back at a position corresponding to the jig 20, and the resin-impregnated fiber bundle can be wound around the first and second end members 13 and 14. There is no need to fold the bundle at the first and second end members 13,14. As a result, the obtained rotational balance of the propeller shaft 11 is improved. Also, unlike the method described in Patent Literature 2, even a yoke type joint 13b like the joint 13b of the first end member 13 can be provided without any trouble. Furthermore, since the first and second end members 13 and 14 are made of metal and have a portion protruding from the joint with the tubular member 12, the balance piece can be welded.
[0061]
(7) FW is performed so that a helical winding layer is formed at least on the innermost layer. The outer peripheral surfaces of the fiber bundle wound portions 13a and 14a of the first and second end members 13 and 14 are arranged at regular intervals with respect to the axial direction of the first and second end members 13 and 14, A plurality of ridges (serrations 16) are formed which extend parallel to each other at an angle equal to the arrangement angle of the resin-impregnated fiber bundle of the helical winding layer formed on the innermost layer. When forming the helical winding layer, the FW simultaneously winds all the resin-impregnated fiber bundles constituting the helical winding layer. Therefore, the time required for winding the resin-impregnated fiber bundle can be reduced, and the productivity is improved.
[0062]
(8) The cover portion 21 is provided with a pin 23 for regulating the arrangement of the resin-impregnated fiber bundle at the time of FW. Accordingly, the winding angle of the resin-impregnated fiber bundle wound around the fiber bundle wound portions 13a, 14a of the first and second end members 13, 14 is regulated to an appropriate value, and the torsional strength of the propeller shaft 11 is reduced. Contribute to improvement.
[0063]
(9) After the FW, the resin-impregnated fiber bundle wound around the fiber bundle winding member 31 is placed on the surface of the jig 20 closer to the fiber bundle winding portions 13a and 14a from the projecting position of the pin 23 before the resin is cured. And cut from the fiber bundle R connected to the fiber bundle supply unit. After removing the uncured resin-impregnated fiber bundle wound around the pin 23 from the cut portion, the resin is cured by heating. Therefore, among the resin-impregnated fiber bundles wound around the jig 20, the resin-impregnated fiber bundles wound around the portions corresponding to the pins 23 are removed before the resin is cured, so that the resin-impregnated fiber bundles are easily removed after being cured. The jig 20 can be removed, and the labor for reusing the jig 20 is reduced. For example, in order to remove the FRP at the portion where the pin 23 protrudes after the resin is cured, the pin 23 is configured to be detachable, and after removing the pin 23 from the cover portion 21, it is necessary to remove the FRP. Is troublesome.
[0064]
(10) Since the serrations 16 are formed so that the height of the teeth is substantially the same as the thickness of the fiber bundle R for one layer, the serrations 16 are two layers whose arrangement direction is symmetric with respect to the axis with respect to the first helical winding layer. It does not hinder the arrangement of the fiber bundles R constituting the eyes.
[0065]
(11) When the jig 20 is connected to the first and second end members 13 and 14, the annular groove 17 is formed in the first and second end members 13 and 14. 17 is not covered by the cover 21, and the fiber bundle R is wound over the annular groove 17. Therefore, by cutting the molded body 38 at the position corresponding to the annular groove 17 after the molded body 38 is cured by heating, the blade of the cutter 39 is damaged at the time of cutting, or the first and second end members 13 and 14 are cut. It can avoid being hurt. If the balance piece is welded into the annular groove 17, it is possible to prevent the balance piece from protruding from the peripheral surfaces of the first and second end members 13, 14.
[0066]
(12) The jig 20 is formed integrally with the cover portion 21 and includes a shaft portion 22 that can be supported by the chuck 32 of the FW device 30, and has a shaft-like shape like the second end member 14. Even with the end member having the joint portion 14b, the shaft of the end member is not supported by the chuck 32 of the FW device 30. Therefore, unlike the method disclosed in Patent Literature 2 in which the FW is performed by supporting the shaft of the product with the chuck 32 of the FW device 30, there is no possibility that the shaft of the product (joint portion 14b) is damaged.
[0067]
(13) The support portion 24 for connecting and fixing the first end member 13 and the jig 20 is formed of a T-shaped shaft. Then, in a state where the T-shaped portion 24a is engaged with the hole 13d of the first end member 13, the nut 26 which is screwed into the male screw portion 24b protruding from the shaft portion 22 is tightened to thereby form the first end member. When the jig 20 is connected and fixed to the jig 20 and the nut 26 is loosened, the engagement between the cover 21 and the first end member 13 is released. Therefore, the jig 20 can be easily assembled and removed from the first end member 13.
[0068]
(14) The supporting portion for connecting and fixing the second end member 14 and the jig 20 is constituted by a bolt 25, and the external thread 25 a formed at the tip thereof is connected to the joint portion 14 b of the second end member 14. The second end member 14 and the jig 20 are connected and fixed by being screwed into the formed screw hole 14d and tightened. Then, when the bolt 25 is loosened, the engagement between the cover 21 and the second end member 14 is released. Therefore, the jig 20 can be easily attached to and detached from the second end member 14.
[0069]
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the diameter of the yoke of the first end member 13, that is, the outer diameter of the large-diameter portion 40 on which the set of support pieces 40a constituting the joint portion 13b protrudes is determined by the fiber bundle wound portion 13a. And a manufacturing method when the outer diameter is larger than the outer diameter. If the yoke diameter is larger than the outer diameter of the fiber bundle wound portion 13a, the jig 20 is connected to the first end member 13 with the joint portion 13b of the first end member 13 covered by the cover portion 21. Then, a step is present between the cover 21 and the fiber bundle wound portion 13a. Therefore, when the fiber bundle R impregnated with the resin is wound around the fiber bundle winding member 31 by FW, the fiber bundle R is arranged in the groove of the serration 16 near the cover portion 21 of the fiber bundle winding portion 13a. It becomes difficult.
[0070]
This embodiment relates to a manufacturing method capable of solving such a problem. Then, the first end member 13 is divided into the fiber bundle wound portion 13a side and the joint portion 13b side, and the winding of the fiber bundle R by the FW, the curing of the molded body 38, and the removal of the jig 20 are completed. After that, the point that the joint portion 13b side is joined to the fiber bundle wound portion 13a side is significantly different from the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. 7 is a partial schematic exploded side view of the propeller shaft 11 on the first end member 13 side, and FIG. 8 is a schematic partial cross-sectional view showing a connection state of a jig.
[0071]
As shown in FIG. 7, the first end member 13 is composed of a support tube 41 on which the fiber bundle wrapped portion 13a is formed, and a joint portion 13b. The cylinder 41 and the joint 13b are joined by friction welding. The support cylinder 41 is formed with a protruding portion 41 a that protrudes from the cylinder member 12 in a state where the support cylinder 41 is coupled to the cylinder member 12. A screw hole 41c is formed at the center of the support cylinder 41. The large diameter portion 40 of the joint portion 13b is provided with a joint portion 40b having the same diameter as the annular portion at the tip of the protruding portion 41a.
[0072]
As shown in FIG. 8, the jig 20 connected to the first end member 13 differs from the first embodiment in that the first end member 13 rotates the shaft portion 22 and the member 15 to be wound. A bolt 25 is provided as a support portion that can be supported coaxially with the center and can rotate integrally with the shaft portion 22. Therefore, the jig 20 has the same configuration as the jig 20 on the second end member 14 side. The bolt 25 is formed to have a thickness such that the male screw 25a can be screwed into the screw hole 41c.
[0073]
In this embodiment, the support cylinder 41 is fitted to one end of the wound member 15 and the second end member 14 is fitted to the other end, and the jig 20 is fitted to the support cylinder 41 and the second end member 14. The fiber bundle winding member 31 is assembled. As shown in FIG. 8, assembling the jig 20 to the support cylinder 41, the cover 21 is brought into contact with the support cylinder 41 so as to cover the protruding portion 41a of the support cylinder 41, and the bolt 25 is inserted through the washer 27. The cover part 21 is inserted from the shaft part 22 side. Then, the male screw 25a is screwed into the screw hole 41c of the support cylinder 41 and tightened, so that the shaft 22 is supported via the washer 27 interposed between the end face of the shaft 22 and the head of the bolt 25. The jig 20 is pressed to the 41 side, and the jig 20 is assembled to the support cylinder 41 via the bolt 25.
[0074]
FW is performed in a state where the fiber bundle winding member 31 configured as described above is supported by the chuck 32 of the FW device 30 as in the first embodiment, and the fiber bundle winding member 31 is rotated. A molded body 38 is formed thereon. Next, at a stage where the molded body 38 has not been cured, most of the resin-impregnated fiber bundle wound on the cover portion 21 is removed, and then the molded body 38 is cured. It is cut at a predetermined position.
[0075]
Next, the joint portion 13b is welded to the protruding portion 41a of the support tube 41 connected to the tube member 12 by friction welding. When welding the joint 13b to the protrusion 41a, the end face of the joint 40b of the joint 13b is pressed against the end face of the protrusion 41a while the tubular member 12 is fixed and the joint 13b is rotated. . As shown by a chain line in FIG. 7, the friction welding device (not shown) is provided with a metal centering support portion 42 that engages with the protruding portion 41a and supports the support cylinder 41 in a centered state. ing. When the centering support portion 42 engages with the protruding portion 41a, the support cylinder 41 is supported in a state where its rotation is prevented, and friction welding is performed. When the welding of the joint portion 13b is completed, the propeller shaft 11 is completed.
[0076]
The manufacturing method according to this embodiment has the following effects in addition to the effects similar to (5) to (12) and (14) of the first embodiment.
(15) In the first end member 13 having the yoke-type joint portion 13b, the joint portion 13b is welded to the support tube 41 after the completion of the tubular member 12 to which the support tube 41 is connected by the FW. Therefore, even when the outer diameter of the large diameter portion 40 of the joint portion 13b is larger than the outer diameter of the fiber bundle wound portion 13a, the innermost layer fiber bundle R is located in the groove of the serration 16 of the fiber bundle wound portion 13a. It can be arranged in a filled state without fail.
[0077]
(16) Even when the outer diameter of the large diameter portion 40 of the joint portion 13b is smaller than the outer diameter of the fiber bundle wound portion 13a, the portions other than the joint portion 13b are manufactured and stored in advance, and when necessary, By welding the joint portion 13b, it becomes easier to cope with a case where there are various types of shapes of the joint portion 13b corresponding to the vehicle type. Further, in the state of an intermediate product consisting of other parts except for the joint 13b, the parts are delivered from the parts maker to the assembler, and the assembler can also weld the joint 13b.
[0078]
(17) There is no need to provide a T-shaped portion 24a for supporting the first end member 13 so as to be able to rotate integrally with the shaft portion 22, and a jig to be assembled to the first and second end members 13, 14 20 can be made the same.
[0079]
(18) The welding between the joint portion 13b and the support cylinder 41 is performed by friction welding. Therefore, there is no danger of sparks flying during the welding operation, and no measures are required to prevent sparks from scattering. (19) Since the tubular member 12 is relatively weak to heat, when the metal joint 13b is welded to the support tube 41 coupled to the tubular member 12 by friction welding, the tubular member 12 is heated by the heat from the friction welding. Need to be controlled. In this embodiment, since the friction welding is performed in a state where the metal centering support portion 42 is in contact with the support cylinder 41, the heat generated during the friction welding is released via the centering support portion 42. The heating of the tubular member 12 can be suppressed.
[0080]
The embodiment is not limited to the above, and may be embodied as follows, for example.
The fiber bundles constituting the innermost layer of the tubular member 12 and arranged without crossing each other are not limited to helical windings, but may be hoop windings. In this case, a thread-shaped groove is formed as a locking portion formed on the outer peripheral surface of the fiber bundle wound portions 13a, 14a of the first and second end members 13, 14. Further, the hoop winding range may be the entire length of the FRP tubular member 12, or may be only the portion that covers the fiber bundle wound portions 13a and 14a.
[0081]
The locking portions formed on the outer peripheral surfaces of the fiber bundle wound portions 13a and 14a are formed by the first and second ends of the fiber bundle R constituting the helical winding layer formed on the innermost layer. The serrations 16 are not limited to the serrations 16 as long as they can restrict the relative movement of the members 13 and 14 in the circumferential direction. For example, a plurality of ridges formed so as to extend along the arrangement direction of the fiber bundles R may be provided. The ridges need not be continuous over the entire length of the fiber bundle wound portions 13a, 14a in the axial direction, and the intervals in the circumferential direction between adjacent ridges may not be constant. Also in this case, in the configuration in which the fiber bundles R are arranged in parallel in the same layer, the ridge contributes to the innermost helical winding layer being wound at a predetermined winding angle.
[0082]
係 止 The locking portions formed on the outer peripheral surfaces of the fiber bundle wound portions 13a and 14a are not limited to the ridges extending along the arrangement direction of the fiber bundles R arranged in the innermost layer, and the arrangement angle with respect to the axial direction is not limited. A number of protrusions that can guide the arrangement of any of the fiber bundles R constituting the opposite helical winding layers may be provided as locking portions. For example, as shown in FIG. 9A, a large number of pins 43 are protruded from the surface of the fiber bundle wound portion 13a, or as shown in FIG. The knurl 44 extending in the same direction as the knurl 44 may be formed. Similar pins 43 and knurls 44 may be provided for the fiber bundle wound portion 14a. In FIG. 9A, the length of the pin 43 is exaggerated, but the pin 43 is at least as long as the thickness of one helical winding layer, and the fiber bundles R arranged in the outermost layer are formed. It is preferable that the length does not protrude to the outside. The depth of the groove of the knurl 44 is preferably a depth corresponding to the thickness of one helical winding layer from the viewpoint of ease of processing.
[0083]
When the first and second end members 13 and 14 provided with these locking portions (pin 43 or knurl 44) are used, the configuration in which the fiber bundles R are arranged in parallel in the same layer is not necessarily. Not necessary. When a helical winding layer is formed using a general FW device in which the number of fiber bundles to be wound simultaneously is one, the fiber bundles constituting the helical winding layer are arranged so as to cross each other in the same layer. Therefore, when the locking portion is a ridge extending along the arrangement direction of the fiber bundles R constituting the helical winding layer, it is prevented that the fiber bundles R are arranged so as to intersect in the plane where the ridges exist. Therefore, when the helical winding layer is formed using a general FW device, the arrangement of the fiber bundles is not performed smoothly. However, when the pins 43 and the knurls 44 having the above configuration are provided, the fiber bundles are locked even when the helical winding layer is formed using a general FW device in which the number of the fiber bundles to be wound simultaneously is one. The parts are guided and arranged well at a predetermined winding angle.
[0084]
(Circle) as an engaging part formed in the outer peripheral surface of the fiber bundle winding parts 13a and 14a, the outer peripheral surface may be roughened by sandblasting or the like. Also in this case, the circumferential movement of the fiber bundle constituting the helical winding layer formed on the innermost layer is regulated.
[0085]
外 The outer diameter of the fiber bundle wound portions 13a, 14a of the first and second end members 13, 14 is not limited to a constant value, and may be, for example, a taper portion as shown in FIGS. (Only the first end member 13 is shown). In the figure, the taper is exaggerated. When the first and second end members 13 and 14 having tapered portions whose diameters increase toward the joint portions 13b and 14b are used for the fiber bundle wound portions 13a and 14a, the first and second end members are used. End members 13 and 14 are hard to come off from the cylindrical member 12.
[0086]
The annular groove 17 need not be provided in the first and second end members 13 and 14. However, in order to prevent the cutter 39 from hitting the first and second end members 13 and 14 when cutting the molded body 38, a step is provided, and the end of the cover 21 is attached to the fiber bundle at the step. A convex portion (for example, a pin) may be provided to regulate contact with the end surfaces of the wound portions 13a and 14a.
[0087]
In the second embodiment, an annular groove may be provided on the outer peripheral surface of the cover 21 or a step may be provided to prevent the cutter 39 from hitting the cover 21 when the molded body 38 is cut.
[0088]
部 材 The wound member 15 is not limited to a paper cylinder and may be made of resin. When made of a thermoplastic resin having insufficient heat resistance, the member to be wound 15 is melted when the molded body 38 is cured, and adheres to the inner surface of the cylindrical member 12 in an uneven state, resulting in poor rotational balance. easy. Therefore, it is better to use a thermosetting resin or a heat-resistant thermoplastic resin. When a heat-resistant thermoplastic resin is used, a resin having a heat-resistant temperature higher than the curing temperature of the FRP matrix resin (one hundred and several tens of degrees Celsius) is more preferable. Applicable. In the case where the wound member 15 is made of paper, when the propeller shaft 11 is used, the portion of the wound member 15 hardly contributes to the transmission of the rotational torque. I do. Further, resin is more accurate in roundness of the wound member 15 than paper, and has better rotational balance. Examples of the thermosetting resin include a phenol resin, a urea resin, a melamine resin, an alkyd resin, an unsaturated polyester resin, an epoxy resin, a diallyl phthalate resin, a silicone resin, and a polyurethane resin. Among the heat-resistant thermoplastic resins, those having heat resistance higher than the epoxy (matrix) curing temperature include, for example, polyetheretherketone (PEEK), liquid crystal polymer (LCP), polyamideimide (PAI), thermoplastic polyimide ( PI), polyphenylene sulfide (PPS), polysulfone (PSF), polyether sulfone (PES), polyarylate (PAR), so-called super engineering plastics such as polyetherimide (PEI). Examples of the thermoplastic resin having heat resistance higher than the epoxy initial curing temperature include general-purpose engineering plastics having relatively high heat resistance, such as polyamide = nylon (PA), polycarbonate (PC), and polyethylene terephthalate = polyester (PET). It is.
[0089]
と し て The member to be wound 15 may be made of paper impregnated with a thermosetting resin and cured. In this case as well, the same effect as when the resin-made winding member 15 is used is obtained, and the manufacturing is simplified as compared with the case where the winding member 15 is manufactured using only the thermosetting resin.
[0090]
F A FRP cylinder may be used as the wound member 15. Carbon fibers are preferred as the reinforcing fibers. Further, the pre-cured (pre-cured) FRP cylinder may be used instead of the fully cured FRP cylinder. Since the precured FRP cylinder is fully cured when the molded body 38 is cured, it contributes to the transmission of rotational torque when the product is completed as the propeller shaft 11. When a carbon fiber reinforced FRP cylinder is used, the number of helical winding layers formed by the fiber bundle R wound around the member to be wound 15 can be reduced, and the diameter and weight can be reduced. Contributes to Further, in the case of the pre-cured FRP cylinder, the adhesive strength with the resin-impregnated fiber bundle wound thereon is higher than that in the case of winding it on the fully cured FRP cylinder.
[0091]
金属 A metal cylinder may be used as the wound member 15. When it is made of metal, it is preferably made of a metal that is lightweight and has high heat resistance and rigidity. Also in this case, the roundness accuracy of the wound member 15 is higher than that of paper, and the rotation balance is improved.
[0092]
The locking portion may be provided on the outer peripheral surface of the wound member 15. Examples of the locking portion include those having a roughened surface and a large number of irregularities, and those having been subjected to knurling having grooves extending along the arrangement direction of the fiber bundles R. In this case, the fiber bundle is easily wound around a predetermined position when the fiber bundle R is wound by the locking portion. Further, since the relative movement of the fiber bundle R in the circumferential direction of the member to be wound 15 is regulated by the locking portion, the member to be wound 15 is made of metal or resin, and the torque to the member to be wound 15 is also reduced. This is more effective in a configuration having a transmission function.
[0093]
The connection between the wound member 15 and the first and second end members 13 and 14 is performed by fitting the ends of the wound member 15 to the outer peripheral surfaces of the fitting cylindrical portions 13 c and 14 c of the 13 and 14. Instead, the end of the wound member 15 may be fitted to the inner surfaces of the fitting cylindrical portions 13c and 14c. Further, a fitting hole into which the end of the wound member 15 is fitted may be formed on the end face of the fiber bundle wound portion 13a, 14a without protruding the fitting tubular portions 13c, 14c. . In those cases, the wound member 15 may not have a constant diameter, but may have a small diameter at the end.
[0094]
The member 15 to be wound may have a vibration damping action. When the propeller shaft 11 is mounted on an automobile, the propeller shaft 11 is used in an exposed state, so that a foreign object such as a pebble from which a tire bounces may hit during traveling, and a loud noise is generated at that time. By providing the member to be wound 15 with a vibration damping action, it is possible to absorb the vibration when the foreign matter hits and suppress the generation of loud noise. For example, the surface of a cardboard or cardboard cylinder is treated to prevent resin impregnation, or the material of the member to be wound 15 is formed of a closed-cell foam. As the closed-cell foam, for example, a polyimide-based foamed plastic or the like can be applied.
[0095]
組 み 合 わ せ The combination of the end members is not limited to the combination of the first end member 13 of the yoke type and the second end member 14 of the type having the shaft. For example, a configuration in which a first end member 13 of a yoke type is coupled to both ends of a cylindrical member 12 or a second end member 14 of a type having a shaft is formed of a cylindrical member in accordance with a use mode of the propeller shaft 11. 12 may be connected to both ends. These propeller shafts 11 can also be manufactured in the same manner as in each of the above embodiments.
[0096]
The thickness of the cylindrical member 12 is not necessarily limited to the thickness of the connecting portion 12a being thick, and may be constant over the entire length. The end members 13, 14 are not pressed into the FRP tubular member 12 later, but are wound around the fiber bundle R impregnated with resin around the fiber bundle wound portions 13 a, 14 a of the end members 13, 14. In order to harden the hoop, the number of hoop winding layers 18b having a function to oppose the stress applied to the FRP tubular member 12 at the time of press fitting may be reduced or omitted. If omitted, the cylindrical member 12 has a constant thickness over the entire length, which also contributes to weight reduction.
[0097]
際 When removing a part (the resin-impregnated fiber bundle) of the molded body 38 from the cover 21 before curing, the molded body 38 may be removed after the pin 23 is removed.
硬化 Before the molded body 38 is cured, only the fiber bundle connected to the fiber bundle supply unit may be cut, and unnecessary portions may be removed after the molded body 38 is cured with the pins 23 removed. . When the pin 23 cannot be removed, it is necessary to break the unnecessary portion finely to remove the unnecessary portion after the molded body 38 is hardened. It becomes easy to remove unnecessary portions after the body 38 is cured.
[0098]
ピ ン The pins 23 of the cover 21 may be omitted. In the configuration in which the pins 23 are omitted, even when unnecessary portions are removed after the molded body 38 is cured, the operation of extracting the pins 23 is unnecessary, and the work of removing the unnecessary portions of the molded body 38 is facilitated.
[0099]
に お い て In the jig 20 to be assembled to the first end member 13 of the yoke type, a screw hole is formed in a wall between the fiber bundle wound part 13a side and the joint part 13b side, and a bolt is used as a support part. May be. In this case, the structure is simpler than that of the support portion 24 having the T-shaped portion 24a.
[0100]
The jig 20 can support the first and second end members 13 and 14 in a state where the shaft 22 and the rotation center of the wound member 15 are coaxial, and can rotate integrally with the shaft 22. The support part and the cover part 21 may be formed integrally. For example, a shaft is provided coaxially with the shaft portion 22 inside the cover portion, and a male screw portion is provided at the tip thereof. The first end member 13 is provided with a screw hole or a screw hole into which the male screw portion is screwed.
[0101]
The shaft 22 of the jig 20 may be separable from the cover 21, and the shaft 22 and the support may be formed integrally. For example, a hole into which the shaft portion 22 is fitted is formed at the end of the cover portion 21, and the male screw portion is connected to the first and second end members 13 and 14 with the shaft portion 22 fitted into the hole. Screw into the screw hole or screw hole.
[0102]
The centering of the jig 20 attached to the second end member 14 is performed by fitting the inner surface of the end portion of the cover portion 21 to the step at the base end of the joint portion 14b instead of the joint portion. The centering may be performed by fitting the shaft portion 14b to the inner surface of the shaft portion 22 of the jig 20.
[0103]
The method of fixing the jig 20 and the end members 13 and 14 is not limited to the above embodiment. For example, as a method of fixing the first end member 13, a hole corresponding to the hole 13d formed in the yoke type joint portion 13b is formed in the cover portion 21. Then, in a state where the cover portion 21 is fitted to the step portion of the joint portion 13b, the holes and the holes 13d correspond to each other, and in this state, a pin is inserted so as to penetrate the holes and the holes 13d, and The first end member 13 may be fixed.
[0104]
When fixing the second end member 14 and the jig 20, an auxiliary member for fixing the second end member 14 and the jig 20 without providing the screw hole 14 d in the shaft portion of the joint portion 14 b. Use components. The auxiliary member is formed by bending both ends of the plate material at right angles, has a locking portion formed at one end to be locked in a groove formed at an intermediate position of the shaft portion of the joint portion 14b, and has a male screw 25a of a bolt 25 screwed therein. A screw hole to be combined is formed at the other end. Then, the male screw 25a of the bolt 25 is screwed into the screw hole in a state where the locking portion is locked in the groove portion and fixed to the second end member 14, and the second end member 14 The jig 20 is fixed.
[0105]
○ If at least the fiber bundles R constituting the helical winding layer arranged in the innermost layer among the fiber bundles R wound around the tubular member 12 are arranged parallel to each other in the same layer, the other layers are parallel to each other. They do not have to be arranged. For example, the fiber bundle R may be arranged all around the helical winding layer at the innermost layer, and the other layers may be formed by winding one to three fiber bundles.
[0106]
After the FW, the wound resin-impregnated fiber bundle is cut at a position corresponding to between the end of the jig 20 and the fiber bundle-wound portions 13a and 14a before the resin is cured. Then, the jig 20 is removed from the first and second end members 13 and 14, and the resin-impregnated fiber bundle (formed body) wound around the member to be wound 15 and the first and second end members 13 and 14. 38) is cured. Before cutting, a tape is wound around a region of a fixed width including a cut portion, and the molded body 38 is cut from above the tape. In this case, only one cutting operation is required. Further, since the molded body 38 is cut while the tape is wound, the fiber bundle R at the cut end is prevented from fluffing even in an uncured state.
[0107]
An end member having a locking portion such as a serration 16 formed at a coupling portion with the cylindrical member 12 is connected to one end of the cylindrical member 12, and a serrated joint is formed at the other end of the cylindrical member 12. It is good also as a structure which press-fits after it. When manufacturing the propeller shaft 11 having this configuration, one of the first and second end members 13 and 14 is fitted to one end of the member 15 to be wound, and a jig 20 is assembled. A fiber bundle winding member 31 is configured by assembling a support member having a shaft supported by a chuck 32 of the apparatus 30. Then, a cylindrical member 12 made of FRP having an end member coupled to one end by the FW method is formed, and a joint having serrations formed therein is pressed into the other end of the cylindrical member 12. Even in this case, it is possible to suppress the problem caused by press fitting as compared with a configuration in which the joint having serrations formed therein is pressed into both ends of the FRP pipe.
[0108]
Even if the end member in which the engagement portion such as the serration 16 is formed at the joint portion with the cylinder member 12 is the propeller shaft 11 coupled to both ends of the cylinder member 12, only one side of the jig 20 is used for FW. May be supported by the FW device 30 via one side, and one side may be supported by the chuck 32 without through the jig 20. For example, as the end member on which the jig 20 is not assembled, an end member with a shaft having a shaft supported by the chuck 32 is used. Then, the resin-impregnated fiber bundle is wound around the wound member 15 and the end member by the FW. On the side where the jig 20 is not used, the fiber bundle is wound so as to be folded back by the end member. However, compared to a configuration in which the fiber bundle is wound around the end member on both sides, the rotation balance of the propeller shaft 11 is smaller. Get better.
[0109]
○ The height of the teeth of the serrations 16, that is, the depth of the groove is not limited to almost the same as the thickness of the fiber bundle of one layer, and if it is about 1/4 layer to one layer of the thickness of the innermost fiber bundle. Is enough.
[0110]
When connecting the jig 20 to the first and second end members 13, 14, the end face of the cover 21 abutting on the first and second end members 13, 14 and the first and second end members The fiber bundle R may be wound in a state where the resin is prevented from entering the inside of the cover portion 21 from the gap between the second end members 13 and 14. For example, a heat-resistant tape is wound around the outer peripheral surface of the end of the cover 21 so as to straddle the boundary between the first and second end members 13 and 14. The term “heat-resistant tape” as used herein means a tape that does not melt at the temperature at which the resin is cured after the FW. If the jig 20 is simply connected by bringing the end of the cover 21 into contact with the first and second end members 13 and 14 and connecting the jig 20 to the first and second end members 13 and 14, the jig 20 does not contact with the first and second end members 13 and 14 during heat curing. There is a possibility that the resin may enter the inside of the cover part 21 from the contact part. However, when the molded body 38 is cured after the FW by winding the heat-resistant tape, the resin is removed from the gap between the end face of the cover 21 and the first and second end members 13 and 14 so as to cover the cover. 21 can be prevented from entering and hardening. As a result, when the connection between the jig 20 and the first and second end members 13 and 14 is released, it is possible to prevent the removal of the cover 21 from becoming difficult.
[0111]
When connecting the jig 20 to the first and second end members 13 and 14 as a means for preventing the resin from entering the inside of the cover portion 21, the first and second end members 13 and 14 may be used. A heat-resistant seal ring may be interposed between the end surface of the cover portion 21 abutted on the first and second end members 13 and 14. The heat-resistant seal ring can withstand the temperature at the time of curing of the resin after the FW, and examples thereof include those made of silicone rubber and fluorine resin. Also in this case, when the molded body 38 is cured after the FW, the resin enters the inside of the cover portion 21 through the gap between the end face of the cover portion 21 and the first and second end members 13 and 14 and is cured. Can be prevented. As shown in FIG. 8, the cover portion 21 is first and second end portions in a state where there is a step between the outer peripheral surface of the cover portion 21 and the outer peripheral surfaces of the first and second end members 13 and 14. In the case of contact with the members 13 and 14, it is difficult to seal well if a heat-resistant tape is wound. However, if a seal ring is used, sealing can be performed well even when there is a step.
[0112]
In the case where the first end member 13 is formed by joining the support cylinder 41 and the joint portion 13b by friction welding, the shape of the protruding portion 41a is arbitrary as long as the support cylinder 41 can be held with a force necessary for friction welding. is there. For example, a gear portion or a polygonal grip portion may be provided on the outer peripheral surface of the protruding portion 41a.
[0113]
材質 The material of the first and second end members 13 and 14 is not limited to metal, but may be ceramics. However, there are advantages that metal is easier to mount the balance piece, and that the first and second end members 13 and 14 are less likely to be broken even if they strike somewhere when handling the power transmission shaft.
[0114]
The power transmission shaft is not limited to the propeller shaft 11, but may be applied to other power transmission shafts.
The shape of the tubular member 12 is not limited to a cylindrical shape as a whole, but may be a cylindrical shape at both ends and a polygonal cylindrical shape at the intermediate portion. In that case, the wound member 15 is also formed in a corresponding polygonal cylindrical shape.
[0115]
The FRP that is the material of the tubular member 12 is not limited to the one using carbon fiber as the reinforcing fiber and the epoxy resin as the matrix resin. For example, as the reinforcing fibers, other fibers such as aramid fibers and glass fibers, which are generally referred to as having high elasticity and high strength, are employed.As the matrix resin, other thermosetting resins such as unsaturated polyester resin, phenol resin, and polyimide resin are used. A resin may be used. However, in the case of the propeller shaft 11, a combination of carbon fiber and epoxy resin is preferable in terms of strength and cost.
[0116]
○ The FRP matrix resin is not limited to a thermosetting resin. For example, an ultraviolet curable resin may be used as the matrix resin.
The following technical idea (invention) can be understood from the above embodiment.
[0117]
(1) In the invention according to claim 7, at least one of the end members is a yoke type joint.
(2) In the invention according to claim 9, 1 to 3 fiber bundles are simultaneously wound at the time of FW.
[0118]
(3) In the invention described in claim 9 or the technical idea (2), the protrusion is constituted by a pin.
(4) In the invention described in claim 9 or the technical idea (2), the locking portion is constituted by a knurl corresponding to a winding angle of the fiber bundle.
[0119]
(5) In the invention according to claim 9, the locking portion has an angle equal to the arrangement angle of the resin-impregnated fiber bundle of the helical winding layer formed on the innermost layer with respect to the axial direction of the end member at regular intervals. The FW is formed of a plurality of ridges extending in parallel with each other. When forming the FW at least the innermost helical winding layer, all the resin-impregnated fiber bundles constituting the innermost layer are simultaneously wound.
[0120]
(6) In the invention according to any one of claims 8 to 10, the wrapped resin-impregnated fiber bundle after FW is wound around the end of the jig and the fiber bundle before curing the resin. After cutting at a position corresponding to the space between the end portion and the portion, the jig is removed from the end member, and the resin-impregnated fiber bundle wound around the wound portion and the end member is cured.
[0121]
(7) In the invention according to claim 14, the pin is detachably provided on the cover.
(8) A method for manufacturing a power transmission shaft in which an end member is coupled to at least one end of a fiber-reinforced plastic shaft,
An end member having a fiber bundle wound portion was attached to at least one end of the wound member, and a portion of the end member excluding the fiber bundle wound portion was covered with a jig provided with a cover portion. A method for manufacturing a power transmission shaft in which FW is performed in a state and then the jig is removed.
[0122]
(9) In the inventions according to claims 8 to 12 and the technical ideas (2) to (5), when the jig is connected to the end member, the jig is brought into contact with the end member. Filament winding is performed in a state where the resin is prevented from entering the inside of the cover portion from the gap between the end surface of the cover portion and the end member.
[0123]
【The invention's effect】
As described above in detail, according to the power transmission shaft according to the first to eighth aspects of the present invention, it is possible to eliminate the problem caused by the configuration for press-fitting the serration into the FRP tube, and Good transmission of rotational torque. According to the ninth to thirteenth aspects of the invention, a power transmission shaft having the above-described effects can be easily manufactured, and a yoke-type joint can be provided. Further, by using the jig according to the invention of claims 14 to 16, the manufacture of the power transmission shaft is facilitated.
[Brief description of the drawings]
FIG. 1A is a partially cutaway side view of a propeller shaft according to a first embodiment, and FIG. 1B is a schematic cross-sectional view taken along line AA in FIG.
FIG. 2 is a schematic exploded perspective view.
FIG. 3 is a partially cut-away schematic sectional view of a state where a jig is assembled.
FIG. 4 is a partial schematic view of the FW device.
FIG. 5 is a schematic enlarged sectional view taken along line BB of FIG. 4;
FIG. 6 is a schematic cross-sectional view showing a cutting position of a resin-impregnated fiber bundle.
FIG. 7 is a partial schematic exploded sectional view of the second embodiment.
FIG. 8 is a schematic partial cross-sectional view showing a connection state of a jig.
9A is a perspective view of an end member according to another embodiment, and FIG. 9B is a side view of another end member.
FIGS. 10A to 10D are side views of an end member according to another embodiment.
11A is a partially exploded sectional view of a conventional propeller shaft, FIG. 11B is a sectional view of a propeller shaft, and FIG. 11C is a partially enlarged view of FIG.
FIGS. 12A and 12B are schematic perspective views showing a method of manufacturing another conventional propeller shaft.
[Explanation of symbols]
R: Fiber bundle, 11: Propeller shaft as power transmission shaft, 12: Cylindrical member, 12a: Coupling portion, 13, 14, ... End member, 13a, 14a: Fiber bundle wound portion, 13b, 14b: Joint portion , 13d: hole, 15: member to be wound, 16: serration, 18a, 18c: helical winding layer, 20: jig, 21: cover, 22: shaft, 23: pin, 24: support, 24a ... T-shaped part as a fixing part, 24b ... male screw part, 25 ... bolt as a support part, 30 ... filament winding device (FW device), 32 ... chuck as a rotation support part, 43 ... pin as a locking part, 44 ... Knurl as a locking part.

Claims (16)

繊維強化プラスチック製の筒部材の両端に端部部材が結合された動力伝達シャフトであって、
前記端部部材の少なくとも一方は、前記筒部材との結合部分における外周面に係止部が形成され、前記筒部材の強化繊維は複数の層を構成するように前記外周面において前記端部部材に巻き付けられ、かつ最内層を構成する繊維束は互いに交差せずに配列され、前記係止部により前記端部部材に対する周方向への相対移動が規制されている動力伝達シャフト。
A power transmission shaft in which end members are joined to both ends of a fiber-reinforced plastic tubular member,
At least one of the end members has a locking portion formed on an outer peripheral surface at a joint portion with the cylindrical member, and the reinforcing member of the cylindrical member has the end member on the outer peripheral surface so as to form a plurality of layers. A power transmission shaft in which the fiber bundles wound around the innermost layer are arranged so as not to cross each other, and the relative movement in the circumferential direction with respect to the end member is restricted by the locking portion.
前記最内層は繊維束が互いに平行に配列され、かつ全長にわたって連続しているヘリカル巻にて構成されている請求項1に記載の動力伝達シャフト。2. The power transmission shaft according to claim 1, wherein the innermost layer is configured by a helical winding in which the fiber bundles are arranged in parallel with each other and are continuous over the entire length. 前記複数の層を構成する繊維束のうちヘリカル巻で配列された繊維束は前記係止部を有する端部部材側の端部が切断されている請求項2に記載の動力伝達シャフト。3. The power transmission shaft according to claim 2, wherein, among the fiber bundles constituting the plurality of layers, the fiber bundle arranged in a helical winding has an end portion on the end member side having the locking portion cut off. 前記複数の層を構成する繊維束のうちヘリカル巻で配列された繊維束は同一層において互いに平行に配列されている請求項1〜請求項3のいずれか一項に記載の動力伝達シャフト。The power transmission shaft according to any one of claims 1 to 3, wherein the fiber bundles arranged in a helical winding among the fiber bundles constituting the plurality of layers are arranged in parallel in the same layer. 前記係止部は前記最内層の繊維束の配列方向に沿って延びる複数の凸条で構成されている請求項1〜請求項4のいずれか一項に記載の動力伝達シャフト。The power transmission shaft according to any one of claims 1 to 4, wherein the locking portion includes a plurality of ridges extending along an arrangement direction of the innermost fiber bundle. 前記係止部はセレーションで構成されている請求項5に記載の動力伝達シャフト。The power transmission shaft according to claim 5, wherein the locking portion is formed by serrations. 前記端部部材の両方に前記係止部が設けられている請求項1〜請求項6のいずれか一項に記載の動力伝達シャフト。The power transmission shaft according to any one of claims 1 to 6, wherein the locking portions are provided on both of the end members. 前記端部部材は少なくとも一方がヨークタイプの継手部を備えている請求項7に記載の動力伝達シャフト。The power transmission shaft according to claim 7, wherein at least one of the end members has a yoke-type joint. 繊維強化プラスチック製シャフトの少なくとも一端に端部部材が結合された動力伝達シャフトの製造方法であって、
筒状の被巻付け部材の少なくとも一端に、外周面に係止部が形成された繊維束被巻付け部を備えた端部部材を取り付け、該端部部材の前記繊維束被巻付け部を除いた箇所を覆うカバー部を備えた治具を前記端部部材に対して前記被巻付け部材との結合側と反対側から取り外し可能に連結し、前記被巻付け部材を前記端部部材が取り付けられた側は前記治具を介してフィラメントワインディング装置の回転支持部に一体回転可能に支持し、前記治具が取り付けられない側は前記回転支持部に支持される軸部を有する軸部付き端部部材又は前記回転支持部に支持される軸部を有する支持部材を介して前記回転支持部に一体回転可能に支持し、その状態でフィラメントワインディングを行った後、巻き付けられた樹脂含浸繊維束を硬化前又は硬化後に切断し、前記治具と端部部材との連結を解除し、前記支持部材を使用した場合は該支持部材も取り外す動力伝達シャフトの製造方法。
A method for manufacturing a power transmission shaft in which an end member is coupled to at least one end of a fiber-reinforced plastic shaft,
At least one end of the tubular member to be wound is provided with an end member provided with a fiber bundle wound portion having an engagement portion formed on an outer peripheral surface, and the fiber bundle wound portion of the end member is attached to the end member. A jig provided with a cover portion covering the removed portion is detachably connected to the end member from a side opposite to a side connected to the wound member, and the end member connects the wound member. The attached side is rotatably supported on the rotary support portion of the filament winding device via the jig, and the side on which the jig is not mounted has a shaft portion having a shaft portion supported by the rotary support portion. A resin-impregnated fiber bundle that is supported by the rotation support portion so as to be integrally rotatable via an end member or a support member having a shaft portion that is supported by the rotation support portion, and is wound in that state, and then wound. Before or after curing Cut to release the connection between the jig and the end members, the manufacturing method of the power transmission shaft to remove also the support member when using the support member.
フィラメントワインディングは少なくとも最内層にヘリカル巻層が形成されるように行われ、前記係止部は前記最内層の繊維束の配列方向を所定方向に規制可能に規則的に設けられた複数の凸部によって構成されている請求項9に記載の動力伝達シャフトの製造方法。The filament winding is performed so that a helical winding layer is formed at least on the innermost layer, and the locking portion has a plurality of convex portions provided regularly so that the arrangement direction of the fiber bundle of the innermost layer can be regulated in a predetermined direction. The method for manufacturing a power transmission shaft according to claim 9, wherein: 前記係止部は一定間隔で端部部材の軸方向に対して最内層に形成されるヘリカル巻層の樹脂含浸繊維束の配列角度と等しい角度で互いに平行に延びる複数の凸条で構成され、フィラメントワインディングはヘリカル巻層を形成する際は、ヘリカル巻層を構成する全ての樹脂含浸繊維束の巻付けが同時に行われる請求項10に記載の動力伝達シャフトの製造方法。The locking portion is constituted by a plurality of ridges extending in parallel to each other at an angle equal to the arrangement angle of the resin-impregnated fiber bundle of the helical winding layer formed on the innermost layer with respect to the axial direction of the end member at regular intervals, The method of manufacturing a power transmission shaft according to claim 10, wherein when forming the helical winding layer in the filament winding, winding of all the resin-impregnated fiber bundles constituting the helical winding layer is performed simultaneously. 前記カバー部にはフィラメントワインディング時に樹脂含浸繊維束の配列を規制するピンが突設され、フィラメントワインディング後、巻き付けられた樹脂含浸繊維束を、樹脂硬化前に前記ピンの突設位置より前記繊維束被巻付け部寄りの治具の表面と対向する位置で切断して繊維束供給部に繋がる繊維束から切り離し、その切断箇所より前記ピン側に巻き付けられた未硬化の樹脂含浸繊維束を除去した後、樹脂の加熱硬化を行い、その後、前記繊維束被巻付け部と治具の端部との間と対応する位置で繊維束を硬化樹脂とともに切断し、治具を端部部材から取り外す請求項9〜請求項11のいずれか一項に記載の動力伝達シャフトの製造方法。A pin for regulating the arrangement of the resin-impregnated fiber bundle at the time of filament winding is protruded from the cover portion. The fiber was cut at a position facing the surface of the jig near the part to be wound, cut off from the fiber bundle connected to the fiber bundle supply part, and the uncured resin-impregnated fiber bundle wound on the pin side was removed from the cut part. Thereafter, heat curing of the resin is performed, and thereafter, the fiber bundle is cut together with the cured resin at a position corresponding to between the wound portion of the fiber bundle and the end of the jig, and the jig is removed from the end member. A method for manufacturing a power transmission shaft according to any one of claims 9 to 11. 前記端部部材は前記被巻付け部材の両端に取り付けられる請求項9〜請求項12のいずれか一項に記載の動力伝達シャフトの製造方法。The method for manufacturing a power transmission shaft according to claim 9, wherein the end member is attached to both ends of the wound member. 少なくとも一方の端部に端部部材が取着された被巻付け部材にフィラメントワインディング法により前記端部部材の一部及び前記被巻付け部材に樹脂含浸繊維束を巻き付ける際に、前記被巻付け部材をフィラメントワインディング装置の回転支持部に取り付けるための治具であって、
前記端部部材の樹脂含浸繊維束が密着して巻き付けられる部分を除いた部分を覆うとともに、前記フィラメントワインディング時に樹脂含浸繊維束の一部が巻き付けられる筒状のカバー部と、
前記カバー部と一体的に形成され、前記フィラメントワインディング装置の回転支持部に支持可能な軸部と、
前記端部部材を前記軸部と前記被巻付け部材の回転中心とが同軸となる状態で支持可能で、前記軸部と一体回転可能な支持部と
を備えた治具。
When winding a resin-impregnated fiber bundle around a part of the end member and the wound member by a filament winding method on a wound member having an end member attached to at least one end, A jig for attaching a member to a rotation support portion of a filament winding device,
A cylindrical cover portion around which a portion of the resin-impregnated fiber bundle of the end member is covered, except for a portion to which the resin-impregnated fiber bundle is tightly wound, and a part of the resin-impregnated fiber bundle is wound during the filament winding.
A shaft portion formed integrally with the cover portion and capable of being supported by a rotation support portion of the filament winding device;
A jig comprising: a support portion capable of supporting the end member in a state where the shaft portion and the rotation center of the member to be wound are coaxial with each other;
前記カバー部の周面にはピンが一定ピッチで周方向に沿って環状に設けられている請求項14に記載の治具。The jig according to claim 14, wherein pins are provided on the peripheral surface of the cover portion at a constant pitch in an annular shape along the circumferential direction. 前記支持部は、一端側に前記端部部材に取り外し可能に固定される固定部が設けられ、前記固定部が前記端部部材に固定された状態で他端側が前記軸部に形成された孔から前記カバー部の外部に突出可能な長さのシャフトで構成され、該シャフトには前記軸部から突出する位置に雄ねじ部が形成されている請求項14又は請求項15に記載の治具。The support portion has a fixing portion that is detachably fixed to the end member at one end side, and a hole formed at the other end side of the shaft portion with the fixing portion fixed to the end member. 16. The jig according to claim 14, wherein the jig is configured by a shaft having a length capable of protruding from the cover portion to the outside of the cover portion, and a male screw portion is formed on the shaft at a position protruding from the shaft portion.
JP2003089241A 2003-03-27 2003-03-27 Power transmission shaft and its manufacturing method and tool Pending JP2004293714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089241A JP2004293714A (en) 2003-03-27 2003-03-27 Power transmission shaft and its manufacturing method and tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089241A JP2004293714A (en) 2003-03-27 2003-03-27 Power transmission shaft and its manufacturing method and tool

Publications (1)

Publication Number Publication Date
JP2004293714A true JP2004293714A (en) 2004-10-21

Family

ID=33403165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089241A Pending JP2004293714A (en) 2003-03-27 2003-03-27 Power transmission shaft and its manufacturing method and tool

Country Status (1)

Country Link
JP (1) JP2004293714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502504A (en) * 2011-11-03 2015-01-22 ザ・ボーイング・カンパニーTheBoeing Company Tubular composite strut with internal stiffening and method for making the same
KR101576777B1 (en) 2015-10-23 2015-12-10 변상영 Rotor Shaft Production System for Wind Turbine
WO2019131549A1 (en) * 2017-12-27 2019-07-04 Ntn株式会社 Power transmission shaft
JP2020138364A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing pipe body used in power transmission shaft
JP2020159534A (en) * 2019-03-28 2020-10-01 藤倉コンポジット株式会社 FRP composite molded product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502504A (en) * 2011-11-03 2015-01-22 ザ・ボーイング・カンパニーTheBoeing Company Tubular composite strut with internal stiffening and method for making the same
KR101576777B1 (en) 2015-10-23 2015-12-10 변상영 Rotor Shaft Production System for Wind Turbine
WO2019131549A1 (en) * 2017-12-27 2019-07-04 Ntn株式会社 Power transmission shaft
US11767876B2 (en) 2017-12-27 2023-09-26 Ntn Corporation Power transmission shaft
JP2020138364A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing pipe body used in power transmission shaft
JP2020159534A (en) * 2019-03-28 2020-10-01 藤倉コンポジット株式会社 FRP composite molded product
JP7120955B2 (en) 2019-03-28 2022-08-17 藤倉コンポジット株式会社 FRP composite molded product

Similar Documents

Publication Publication Date Title
US7874925B2 (en) Transmission shaft joint design
US7731593B2 (en) Composite transmission shaft joint
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
JP5683798B2 (en) FRP drive shaft
US20110192528A1 (en) Process for producing tube member made of fiber-reinforced resin
EP2902165B1 (en) Method of manufacturing bar member and bar member
JPH0742975B2 (en) Drive shaft made of fiber reinforced synthetic resin and method and device for producing the drive shaft
JP2004293714A (en) Power transmission shaft and its manufacturing method and tool
CN106715931B (en) Power transmission shaft
US11821586B2 (en) Manufacturing method of high-pressure tank
JP2004291505A (en) Method for manufacturing power transmission shaft and jig
JP2007271079A (en) Torque transmission shaft
JP7120955B2 (en) FRP composite molded product
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JP2004293717A (en) Power transmission shaft
US10823213B2 (en) Composite joint assembly
JP7217587B2 (en) power transmission shaft
US20050209010A1 (en) Composite shaft end assembly and composite shaft formed therewith
US20030157988A1 (en) Fiber reinforced plastic propeller shaft
JP2004293718A (en) Power transmission shaft and its manufacturing method
JP2016098945A (en) Power transmission shaft
JP2004293716A (en) Shaft for power transmission
WO2019035395A1 (en) Power transmission shaft
JP2004293715A (en) Joint for power transmission shaft, and power transmission shaft
JP2000102983A (en) Filament winding mandrel