WO2016125517A1 - Power transmission shaft - Google Patents

Power transmission shaft Download PDF

Info

Publication number
WO2016125517A1
WO2016125517A1 PCT/JP2016/050194 JP2016050194W WO2016125517A1 WO 2016125517 A1 WO2016125517 A1 WO 2016125517A1 JP 2016050194 W JP2016050194 W JP 2016050194W WO 2016125517 A1 WO2016125517 A1 WO 2016125517A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
triangular
power transmission
short
fiber
Prior art date
Application number
PCT/JP2016/050194
Other languages
French (fr)
Japanese (ja)
Inventor
卓 板垣
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016125517A1 publication Critical patent/WO2016125517A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin

Definitions

  • the present invention relates to a power transmission shaft, and more particularly to a power transmission shaft used in automobiles and various industrial machines.
  • the power transmission shaft used for automobiles and various industrial machines is generally made of steel. However, such steel is heavy. For this reason, in recent years, fiber reinforced plastics such as CFRP (carbon fiber reinforced plastic) may be used for weight reduction.
  • CFRP carbon fiber reinforced plastic
  • the end of a tube body made of fiber reinforced plastic (FRP) is joined to a metal yoke via a rivet.
  • the tube body made of FRP is composed of a right-angled winding layer in which the fiber orientation angle is wound at a substantially right angle with respect to the central axis, and the fiber orientation angle is acute with respect to the central axis at the end.
  • the acute angle winding layer to be wound and the right angle winding layer are alternately arranged.
  • the end portion of the FRP cylindrical body interposes a helical winding layer in which the fiber orientation angle is less than 45 degrees with respect to the central axis, and a hoop winding layer interposed between the helical winding layers. It has been made.
  • the orientation angle of the fibers is 45 degrees or more and less than 90 degrees.
  • serrations are formed on the outer diameter surface and inner diameter surface of the intermediate cylindrical member, and when the intermediate cylindrical member is press-fitted into the end portion of the FRP cylinder, the serration on the outer diameter surface side is the end of the FRP cylinder body. It bites into the inner diameter surface of the part. Further, when the press-fit shaft portion of the metal yoke is fitted into the intermediate cylindrical member, the serration formed on the outer diameter surface of the press-fit shaft portion of the metal yoke is engaged with the serration of the inner surface. Therefore, the metal yoke is joined to the FRP cylinder.
  • Patent Document 3 describes an FRP drive shaft formed by connecting metal end joints to both ends of an FRP cylinder.
  • the end joint includes a serration shaft member and a large-diameter flange member coupled to the serration shaft member.
  • a metal butting collar made of a short cylindrical body having a corrugated engagement portion is externally fitted to the serration shaft member, and an end of the FRP cylinder is externally fitted to the serration shaft member. It is.
  • a corrugated engagement portion is formed at the end of the FRP cylinder, and the corrugated engagement portions are fitted to each other in a state where the corrugated engagement portion of the abutting collar is abutted against the corrugated engagement portion.
  • the collar which consists of a short cylindrical body is externally fitted by the fitting site
  • the corrugated engagement portion of the FRP cylinder and the corrugated engagement portion of the collar are fitted, and in this state, the collar is externally fitted and bonded to the fitting portion of the corrugated engagement portion. Then, the FRP cylinder and the butt collar are integrated into the serration shaft member.
  • Patent Document 1 As described above, a metal yoke is inserted into the end of an FRP tube body, and these are connected using a rivet. For this reason, when torque is applied, stress concentrates on the rivet penetrating portion, and there is a risk of breakage when relatively low torque is generated. Moreover, since rivets are used, it cannot be said that the assembling property and the joining property are excellent.
  • Patent Document 2 serrations on the outer diameter surface side of the intermediate cylindrical member are bitten into the inner diameter surface of the end portion of the FRP cylinder, and the fibers on the inner diameter surface side of the FRP cylinder are cut by this biting. There is a risk. For this reason, peeling is likely to occur between FRP (fiber reinforced plastic) layers during torque loading.
  • FRP fiber reinforced plastic
  • the present invention provides a power transmission shaft that can ensure the torsional strength of the fiber reinforced plastic at a high level and can be reduced in weight.
  • a power transmission shaft is a power transmission shaft for connecting a pair of constant velocity universal joints, and includes a metal short shaft portion connected to a cup bottom portion of an outer joint member of each constant velocity universal joint, It has a shaft body made of hollow fiber reinforced plastic disposed between the short shaft parts, and the fiber reinforced plastic of the shaft body has directional fibers, along the circumferential direction at the end of each short shaft part Forming a triangular corrugated portion in which a plurality of triangular portions are disposed, and forming a triangular corrugated portion in which a plurality of triangular portions are disposed along the circumferential direction at both ends of the shaft body, The short shaft portion and the shaft in a state where the shaft main body is interposed between the pair of short shaft portions by the meshing contact between the side of the triangular corrugated portion on the short shaft portion side and the side of the triangular waveform portion on the shaft main body side.
  • the body is linearly arranged and integrated, and the shaft body
  • the fiber orientation angle of the fiber-reinforced plastic which is constituted such that the stress in the same direction occurring hypotenuse of each triangular portion in the torque load.
  • the fiber orientation angles are preferably 30 ° to 60 ° and ⁇ 30 ° to ⁇ 60 °, and more preferably ⁇ 45 °.
  • the angle formed with respect to the shaft main axis of the hypotenuse of each triangular portion of the triangular corrugated portion is 30 ° to 60 °. It will be -30 ° to -60 °.
  • the diameter (outer diameter dimension) of the hollow fiber reinforced plastic shaft main body can be increased, and the fiber orientation angle of the fiber reinforced plastic of the shaft main body can be set to a torque load.
  • the torsional strength of the fiber reinforced plastic can be secured at a high level.
  • the fiber orientation angle is 30 ° to 60 ° (-30 ° to -60 °)
  • the angle formed with respect to the shaft main axis of the hypotenuse of each triangular portion of the triangular waveform portion is 30 ° to 60 °.
  • the triangular portion has a triangular shape with a vertex portion of about 60 ° to 120 °, and the strength depending on the shape is also stabilized. That is, if the apex portion has an acute angle of about 60 ° or less, the so-called tapered shape results in unstable strength due to the shape, and conversely if the obtuse angle is 120 °, the axial length of the fitting portion is shortened. This makes it difficult to achieve a stable torque transmission function.
  • the shaft body made of hollow fiber reinforced plastic may have a core metal fitted therein, or may be covered with a protective pipe material. As a result, it is possible to reinforce the buckling of the hollow fiber reinforced plastic shaft body and to improve the torsional strength.
  • a ring-shaped collar member is externally fitted to the meshing portion where the triangular corrugated portion meshes, a sheet material formed by impregnating a fiber with a resin is wound, or a fiber body formed by impregnating a resin is wound. be able to. By these, it can prevent that the meshing part which a triangular waveform part meshes expands to an outer diameter side (diameter expansion) at the time of torque load.
  • the fiber reinforced plastic of the shaft body may be impregnated with a large number of short fibers. By impregnating a large number of short fibers, the strength of the fiber reinforced plastic can be improved.
  • the short shaft portion on which the triangular wave portion is formed may be an integrally molded product with the outer joint member of the constant velocity universal joint.
  • the torsional strength of the fiber reinforced plastic can be secured at a high level, and the strength due to the shape is also stable. For this reason, it is possible to provide a power transmission shaft that can be reduced in weight and can effectively exhibit the torque transmission function.
  • the shaft body can be prevented from buckling and contribute to the improvement of torsional strength. If it is covered with a protective pipe material, this protective pipe material can serve as a core metal for torsional strength reinforcement on the outer peripheral side of the shaft body, and foreign matter (for example, stepping stones) ) And ultraviolet rays.
  • the short shaft part is an integrally molded product with the outer joint member, the connection work of the short shaft part can be omitted, and the assembly workability can be improved.
  • This power transmission shaft is used for, for example, automobiles and various industrial machines, and is used for a drive shaft and the like.
  • This drive shaft is formed by connecting a fixed type constant velocity universal joint 31 and a sliding type constant velocity universal joint 32 by a power transmission shaft 1 according to the present invention.
  • a Barfield type constant velocity universal joint is used for the fixed type constant velocity universal joint 31
  • a tripod type constant velocity universal joint is used for the sliding type constant velocity universal joint 32.
  • the fixed type constant velocity universal joint 31 includes an outer joint member 35 in which a plurality of track grooves 33 extending in the axial direction are formed on the inner diameter surface 34, and a plurality of track grooves 36 extending in the axial direction on the outer diameter surface 37 in the circumferential direction.
  • An inner joint member 38 formed at equal intervals, a plurality of balls 39 interposed between the track groove 33 of the outer joint member 35 and the track groove 36 of the inner joint member 38 to transmit torque, and the outer joint member A cage 40 interposed between the inner diameter surface and the outer diameter surface of the inner joint member to hold the ball.
  • the sliding type constant velocity universal joint 32 includes an outer joint member 52 provided with three track grooves 51 extending in the axial direction on the inner periphery and provided with roller guide surfaces 51a facing each other on the inner wall of each track groove 51; A tripod member 54 having three leg shafts 53 projecting in the radial direction, an inner roller 55 fitted on the leg shaft 53, and an outer roller inserted into the track groove 51 and fitted on the inner roller 55 56. That is, the sliding type constant velocity universal joint 32 is a double roller type in which the outer roller 56 is rotatable with respect to the leg shaft 53 and is movable along the roller guide surface 51a.
  • the tripod member 54 includes a boss 57 and the leg shaft 53. The leg shaft 53 protrudes in the radial direction from the circumferentially divided position of the boss 57.
  • the shaft end fitting portion of the shaft 61 is fitted into the shaft hole of the inner joint member 38 in the fixed type constant velocity universal joint 31 so that torque can be transmitted, and torque can be transmitted to the shaft hole of the tripod member 54 in the sliding type constant velocity universal joint.
  • the shaft end fitting portion of the shaft 62 is inserted into the shaft 62.
  • the ends of both shaft end fitting portions of the shafts 61 and 62 are prevented from coming off by retaining rings 65 and 65 such as snap rings. That is, circumferential grooves 66 and 66 are formed at the end of the shaft end fitting portion, and the retaining rings 65 and 65 are fitted into the circumferential grooves 66 and 66.
  • Male splines 67 and 67 are formed on the outer diameters of the shaft end fitting portions of the shafts 61 and 62, and female splines 68 and 68 are formed in the shaft holes of the inner joint member 38 and the tripod member 54 of both constant velocity universal joints. Is formed.
  • the male splines 67 and 67 and the female splines 68 and 68 are engaged by fitting the shaft end fitting portions of the shafts 61 and 62 into the inner joint members 38 of the constant velocity universal joints 31 and 32 and the shaft holes of the tripod member 54. By combining them, the torque can be transmitted between the shaft 61 and the inner joint member 38, and the torque can be transmitted between the shaft 62 and the tripod member 54.
  • boots 30A and 30B for preventing entry of foreign matter from the outside and leakage of grease from the inside are mounted, respectively.
  • the boots 30A and 30B include a large-diameter end portion 30a, a small-diameter end portion 30b, and a bellows portion 30c that connects the large-diameter end portion 30a and the small-diameter end portion 30b.
  • the large-diameter end 30a of the boot 30 is fastened and fixed by boot bands 45A and 45B at the open ends of the outer joint members 35 and 52, and the small-diameter end 30b is fastened and fixed by boot bands 46A and 46B at predetermined portions of the shaft. Yes.
  • the power transmission shaft 1 includes metal short shaft portions 2A and 2B connected to the cup bottom portions 35a and 52b of the outer joint members 35 and 52 of the constant velocity universal joints 31 and 32, and the short shaft portions 2A and 2B.
  • a shaft main body 3 made of hollow fiber reinforced plastic is provided between them.
  • the fiber reinforced plastic of the shaft body 3 has directional fibers.
  • the short shaft portions 2 ⁇ / b> A and 2 ⁇ / b> B are formed with a triangular corrugated portion 9 made of steel or the like in which a plurality of triangular portions 8 are arranged along the circumferential direction on one end side.
  • the apex of the triangular portion 8 of the triangular waveform portion 9 is rounded.
  • the shaft body 3 is formed by, for example, a filament wanding method.
  • the filament wanding method is a method in which a reinforcing fiber impregnated with a resin is wound around a mandrel (hollow cylindrical mold) and molded and cured in a heat curing furnace to obtain a finished product.
  • a mandrel hexagon cylindrical mold
  • a winding head There are a method of rotating the mandrel side and a method of rotating a winding head called a creel.
  • the fiber reinforced plastic has directional fibers, and the fiber orientation angle ⁇ is + 45 °. And a second fiber winding portion M2 having a fiber orientation angle ⁇ of ⁇ 45 °.
  • a triangular corrugated portion 11 in which a plurality of triangular portions 10 are arranged along the circumferential direction is formed at the end of the shaft body 3.
  • the triangular portion 10 forms an isosceles triangle having an angle ⁇ of 45 ° with respect to the shaft axis in the plan view. Note that the top of the triangular portion 10 is rounded.
  • the outer diameter D1 of the short shaft portions 2A and 2B and the outer diameter D2 of the shaft body 3 are set to be the same as the thickness T1 of the short shaft portions 2A and 2B.
  • the wall thickness dimension T2 of the shaft body 3 is set to the same dimension.
  • a core metal 15 made of a pipe material is fitted into the shaft body 3.
  • the core metal 15 for example, steel for mechanical structure represented by S53C or S43C, 10B38 or the like in which boron is added to improve the quenching depth and strength can be used.
  • the thermosetting treatment it is preferable to perform the thermosetting treatment to ensure the strength, but if the outer diameter dimension can be set relatively large and the strength can be ensured, the thermosetting treatment is not performed. There may be.
  • the surface hardness is 52 HRC to 65 HRC.
  • the wall thickness of the metal core 15 is set to be smaller than the wall thickness T2 of the shaft body 3 in the figure, but can be changed variously depending on the material used. 3 may be the same as the wall thickness dimension T 2, or the core bar 15 may be thicker than the wall thickness dimension T 2 of the shaft body 3.
  • the bottom wall portions 35a and 52a of the outer joint members 35 and 52 of the constant velocity universal joints 31 and 32 are provided with bulging portions 41 and 41, respectively.
  • the parts are respectively fitted externally, and the cored bar 15 is integrated with the bulging parts 41 and 41 by joining means such as welding.
  • the bulging portion 41 includes an outer diameter side large diameter portion 41a and an inner diameter side small diameter portion 41b. For this reason, it joins in the state in which the end surface 6 of the metal core 15 was faced
  • the end surfaces 7 of the short shaft portions 2A and 2B are joined to the bottom wall portions 35a and 52a by joining means such as welding in a state where the end surfaces 7 are also abutted against the end surfaces 42 and 42.
  • the triangular portion 8 of the short shaft portions 2 ⁇ / b> A and 2 ⁇ / b> B and the triangular portion 10 of the shaft body 3 have the same shape and are arranged at the same pitch along the circumferential direction. .
  • the triangular portion 10 of the shaft main body 3 is fitted into the triangular concave portion 12 formed between the triangular portions 8 adjacent to each other in the circumferential direction of the short shaft portions 2A and 2B, and the shaft main body 3
  • the triangular portions 8 of the short shaft portions 2A and 2B are fitted into triangular concave portions 13 formed between adjacent triangular portions 10 in the circumferential direction. That is, the triangular waveform portion 9 of the short shaft portions 2A and 2B meshes with the triangular waveform portion 11 of the shaft body 3.
  • angles ⁇ and ⁇ of the hypotenuse 10a of the triangular portion 10 of the shaft body 3 and the hypotenuse 8a of the triangular portion 8 of the short shaft portions 2A and 2B are 45 °
  • the first fiber winding portion of the shaft main body 3 is 45 °
  • the fiber orientation angle ⁇ of the fiber (wound in the A direction) is + 45 °
  • the fiber orientation angle ⁇ of the second fiber (the fiber is wound in the B direction) is ⁇ 45 °.
  • the direction of stress generated during torque load and the direction of fiber are the same.
  • the fiber orientation angle ⁇ of the first fiber (A-direction fiber) of the shaft body 3 is not limited to + 45 °, and may be + 30 ° to + 60 °.
  • the fiber of the second fiber (B-direction fiber) The orientation angle ⁇ may be ⁇ 30 ° to ⁇ 60 °. Therefore, the angle ⁇ of the hypotenuse of the triangular portion 10 of the shaft body 3 and the hypotenuse of the triangular portion 8 of the short shaft portions 2A and 2B is not limited to 45 °, and may be 30 ° to 60 °. . That is, it suffices if the direction of the stress generated during torque loading and the direction of the fiber can be set in the same direction.
  • the resin of the shaft body 3 can be a thermoplastic resin such as PA (nylon), PP (polypropylene), PEEK (polyetherketone) or the like, even if it is a thermosetting resin such as an epoxy resin. .
  • the fiber reinforced plastic when the fibers are impregnated through the resin layer in advance, innumerable short fibers are impregnated while being stirred in the resin layer, and the fibers to be wound (the first fiber winding portion M1 and the second fiber winding).
  • the short fiber may be attached to the fiber winding part M2). Thereby, in addition to the long fibers wound in the cured resin, innumerable short fibers are contained.
  • the fiber length of the short fiber is less than 1 mm.
  • a collar member 16 made of a short cylinder is externally fitted to a meshing portion S between the triangular corrugated portion 9 of the short shaft portion 2 ⁇ / b> A and the triangular corrugated portion 11 of the shaft body 3.
  • the collar member 16 for example, mechanical structural steel represented by S53C, S43C, or the like, or 10B38 in which quenching depth and strength are improved by adding boron can be used. Further, it may be alloy steel such as stainless steel or non-ferrous metal such as aluminum alloy or resin for the purpose of weight reduction.
  • the collar member 16 may be externally fitted to the short shaft portion 2B as well.
  • the collar member 16 is press-fitted into the meshing portion S between the triangular corrugated portion 9 of the short shaft portions 2A and 2B and the triangular corrugated portion 11 of the shaft body 3, thereby covering the meshing portion S.
  • the collar member 16 is not a member for transmitting torque, even if the collar member 16 is made of metal, it is not necessary to perform the thermosetting process. It may be a thing. In the case of heat curing, the surface hardness is 52 HRC to 65 HRC.
  • the thickness of the collar member 16 is, for example, about 5 mm to 10 mm. *
  • a sheet material 17 impregnated with resin is wound around the meshing portion S of the triangular corrugated portion 9 of the short shaft portion 2 ⁇ / b> A and the triangular corrugated portion 11 of the shaft body 3. .
  • the fibers are provided with A-direction fibers having a fiber orientation angle ⁇ of + 45 ° and B-direction fibers having a fiber orientation angle ⁇ of ⁇ 45 °.
  • the fiber orientation direction of the sheet material 17 is the circumferential direction.
  • it may replace with the sheet
  • the sheet 17 of FIGS. 4 and 5 may be wound around the fitting portion S also on the short shaft portion 2B.
  • the power transmission shaft shown in FIG. 6 is obtained by coating the outer periphery of the shaft body 3 with a protective pipe material 20.
  • Short shaft portions 2A and 2B are integrally connected to the bottom wall portions 35a and 52a of the outer joint members 35 and 52, respectively.
  • the triangular portion 10 of the shaft main body 3 is fitted into the triangular concave portion 12 formed between the triangular portions 8 adjacent to each other in the circumferential direction of the short shaft portions 2A and 2B, and the circumference of the shaft main body 3 is
  • the triangular portions 8 of the short shaft portions 2A and 2B are fitted into the triangular concave portions 13 formed between the triangular portions 10 adjacent to each other in the direction. That is, the triangular waveform portion 9 of the short shaft portions 2A and 2B meshes with the triangular waveform portion 11 of the shaft body 3 (see FIG. 2).
  • the protective pipe material 20 is externally fitted to the short shaft portions 2A and 2B and the shaft body 3.
  • the protective pipe material 20 for example, steel for machine structure typified by S53C or S43C, 10B38 or the like which is improved in quenching depth and strength by adding boron is used, as in the case of the core metal 15. Can do.
  • it is preferable to secure the strength by performing a thermosetting treatment but if the outer diameter dimension can be set relatively large and the strength can be secured, the thermosetting treatment is not performed. There may be.
  • the surface hardness is 52 HRC to 65 HRC.
  • both end portions 20a, 20a of the protective pipe member 20 being externally fitted to the short shaft portions 2A, 2B, the end surfaces thereof are butted against the end surfaces 43 of the bottom wall portions 35a, 52a of the outer joint members 35, 52. Then, both ends 20a, 20a of the protective pipe member 20 are joined and integrated with the short shaft portions 2A, 2B by joining means such as welding.
  • the outer diameter D4 of the protective pipe member 20 and the outer diameter D5 of the bulging portions 41 and 41 of the outer joint members 35 and 52 are set to be the same, and the inner diameter D6 of the protective pipe member 20 is also set.
  • the outer diameter D2 of the shaft body 3 is set to be the same.
  • the outer diameter D2 of the shaft 3 and the outer diameter D1 of the short shaft portions 2A and 2B are set to the same size, and the thickness T2 of the shaft 3 and the short shaft portions 2A and 2B
  • the wall thickness dimension T1 is set to the same dimension. For this reason, the triangular waveform portion 9 of the short shaft portions 2A and 2B meshes with the triangular waveform portion 11 of the shaft body 3. In this state, the protective pipe member 20 is fitted on the shaft body 3.
  • the diameter (outer diameter) of the shaft body 3 made of hollow fiber reinforced plastic can be increased, and the fiber orientation angle of the fiber reinforced plastic of the shaft body 3 can be set to a torque load.
  • the torsional strength of the fiber reinforced plastic can be secured at a high level.
  • the triangular portion 10 has a vertex portion.
  • the torsional strength of the fiber reinforced plastic can be secured at a high level, and the strength due to the shape is also stable. For this reason, it is possible to provide a power transmission shaft that can be reduced in weight and can effectively exhibit the torque transmission function.
  • the angle formed with respect to the shaft main axis of the hypotenuses 8a and 10a of the triangular portions 8 and 10 of the triangular wave portions 9 and 11 is set to 45 °, and the fiber orientation angle of the fiber reinforced plastic of the shaft main body 3 is set.
  • the shaft body 3 When the core 15 is fitted into the shaft body 3, the shaft body 3 can be prevented from buckling and contribute to improving torsional strength. Further, by externally fitting the collar member 16 or the like to the meshing portion where the triangular waveform portions 9 and 11 mesh, it is possible to prevent the outer diameter side from being expanded (expanded) at the time of torque load, thereby reducing the bonding force. The torque transmission function can be exhibited stably over a long period of time.
  • the strength of the fiber reinforced plastic can be improved, and a power transmission shaft with higher durability can be provided.
  • the protective pipe material 20 can serve as a core metal for torsional strength reinforcement on the outer peripheral side of the shaft body 3, and foreign matter from the outside. (For example, stepping stones) and ultraviolet rays can be protected.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible.
  • buckling can be avoided and torsional strength is ensured. If it is possible to obtain the shaft main body 3 capable of performing the above, the core metal 15, the protective pipe member 20, and the like may be omitted. Further, the fiber reinforced plastic of the shaft body 3 may not be impregnated with short fibers.
  • the number and size of the triangular portion 10 of the shaft main body 3 can be arbitrarily set according to the diameter dimension, the thickness dimension, etc. of the shaft main body 3.
  • the said embodiment although rounded by forming a rounded part as a top part of each triangular-shaped part 10, you may not give such roundness.
  • Friction welding is a bonding method in which a metal material is caused to make a relative motion while being contact-pressed and the generated frictional heat is used as a heat source.
  • various welding methods such as electron beam welding, laser welding, arc welding, or gas welding, are employable.
  • the filament winding method is shown as a method for producing the shaft body 3 made of fiber reinforced plastic, but other methods such as a sheet winding method may be adopted.
  • the sheet winding method means that a sheet-like fiber is impregnated with resin on the outside of a rotating mandrel, and a semi-cured state (prepreg) is wound and cured, and then the mandrel is pulled out to form a pipe-like shape. It is a method of molding a thing.
  • fiber reinforced plastic glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) can be used, and further, boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP) and polyethylene. Fiber reinforced plastic (DFRP) or the like can also be used.
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • BFRP boron fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • DFRP Fiber reinforced plastic
  • the short fiber to be impregnated glass fiber, carbon fiber, or the like can be used, but carbon nanotube (CNT), cellulose nanofiber (CNF), or the like may be used.
  • CNT carbon nanotube
  • CNF cellulose nanofiber
  • This power transmission shaft can be a power transmission shaft used in automobiles and various industrial machines.
  • the sliding type constant velocity universal joint is a tripod type, double offset type, or cross groove type constant velocity universal joint. A joint may be used. You may use for propeller shafts other than a drive shaft. Further, when the tripod type is used as the sliding type constant velocity universal joint, it may be a single roller type or a double roller type.

Abstract

The fiber-reinforced plastic of a shaft body has directional fibers and, on an end of short shaft sections, a triangular waveform section, which is obtained by disposing multiple triangular parts along the circumferential direction, is formed. On both ends of the shaft body, triangular waveform sections, which are obtained by disposing multiple triangular parts along the circumferential direction, are formed. The short shaft sections and the shaft body are linearly disposed and integrated in a configuration in which the shaft body is interposed between the pair of short shaft sections by an engagement such that the sides of the triangular waveform sections of the short shaft sections are in contact with the sides of the triangular waveform sections of the shaft body.

Description

動力伝達シャフトPower transmission shaft
 本発明は、動力伝達シャフトに関し、特に、自動車や各種産業機械に用いられる動力伝達用シャフトに関する。 The present invention relates to a power transmission shaft, and more particularly to a power transmission shaft used in automobiles and various industrial machines.
 自動車や各種産業機械に用いられる動力伝達用シャフトは、一般的には鋼製である。しかしながら、このような鋼製では重量が大となる。このため、近年では、軽量化のためにCFRP(炭素繊維強化プラスチック)等の繊維強化プラスチックを用いる場合がある。 The power transmission shaft used for automobiles and various industrial machines is generally made of steel. However, such steel is heavy. For this reason, in recent years, fiber reinforced plastics such as CFRP (carbon fiber reinforced plastic) may be used for weight reduction.
 このように、繊維強化プラスチックを用いる場合、強度劣化を防止するために、鉄鋼部材との併用となる。このため、繊維強化プラスチックと鉄鋼部材とを接合する必要が生じ、従来には、この繊維強化プラスチックと鉄鋼部材とを接合性を考慮したものがある(特許文献1~特許文献3)。 Thus, when fiber reinforced plastic is used, it is used in combination with a steel member in order to prevent strength deterioration. For this reason, it is necessary to join the fiber reinforced plastic and the steel member. Conventionally, there are some which consider the bondability between the fiber reinforced plastic and the steel member (Patent Documents 1 to 3).
 特許文献1では、繊維強化プラスチック(FRP)製のチューブ体の端部において、リベットを介して金属製ヨークと接合するものである。この場合、FRP製のチューブ体は、中心軸に対して繊維の配向角度が略直角に巻回される直角巻層からなり、端部においては、中心軸に対して繊維の配向角度が鋭角に巻回される鋭角巻層と、前記直角巻層とが交互に配設したものである。 In Patent Document 1, the end of a tube body made of fiber reinforced plastic (FRP) is joined to a metal yoke via a rivet. In this case, the tube body made of FRP is composed of a right-angled winding layer in which the fiber orientation angle is wound at a substantially right angle with respect to the central axis, and the fiber orientation angle is acute with respect to the central axis at the end. The acute angle winding layer to be wound and the right angle winding layer are alternately arranged.
 特許文献2では、FRP製筒体の端部が、中心軸に対して繊維の配向角度が45度未満とされたヘリカル巻層と、このヘリカル巻層間に介装されるフープ巻層とを介在させたものである。フープ巻層はその繊維の配向角度が45度以上90度未満とされる。そして、この端部に、金属板から形成される中間円筒部材が圧入され、さらに、この中間円筒部材に、金属製ヨークの圧入軸部が嵌入される。 In Patent Document 2, the end portion of the FRP cylindrical body interposes a helical winding layer in which the fiber orientation angle is less than 45 degrees with respect to the central axis, and a hoop winding layer interposed between the helical winding layers. It has been made. In the hoop winding layer, the orientation angle of the fibers is 45 degrees or more and less than 90 degrees. Then, an intermediate cylindrical member formed of a metal plate is press-fitted into this end, and further, a press-fit shaft portion of a metal yoke is fitted into this intermediate cylindrical member.
 この場合、中間円筒部材の外径面及び内径面にセレーションが形成され、中間円筒部材がFRP製筒体の端部に圧入された際に、外径面側のセレーションがFRP製筒体の端部の内径面に食い込むものである。また、中間円筒部材に、金属製ヨークの圧入軸部が嵌入されることによって、内径面のセレーションには金属製ヨークの圧入軸部の外径面に形成されたセレーションが噛合される。これらよって、FRP製筒体に金属ヨークが接合されることになる。 In this case, serrations are formed on the outer diameter surface and inner diameter surface of the intermediate cylindrical member, and when the intermediate cylindrical member is press-fitted into the end portion of the FRP cylinder, the serration on the outer diameter surface side is the end of the FRP cylinder body. It bites into the inner diameter surface of the part. Further, when the press-fit shaft portion of the metal yoke is fitted into the intermediate cylindrical member, the serration formed on the outer diameter surface of the press-fit shaft portion of the metal yoke is engaged with the serration of the inner surface. Therefore, the metal yoke is joined to the FRP cylinder.
 特許文献3は、FRP円筒の両端部に金属製の端部ジョイントを結合してなるFRP駆動シャフトが記載されている。この場合、端部ジョイントは、セレーション軸部材と、このセレーション軸部材に結合される大径フランジ部材とからなる。そして、セレーション軸部材に、波形係合部が形成された短円筒体からなる金属製の突き合わせカラーが外嵌されるとともに、FRP円筒の端部がセレーション軸部材に外嵌状に嵌入されるものである。 Patent Document 3 describes an FRP drive shaft formed by connecting metal end joints to both ends of an FRP cylinder. In this case, the end joint includes a serration shaft member and a large-diameter flange member coupled to the serration shaft member. A metal butting collar made of a short cylindrical body having a corrugated engagement portion is externally fitted to the serration shaft member, and an end of the FRP cylinder is externally fitted to the serration shaft member. It is.
 また、FRP円筒の端部には波形係合部が形成され、この波形係合部に前記突き合わせカラーの波形係合部が突き合わされた状態で、波形係合部同士が嵌合する。そして、この波形係合部の嵌合部位に短円筒体からなるカラーが外嵌される。この場合、FRP円筒の波形係合部とカラーの波形係合部とを嵌合させ、その状態で、波形係合部の嵌合部位にカラーを外嵌して接着する。そして、FRP円筒と突き合わせカラーとが一体したものを、セレーション軸部材に圧入することになる。 Also, a corrugated engagement portion is formed at the end of the FRP cylinder, and the corrugated engagement portions are fitted to each other in a state where the corrugated engagement portion of the abutting collar is abutted against the corrugated engagement portion. And the collar which consists of a short cylindrical body is externally fitted by the fitting site | part of this waveform engaging part. In this case, the corrugated engagement portion of the FRP cylinder and the corrugated engagement portion of the collar are fitted, and in this state, the collar is externally fitted and bonded to the fitting portion of the corrugated engagement portion. Then, the FRP cylinder and the butt collar are integrated into the serration shaft member.
実開平1-91118号公報Japanese Utility Model Publication No.1-91118 特開2004-308700号公報JP 2004-308700 A 特開2011-52720号公報JP 2011-52720 A
 前記特許文献1では、前記したように、FRP製のチューブ体の端部に金属製ヨークを嵌入し、リベットを用いてこれらを連結するものである。このため、トルク負荷時等に、リベット貫通部位に応力が集中し、比較的低トルク発生時に破損するおそれがある。また、リベットを用いるもので、組み立て性および接合性に優れると言えるものではない。 In Patent Document 1, as described above, a metal yoke is inserted into the end of an FRP tube body, and these are connected using a rivet. For this reason, when torque is applied, stress concentrates on the rivet penetrating portion, and there is a risk of breakage when relatively low torque is generated. Moreover, since rivets are used, it cannot be said that the assembling property and the joining property are excellent.
 特許文献2では、中間円筒部材の外径面側のセレーションをFRP製筒体の端部の内径面に食い込まさるものであり、この食い込みによって、FRP製筒体の内径面側の繊維が切断されるおそれがある。このため、トルク負荷時にFRP(繊維強化プラスチック)層間で剥離が生じやすいものとなっている。 In Patent Document 2, serrations on the outer diameter surface side of the intermediate cylindrical member are bitten into the inner diameter surface of the end portion of the FRP cylinder, and the fibers on the inner diameter surface side of the FRP cylinder are cut by this biting. There is a risk. For this reason, peeling is likely to occur between FRP (fiber reinforced plastic) layers during torque loading.
 特許文献3では、FRP円筒の端部には波形係合部と突き合わせカラーの波形係合部とが突き合わされた状態で、波形係合部同士が嵌合するものである。しかしながら、この場合もFRP円筒の端部には波形係合部の内径面に、セレーション軸部材のセレーションが食い込むことになる。このため、前記特許文献2と同様、FRP円筒の内径面側の繊維が切断されるおそれがある。また、FRP円筒の繊維配向方向についての限定はない。このため、トルク負荷時において、繊維が剪断方向に力を受けるおそれがあり、強度的に安定しない。 In Patent Document 3, the corrugated engagement portions are fitted to each other in a state where the corrugated engagement portion and the corrugated engagement portion of the butting collar are butted against the end of the FRP cylinder. However, also in this case, the serration of the serration shaft member bites into the inner surface of the corrugated engagement portion at the end of the FRP cylinder. For this reason, there is a possibility that the fiber on the inner surface side of the FRP cylinder may be cut as in the case of Patent Document 2. There is no limitation on the fiber orientation direction of the FRP cylinder. For this reason, at the time of torque load, there exists a possibility that a fiber may receive force in a shearing direction, and it is not stable in strength.
 そこで、本発明は、繊維強化プラスチックの捩り強度を高レベルに確保できて、軽量化を図ることが可能な動力伝達シャフトを提供する。 Therefore, the present invention provides a power transmission shaft that can ensure the torsional strength of the fiber reinforced plastic at a high level and can be reduced in weight.
 本発明の動力伝達シャフトは、一対の等速自在継手を連結する動力伝達シャフトであって、各等速自在継手の外側継手部材のカップ底部に連設される金属製の短軸部と、この短軸部間に配設される中空繊維強化プラスチック製のシャフト本体を備え、シャフト本体の繊維強化プラスチックは方向性を持った繊維を有し、各短軸部の端部に、周方向に沿って三角形状部が複数個配設されてなる三角波形部を形成するとともに、シャフト本体の両端部に、周方向に沿って三角形状部が複数個配設されてなる三角波形部を形成し、短軸部側の三角波形部の側辺とシャフト本体側の三角波形部の側辺とが接触する噛合にて、一対の短軸部間にシャフト本体を介在させた状態で短軸部とシャフト本体とが直線状に配設一体化され、かつ、シャフト本体の繊維強化プラスチックの繊維配向角度を、トルク負荷状態において各三角形状部の斜辺に生じる応力方向と同方向となるように構成したものである。この場合、繊維配向角度として、30°~60°及び-30°~-60°とするのが好ましく、特に±45°が好ましい。なお、繊維配向角度として、30°~60°や-30°~-60°とした場合、三角波形部の各三角形状部の斜辺のシャフト本体軸心に対して成す角度を30°~60°や-30°~-60°とすることになる。 A power transmission shaft according to the present invention is a power transmission shaft for connecting a pair of constant velocity universal joints, and includes a metal short shaft portion connected to a cup bottom portion of an outer joint member of each constant velocity universal joint, It has a shaft body made of hollow fiber reinforced plastic disposed between the short shaft parts, and the fiber reinforced plastic of the shaft body has directional fibers, along the circumferential direction at the end of each short shaft part Forming a triangular corrugated portion in which a plurality of triangular portions are disposed, and forming a triangular corrugated portion in which a plurality of triangular portions are disposed along the circumferential direction at both ends of the shaft body, The short shaft portion and the shaft in a state where the shaft main body is interposed between the pair of short shaft portions by the meshing contact between the side of the triangular corrugated portion on the short shaft portion side and the side of the triangular waveform portion on the shaft main body side. The body is linearly arranged and integrated, and the shaft body The fiber orientation angle of the fiber-reinforced plastic, which is constituted such that the stress in the same direction occurring hypotenuse of each triangular portion in the torque load. In this case, the fiber orientation angles are preferably 30 ° to 60 ° and −30 ° to −60 °, and more preferably ± 45 °. When the fiber orientation angle is 30 ° to 60 ° or −30 ° to −60 °, the angle formed with respect to the shaft main axis of the hypotenuse of each triangular portion of the triangular corrugated portion is 30 ° to 60 °. It will be -30 ° to -60 °.
 本発明の動力伝達シャフトによれば、中空繊維強化プラスチック製のシャフト本体の直径(外径寸法)の大径化が可能であり、しかも、シャフト本体の繊維強化プラスチックの繊維配向角度を、トルク負荷状態において各三角形状部の斜辺に生じる応力方向と同方向となるように構成することによって、繊維強化プラスチックの捩り強度を高レベルに確保できる。また、繊維配向角度として、30°~60°(-30°~-60°)とした場合、三角波形部の各三角形状部の斜辺のシャフト本体軸心に対して成す角度を30°~60°(-30°~-60°)とすることによって、三角形状部としては、その頂点部が約60°から120°の三角形状を成すことになり、形状による強度も安定する。すなわち、頂点部が約60°以下の鋭角であれば、いわゆる先細形状となって形状による強度が安定せず、逆に120°の鈍角となれば、嵌合部の軸方向長さが短くなって、安定したトルク伝達機能を発揮しにくくなる。 According to the power transmission shaft of the present invention, the diameter (outer diameter dimension) of the hollow fiber reinforced plastic shaft main body can be increased, and the fiber orientation angle of the fiber reinforced plastic of the shaft main body can be set to a torque load. By configuring so as to be in the same direction as the stress generated on the hypotenuse of each triangular portion in the state, the torsional strength of the fiber reinforced plastic can be secured at a high level. Further, when the fiber orientation angle is 30 ° to 60 ° (-30 ° to -60 °), the angle formed with respect to the shaft main axis of the hypotenuse of each triangular portion of the triangular waveform portion is 30 ° to 60 °. By setting the angle to -30 ° to -60 °, the triangular portion has a triangular shape with a vertex portion of about 60 ° to 120 °, and the strength depending on the shape is also stabilized. That is, if the apex portion has an acute angle of about 60 ° or less, the so-called tapered shape results in unstable strength due to the shape, and conversely if the obtuse angle is 120 °, the axial length of the fitting portion is shortened. This makes it difficult to achieve a stable torque transmission function.
 中空繊維強化プラスチック製のシャフト本体には芯金が内嵌されているものであったり、保護用パイプ材にて被覆したものであったりしてもよい。これによって、中空繊維強化プラスチックのシャフト本体の座屈に対する補強、及び捩り強度の向上を図ることができる。 The shaft body made of hollow fiber reinforced plastic may have a core metal fitted therein, or may be covered with a protective pipe material. As a result, it is possible to reinforce the buckling of the hollow fiber reinforced plastic shaft body and to improve the torsional strength.
 三角波形部が噛合する噛合部にリング形状のカラー部材を外嵌したり、繊維に樹脂を含浸させてなるシート材を巻設したり、樹脂を含浸させてなる繊維体を巻設したりすることができる。これらによって、三角波形部が噛合する噛合部が、トルク負荷時に外径側へ拡大(拡径)するのを防止することができる。 A ring-shaped collar member is externally fitted to the meshing portion where the triangular corrugated portion meshes, a sheet material formed by impregnating a fiber with a resin is wound, or a fiber body formed by impregnating a resin is wound. be able to. By these, it can prevent that the meshing part which a triangular waveform part meshes expands to an outer diameter side (diameter expansion) at the time of torque load.
 シャフト本体の繊維強化プラスチックには多数の短繊維が含浸されているものであってもよい。多数の短繊維を含浸させることによって、繊維強化プラスチックの強度を向上させることができる。 The fiber reinforced plastic of the shaft body may be impregnated with a large number of short fibers. By impregnating a large number of short fibers, the strength of the fiber reinforced plastic can be improved.
 三角波形部が形成された短軸部は、等速自在継手の外側継手部材と一体成形品であってもよい。 The short shaft portion on which the triangular wave portion is formed may be an integrally molded product with the outer joint member of the constant velocity universal joint.
 本発明では、繊維強化プラスチックの捩り強度を高レベルに確保でき、形状による強度も安定する。このため、軽量化を図ることができて、トルク伝達機能を有効に発揮できる動力伝達シャフトを提供できる。 In the present invention, the torsional strength of the fiber reinforced plastic can be secured at a high level, and the strength due to the shape is also stable. For this reason, it is possible to provide a power transmission shaft that can be reduced in weight and can effectively exhibit the torque transmission function.
 シャフト本体に芯金が内嵌されたものでは、シャフト本体の座屈を防止することができるとともに、捩り強度向上に寄与する。保護用パイプ材にて被覆したものであれば、この保護用パイプ材によって、シャフト本体の外周側に、捩り強度補強のための芯金としての役割を発揮できるとともに、外部からの異物(例えば飛び石)や紫外線等から保護することができる。 ¡In the case where the core metal is fitted into the shaft body, the shaft body can be prevented from buckling and contribute to the improvement of torsional strength. If it is covered with a protective pipe material, this protective pipe material can serve as a core metal for torsional strength reinforcement on the outer peripheral side of the shaft body, and foreign matter (for example, stepping stones) ) And ultraviolet rays.
 三角波形部が噛合する噛合部にカラー部材等を外嵌することによって、トルク負荷時に外径側へ拡大(拡径)するのを防止することができ、接合力低下を防止でき、長期にわたって安定したトルク伝達機能を発揮することができる。 By externally fitting a collar member or the like to the meshing portion where the triangular wave portion meshes, it can be prevented from expanding (expanding) to the outer diameter side when torque is applied, and can be prevented from degrading the bonding force and stable over a long period of time. Torque transmission function can be exhibited.
 多数の短繊維を含浸させることによって、繊維強化プラスチックの強度を向上させることができ、より耐久性に優れた動力伝達シャフトを提供できる。 ∙ By impregnating a large number of short fibers, the strength of the fiber reinforced plastic can be improved, and a power transmission shaft with higher durability can be provided.
 また、短軸部が外側継手部材と一体成形品であれば、短軸部の接続作業を省略でき、組み立て作業性の向上を図ることができる。 Also, if the short shaft part is an integrally molded product with the outer joint member, the connection work of the short shaft part can be omitted, and the assembly workability can be improved.
本発明の動力伝達シャフトの断面図である。It is sectional drawing of the power transmission shaft of this invention. 前記図1に示す動力伝達シャフトの三角波形部が噛合する噛合部の拡大図である。It is an enlarged view of the meshing part with which the triangular waveform part of the power transmission shaft shown in the said FIG. 1 meshes. 三角波形部が噛合する噛合部にカラー部材を被覆した状態の拡大図である。It is an enlarged view of the state which coat | covered the collar member in the meshing part which a triangular waveform part meshes | engages. 繊維配向角が45°となる繊維に樹脂を含浸させたシートを噛合部に巻設した状態の拡大図である。It is an enlarged view of the state which wound the sheet | seat which impregnated resin to the fiber whose fiber orientation angle | corner becomes 45 degrees around the meshing part. 繊維配向角が90°となる繊維に樹脂を含浸させたシートを噛合部に巻設した動力伝達シャフトの平面図ある。It is a top view of the power transmission shaft which wound around the meshing part the sheet | seat which impregnated resin to the fiber whose fiber orientation angle | corner is 90 degrees. 他の実施形態を示す動力伝達シャフトの断面図である。It is sectional drawing of the power transmission shaft which shows other embodiment.
 以下本発明の実施の形態を図1~図6に基づいて説明する。この動力伝達シャフトは、例えば、自動車や各種産業機械に用いられるものであって、ドライブシャフト等に使用される。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. This power transmission shaft is used for, for example, automobiles and various industrial machines, and is used for a drive shaft and the like.
 このドライブシャフトは、固定式等速自在継手31と摺動式等速自在継手32とを、本発明に係る動力伝達シャフト1にて連結してなるものである。この図例では、固定式等速自在継手31にバーフィールド型等速自在継手を用い、摺動式等速自在継手32に、トリポード型等速自在継手を用いている。 This drive shaft is formed by connecting a fixed type constant velocity universal joint 31 and a sliding type constant velocity universal joint 32 by a power transmission shaft 1 according to the present invention. In this example, a Barfield type constant velocity universal joint is used for the fixed type constant velocity universal joint 31, and a tripod type constant velocity universal joint is used for the sliding type constant velocity universal joint 32.
 固定式等速自在継手31は、軸方向に延びる複数のトラック溝33が内径面34に形成された外側継手部材35と、軸方向に延びる複数のトラック溝36が外径面37に円周方向等間隔に形成された内側継手部材38と、外側継手部材35のトラック溝33と内側継手部材38のトラック溝36との間に介在してトルクを伝達する複数のボール39と、外側継手部材の内径面と内側継手部材の外径面との間に介在してボールを保持するケージ40とを備えている。 The fixed type constant velocity universal joint 31 includes an outer joint member 35 in which a plurality of track grooves 33 extending in the axial direction are formed on the inner diameter surface 34, and a plurality of track grooves 36 extending in the axial direction on the outer diameter surface 37 in the circumferential direction. An inner joint member 38 formed at equal intervals, a plurality of balls 39 interposed between the track groove 33 of the outer joint member 35 and the track groove 36 of the inner joint member 38 to transmit torque, and the outer joint member A cage 40 interposed between the inner diameter surface and the outer diameter surface of the inner joint member to hold the ball.
 摺動式等速自在継手32は、内周に軸線方向に延びる三本のトラック溝51を設けると共に各トラック溝51の内側壁に互いに対向するローラ案内面51aを設けた外側継手部材52と、半径方向に突出した3つの脚軸53を備えたトリポード部材54と、前記脚軸53に外嵌する内側ローラ55と、前記トラック溝51に挿入されると共に前記内側ローラ55に外嵌する外側ローラ56とを備えたものである。すなわち、この摺動式等速自在継手32は、外側ローラ56が脚軸53に対して回転自在であると共にローラ案内面51aに沿って移動可能なダブルローラタイプである。また、トリポード部材54はボス57と前記脚軸53とを備える。脚軸53はボス57の円周方向三等分位置から半径方向に突出している。 The sliding type constant velocity universal joint 32 includes an outer joint member 52 provided with three track grooves 51 extending in the axial direction on the inner periphery and provided with roller guide surfaces 51a facing each other on the inner wall of each track groove 51; A tripod member 54 having three leg shafts 53 projecting in the radial direction, an inner roller 55 fitted on the leg shaft 53, and an outer roller inserted into the track groove 51 and fitted on the inner roller 55 56. That is, the sliding type constant velocity universal joint 32 is a double roller type in which the outer roller 56 is rotatable with respect to the leg shaft 53 and is movable along the roller guide surface 51a. The tripod member 54 includes a boss 57 and the leg shaft 53. The leg shaft 53 protrudes in the radial direction from the circumferentially divided position of the boss 57.
 固定式等速自在継手31における内側継手部材38の軸孔にトルク伝達可能にシャフト61の軸端嵌合部を嵌入し、摺動式等速自在継手におけるトリポード部材54の軸孔にトルク伝達可能にシャフト62の軸端嵌合部を嵌入している。なお、シャフト61,62の両軸端嵌合部の端部は、スナップリング等の止め輪65,65によりそれぞれ抜け止めされている。すなわち、軸端嵌合部の端部に周方向溝66、66が形成され、この周方向溝66、66に止め輪65,65が嵌合している。 The shaft end fitting portion of the shaft 61 is fitted into the shaft hole of the inner joint member 38 in the fixed type constant velocity universal joint 31 so that torque can be transmitted, and torque can be transmitted to the shaft hole of the tripod member 54 in the sliding type constant velocity universal joint. The shaft end fitting portion of the shaft 62 is inserted into the shaft 62. The ends of both shaft end fitting portions of the shafts 61 and 62 are prevented from coming off by retaining rings 65 and 65 such as snap rings. That is, circumferential grooves 66 and 66 are formed at the end of the shaft end fitting portion, and the retaining rings 65 and 65 are fitted into the circumferential grooves 66 and 66.
 このシャフト61,62の軸端嵌合部の外径には雄スプライン67,67が形成され、両等速自在継手の内側継手部材38及びトリポード部材54の軸孔には雌スプライン68,68が形成されている。シャフト61,62の軸端嵌合部を等速自在継手31,32の内側継手部材38及びトリポード部材54の軸孔に嵌入することにより、雄スプライン67,67と雌スプライン68,68とを噛み合わせることで結合させ、シャフト61と内側継手部材38との間でトルク伝達を可能とし、シャフト62とトリポード部材54との間でトルク伝達を可能としている。 Male splines 67 and 67 are formed on the outer diameters of the shaft end fitting portions of the shafts 61 and 62, and female splines 68 and 68 are formed in the shaft holes of the inner joint member 38 and the tripod member 54 of both constant velocity universal joints. Is formed. The male splines 67 and 67 and the female splines 68 and 68 are engaged by fitting the shaft end fitting portions of the shafts 61 and 62 into the inner joint members 38 of the constant velocity universal joints 31 and 32 and the shaft holes of the tripod member 54. By combining them, the torque can be transmitted between the shaft 61 and the inner joint member 38, and the torque can be transmitted between the shaft 62 and the tripod member 54.
 シャフト61,62と各外側継手部材35,52との間には、外部からの異物の侵入および内部からのグリースの漏洩を防止するためのブーツ30A,30Bがそれぞれ装着されている。ブーツ30A,30Bは、大径端部30aと、小径端部30bと、大径端部30aと小径端部30bとを連結する蛇腹部30cとからなる。ブーツ30の大径端部30aは外側継手部材35,52の開口端でブーツバンド45A,45Bにより締め付け固定され、その小径端部30bはシャフトの所定部位でブーツバンド46A、46Bにより締め付け固定されている。 Between the shafts 61 and 62 and the outer joint members 35 and 52, boots 30A and 30B for preventing entry of foreign matter from the outside and leakage of grease from the inside are mounted, respectively. The boots 30A and 30B include a large-diameter end portion 30a, a small-diameter end portion 30b, and a bellows portion 30c that connects the large-diameter end portion 30a and the small-diameter end portion 30b. The large-diameter end 30a of the boot 30 is fastened and fixed by boot bands 45A and 45B at the open ends of the outer joint members 35 and 52, and the small-diameter end 30b is fastened and fixed by boot bands 46A and 46B at predetermined portions of the shaft. Yes.
 動力伝達シャフト1は、各等速自在継手31,32の外側継手部材35,52のカップ底部35a,52bに連設される金属製の短軸部2A,2Bと、この短軸部2A,2B間に配設される中空繊維強化プラスチック製のシャフト本体3を備える。シャフト本体3の繊維強化プラスチックは方向性を持った繊維を有するものである。 The power transmission shaft 1 includes metal short shaft portions 2A and 2B connected to the cup bottom portions 35a and 52b of the outer joint members 35 and 52 of the constant velocity universal joints 31 and 32, and the short shaft portions 2A and 2B. A shaft main body 3 made of hollow fiber reinforced plastic is provided between them. The fiber reinforced plastic of the shaft body 3 has directional fibers.
 短軸部2A,2Bは、図2に示すように、一端側に周方向に沿って三角形状部8が複数個配設されてなる鋼製等の三角波形部9が形成されている。なお、三角波形部9の三角形状部8の頂部はアール状とされている。 As shown in FIG. 2, the short shaft portions 2 </ b> A and 2 </ b> B are formed with a triangular corrugated portion 9 made of steel or the like in which a plurality of triangular portions 8 are arranged along the circumferential direction on one end side. The apex of the triangular portion 8 of the triangular waveform portion 9 is rounded.
 シャフト本体3は、例えば、フィラメントワンディング法にて成形される。ここで、フィラメントワンディング法とは、樹脂を含浸させた強化繊維をマンドレル(中空円筒形の成形型)に巻き付けて成形,加熱硬化炉で硬化させて完成品を得る方法である。マンドレル側を回転させる方式とクリールと呼ぶ巻き付けヘッドを回転させる方式がある。 The shaft body 3 is formed by, for example, a filament wanding method. Here, the filament wanding method is a method in which a reinforcing fiber impregnated with a resin is wound around a mandrel (hollow cylindrical mold) and molded and cured in a heat curing furnace to obtain a finished product. There are a method of rotating the mandrel side and a method of rotating a winding head called a creel.
 このため、シャフト本体3においては、図1に示すように、繊維強化プラスチックは方向性を持った繊維を有するものであり、この繊維配向角度θが+45°となる第1繊維巻設部M1と、繊維配向角度θが-45°となる第2繊維巻設部M2とを有するものとなる。 Therefore, in the shaft body 3, as shown in FIG. 1, the fiber reinforced plastic has directional fibers, and the fiber orientation angle θ is + 45 °. And a second fiber winding portion M2 having a fiber orientation angle θ of −45 °.
 また、このシャフト本体3の端部には、図2に示すように、周方向に沿って三角形状部10が複数個配設されてなる三角波形部11が形成されている。この場合、三角形状部10は平面視において、その斜辺10aがシャフト軸心に対して成す角度αとして、45°となる二等辺三角形を成すことになる。なお、三角形状部10の頂部は、アール形状とされている。 Further, as shown in FIG. 2, a triangular corrugated portion 11 in which a plurality of triangular portions 10 are arranged along the circumferential direction is formed at the end of the shaft body 3. In this case, the triangular portion 10 forms an isosceles triangle having an angle α of 45 ° with respect to the shaft axis in the plan view. Note that the top of the triangular portion 10 is rounded.
 この場合、図1に示すように、短軸部2A,2Bの外径寸法D1と、シャフト本体3の外径寸法D2と同一寸法に設定され、短軸部2A,2Bの肉厚寸法T1と、シャフト本体3の肉厚寸法T2とが同一寸法に設定される。 In this case, as shown in FIG. 1, the outer diameter D1 of the short shaft portions 2A and 2B and the outer diameter D2 of the shaft body 3 are set to be the same as the thickness T1 of the short shaft portions 2A and 2B. The wall thickness dimension T2 of the shaft body 3 is set to the same dimension.
 そして、シャフト本体3には、パイプ材からなる芯金15が内嵌される。芯金15としても、例えば、S53CやS43Cなどに代表される機械構造用鋼や、ボロンを添加して焼入深さと強度向上を図った10B38等を用いることができる。この場合、熱硬化処理を行って強度を確保するようにするのが好ましいが、外径寸法が比較的大きく設定できて、強度を確保できるものであれば、熱硬化処理を行わないものものであってもよい。硬化処理した場合、表面硬度としては、52HRC~65HRCとする。なお、芯金15の肉厚寸法としては、図例では、シャフト本体3の肉厚寸法T2よりも小さく設定されているが、用いる材質によって種々変更でき、芯金15の肉厚寸法とシャフト本体3の肉厚寸法T2と同一としたり、芯金15の肉厚寸法をシャフト本体3の肉厚寸法T2よりも厚くしてもよい。 Then, a core metal 15 made of a pipe material is fitted into the shaft body 3. As the core metal 15, for example, steel for mechanical structure represented by S53C or S43C, 10B38 or the like in which boron is added to improve the quenching depth and strength can be used. In this case, it is preferable to perform the thermosetting treatment to ensure the strength, but if the outer diameter dimension can be set relatively large and the strength can be ensured, the thermosetting treatment is not performed. There may be. When cured, the surface hardness is 52 HRC to 65 HRC. The wall thickness of the metal core 15 is set to be smaller than the wall thickness T2 of the shaft body 3 in the figure, but can be changed variously depending on the material used. 3 may be the same as the wall thickness dimension T 2, or the core bar 15 may be thicker than the wall thickness dimension T 2 of the shaft body 3.
 各等速自在継手31,32の外側継手部材35,52の底壁部35a,52aには、それぞれ、膨出部41,41が設けられ、この膨出部41,41に芯金15の両端部がそれぞれ外嵌され、溶接等の接合手段にて、膨出部41,41に芯金15とが一体化される。この膨出部41は、外径側の大径部41aと内径側の小径部41bとからなる。このため、芯金15の端面6が膨出部41の大径部41aの端面42,42に突き合わされた状態で接合される。また、短軸部2A,2Bの端面7も端面42,42に突き合わされた状態で、底壁部35a,52aに溶接等の接合手段にて接合される。 The bottom wall portions 35a and 52a of the outer joint members 35 and 52 of the constant velocity universal joints 31 and 32 are provided with bulging portions 41 and 41, respectively. The parts are respectively fitted externally, and the cored bar 15 is integrated with the bulging parts 41 and 41 by joining means such as welding. The bulging portion 41 includes an outer diameter side large diameter portion 41a and an inner diameter side small diameter portion 41b. For this reason, it joins in the state in which the end surface 6 of the metal core 15 was faced | matched by the end surfaces 42 and 42 of the large diameter part 41a of the bulging part 41. In addition, the end surfaces 7 of the short shaft portions 2A and 2B are joined to the bottom wall portions 35a and 52a by joining means such as welding in a state where the end surfaces 7 are also abutted against the end surfaces 42 and 42.
 そして、図2に示すように、短軸部2A,2Bの三角形状部8と、シャフト本体3の三角形状部10とは、同一形状寸法で、周方向に沿って同一ピッチで配設される。このため、短軸部2A,2Bの周方向の隣りあう三角形状部8間にて形成される三角形状の凹部12に、シャフト本体3の三角形状部10が嵌合するとともに、シャフト本体3の周方向の隣りあう三角形状部10間にて形成される三角形状の凹部13に、短軸部2A,2Bの三角形状部8が嵌合することになる。すなわち、短軸部2A,2Bの三角波形部9とシャフト本体3の三角波形部11とが噛合することになる。 As shown in FIG. 2, the triangular portion 8 of the short shaft portions 2 </ b> A and 2 </ b> B and the triangular portion 10 of the shaft body 3 have the same shape and are arranged at the same pitch along the circumferential direction. . For this reason, the triangular portion 10 of the shaft main body 3 is fitted into the triangular concave portion 12 formed between the triangular portions 8 adjacent to each other in the circumferential direction of the short shaft portions 2A and 2B, and the shaft main body 3 The triangular portions 8 of the short shaft portions 2A and 2B are fitted into triangular concave portions 13 formed between adjacent triangular portions 10 in the circumferential direction. That is, the triangular waveform portion 9 of the short shaft portions 2A and 2B meshes with the triangular waveform portion 11 of the shaft body 3.
 この場合、シャフト本体3の三角形状部10の斜辺10a及び短軸部2A,2Bの三角形状部8の斜辺8aの角度α、βは45°であり、シャフト本体3の第1繊維巻設部(繊維がA方向に巻設されたもの)の繊維配向角度θが+45°であり、第2繊維(繊維がB方向に巻設されたもの)の繊維配向角度θが-45°となるので、トルク負荷時に生じる応力方向と繊維の方向が同方向になる。 In this case, the angles α and β of the hypotenuse 10a of the triangular portion 10 of the shaft body 3 and the hypotenuse 8a of the triangular portion 8 of the short shaft portions 2A and 2B are 45 °, and the first fiber winding portion of the shaft main body 3 is 45 °. The fiber orientation angle θ of the fiber (wound in the A direction) is + 45 °, and the fiber orientation angle θ of the second fiber (the fiber is wound in the B direction) is −45 °. The direction of stress generated during torque load and the direction of fiber are the same.
 ところで、シャフト本体3の第1繊維(A方向繊維)の繊維配向角度θとしては、+45°に限るものではなく、+30°~+60°であればよく、第2繊維(B方向繊維)の繊維配向角度θとしても-30°~-60°であればよい。このため、シャフト本体3の三角形状部10の斜辺及び短軸部2A,2Bの三角形状部8の斜辺の角度βとしても、45°に限るものではなく、30°~60°であればよい。すなわち、トルク負荷時に生じる応力方向と繊維の方向が同方向になるように設定できればよい。 By the way, the fiber orientation angle θ of the first fiber (A-direction fiber) of the shaft body 3 is not limited to + 45 °, and may be + 30 ° to + 60 °. The fiber of the second fiber (B-direction fiber) The orientation angle θ may be −30 ° to −60 °. Therefore, the angle β of the hypotenuse of the triangular portion 10 of the shaft body 3 and the hypotenuse of the triangular portion 8 of the short shaft portions 2A and 2B is not limited to 45 °, and may be 30 ° to 60 °. . That is, it suffices if the direction of the stress generated during torque loading and the direction of the fiber can be set in the same direction.
 また、シャフト本体3の樹脂としては、エポキシ樹脂等の熱硬化性樹脂であっても、PA(ナイロン)、PP(ポリプロピレン)、PEEK(ポリエーテルケトン)等の熱可塑性樹脂等とすることができる。 Further, the resin of the shaft body 3 can be a thermoplastic resin such as PA (nylon), PP (polypropylene), PEEK (polyetherketone) or the like, even if it is a thermosetting resin such as an epoxy resin. .
 繊維強化プラスチックとしては、繊維が予め樹脂の層を通って含浸させる際に、無数の短繊維を樹脂層に攪拌させながら含浸させておき、巻きつける繊維(第1繊維巻設部M1及び第2繊維巻設部M2)に短繊維を付着させたものであってもよい。これにより、硬化した樹脂内で巻き付けられた長繊維だけでなく、無数の短繊維が含有されたことになる。なお、短繊維の繊維長さとしては、1mm未満とする。 As the fiber reinforced plastic, when the fibers are impregnated through the resin layer in advance, innumerable short fibers are impregnated while being stirred in the resin layer, and the fibers to be wound (the first fiber winding portion M1 and the second fiber winding). The short fiber may be attached to the fiber winding part M2). Thereby, in addition to the long fibers wound in the cured resin, innumerable short fibers are contained. The fiber length of the short fiber is less than 1 mm.
 次に、図3では、短軸部2Aの三角波形部9とシャフト本体3の三角波形部11との噛合部Sに、短円筒体からなるカラー部材16を外嵌している。カラー部材16は、例えば、S53CやS43Cなどに代表される機械構造用鋼や、ボロンを添加して焼入深さと強度向上を図った10B38等を用いることができる。さらには、ステンレス鋼などの合金鋼や軽量化目的でアルミ合金などの非鉄金属や樹脂等であってもよい。図示しなかったが短軸部2Bも同様にカラー部材16を外嵌してもよい。 Next, in FIG. 3, a collar member 16 made of a short cylinder is externally fitted to a meshing portion S between the triangular corrugated portion 9 of the short shaft portion 2 </ b> A and the triangular corrugated portion 11 of the shaft body 3. As the collar member 16, for example, mechanical structural steel represented by S53C, S43C, or the like, or 10B38 in which quenching depth and strength are improved by adding boron can be used. Further, it may be alloy steel such as stainless steel or non-ferrous metal such as aluminum alloy or resin for the purpose of weight reduction. Although not shown, the collar member 16 may be externally fitted to the short shaft portion 2B as well.
 カラー部材16が、短軸部2A,2Bの三角波形部9とシャフト本体3の三角波形部11との噛合部Sに圧入されることになって、噛合部Sを覆うことになる。また、このカラー部材16は、トルクを伝達するための部材ではないので、カラー部材16を金属製にて構成しても、熱硬化処理を施す必要がないが、もちろん、熱硬化処理を施したものであってもよい。なお、熱硬化処理した場合、表面硬度としては、52HRC~65HRCとする。このカラー部材16の肉厚寸法としては、例えば、5mm~10mm程度とされる。  The collar member 16 is press-fitted into the meshing portion S between the triangular corrugated portion 9 of the short shaft portions 2A and 2B and the triangular corrugated portion 11 of the shaft body 3, thereby covering the meshing portion S. In addition, since the collar member 16 is not a member for transmitting torque, even if the collar member 16 is made of metal, it is not necessary to perform the thermosetting process. It may be a thing. In the case of heat curing, the surface hardness is 52 HRC to 65 HRC. The thickness of the collar member 16 is, for example, about 5 mm to 10 mm. *
 図4は、カラー部材16に代えて、樹脂を含浸させたシート材17を短軸部2Aの三角波形部9とシャフト本体3の三角波形部11との噛合部Sに巻設したものである。この場合、繊維として、シャフト本体3の繊維と同様、繊維配向角度θが+45°であるA方向繊維と、繊維配向角度θが-45°であるB方向繊維とを備えたものである。図5では、シート材17の繊維配向方向を周方向としている。また、樹脂を含浸させたシート材17に代えて樹脂を含浸させてなる繊維体を巻設したものであってもよい。図示しなかったが短軸部2Bにも図4および図5のシート17を嵌合部Sに巻設してもよい。 In FIG. 4, instead of the collar member 16, a sheet material 17 impregnated with resin is wound around the meshing portion S of the triangular corrugated portion 9 of the short shaft portion 2 </ b> A and the triangular corrugated portion 11 of the shaft body 3. . In this case, similar to the fibers of the shaft body 3, the fibers are provided with A-direction fibers having a fiber orientation angle θ of + 45 ° and B-direction fibers having a fiber orientation angle θ of −45 °. In FIG. 5, the fiber orientation direction of the sheet material 17 is the circumferential direction. Moreover, it may replace with the sheet | seat material 17 which impregnated resin, and what wound the fiber body formed by impregnating resin may be wound. Although not shown, the sheet 17 of FIGS. 4 and 5 may be wound around the fitting portion S also on the short shaft portion 2B.
 次に、図6に示す動力伝達シャフトは、シャフト本体3の外周を保護用パイプ材20にて被覆したものである。外側継手部材35,52の底壁部35a,52aに、短軸部2A,2Bが一体に連設されている。そして、短軸部2A,2Bの周方向の隣りあう三角形状部8間にて形成される三角形状の凹部12に、シャフト本体3の三角形状部10が嵌合するとともに、シャフト本体3の周方向の隣りあう三角形状部10間にて形成される三角形状の凹部13に、短軸部2A,2Bの三角形状部8が嵌合することになる。すなわち、短軸部2A,2Bの三角波形部9とシャフト本体3の三角波形部11とが噛合することになる(図2参照)。 Next, the power transmission shaft shown in FIG. 6 is obtained by coating the outer periphery of the shaft body 3 with a protective pipe material 20. Short shaft portions 2A and 2B are integrally connected to the bottom wall portions 35a and 52a of the outer joint members 35 and 52, respectively. Then, the triangular portion 10 of the shaft main body 3 is fitted into the triangular concave portion 12 formed between the triangular portions 8 adjacent to each other in the circumferential direction of the short shaft portions 2A and 2B, and the circumference of the shaft main body 3 is The triangular portions 8 of the short shaft portions 2A and 2B are fitted into the triangular concave portions 13 formed between the triangular portions 10 adjacent to each other in the direction. That is, the triangular waveform portion 9 of the short shaft portions 2A and 2B meshes with the triangular waveform portion 11 of the shaft body 3 (see FIG. 2).
 そして、短軸部2A,2B及びシャフト本体3には、保護用パイプ材20が外嵌されている。保護用パイプ材20としては、前記芯金15と同様、例えば、S53CやS43Cなどに代表される機械構造用鋼や、ボロンを添加して焼入深さと強度向上を図った10B38等を用いることができる。この場合も、熱硬化処理を行って強度を確保するようにするのが好ましいが、外径寸法が比較的大きく設定できて、強度を確保できるものであれば、熱硬化処理を行わないものであってもよい。硬化処理した場合、表面硬度としては、52HRC~65HRCとする。 The protective pipe material 20 is externally fitted to the short shaft portions 2A and 2B and the shaft body 3. As the protective pipe material 20, for example, steel for machine structure typified by S53C or S43C, 10B38 or the like which is improved in quenching depth and strength by adding boron is used, as in the case of the core metal 15. Can do. In this case as well, it is preferable to secure the strength by performing a thermosetting treatment, but if the outer diameter dimension can be set relatively large and the strength can be secured, the thermosetting treatment is not performed. There may be. When cured, the surface hardness is 52 HRC to 65 HRC.
 この保護用パイプ材20の両端部20a、20aが短軸部2A,2Bに外嵌された状態で、その端面が、外側継手部材35,52の底壁部35a,52aの端面43に突き合わされて溶接等の接合手段にて、保護用パイプ材20の両端部20a、20aが短軸部2A,2Bと接合一体化される。 With both end portions 20a, 20a of the protective pipe member 20 being externally fitted to the short shaft portions 2A, 2B, the end surfaces thereof are butted against the end surfaces 43 of the bottom wall portions 35a, 52a of the outer joint members 35, 52. Then, both ends 20a, 20a of the protective pipe member 20 are joined and integrated with the short shaft portions 2A, 2B by joining means such as welding.
 この場合、保護用パイプ材20の外径寸法D4と外側継手部材35,52の膨出部41,41の外径寸法D5とを同一に設定するとともに、保護用パイプ材20の内径寸法D6とシャフト本体3の外径寸法D2を同一に設定している。また、この場合も、シャフト3の外径寸法D2と、短軸部2A,2Bの外径寸法D1とが同一寸法に設定され、シャフト3の肉厚寸法T2と、短軸部2A,2Bの肉厚寸法T1とが同一寸法に設定されている。このため、短軸部2A,2Bの三角波形部9とシャフト本体3の三角波形部11とが噛合することになる。この状態で、シャフト本体3に保護用パイプ材20が外嵌されることになる。 In this case, the outer diameter D4 of the protective pipe member 20 and the outer diameter D5 of the bulging portions 41 and 41 of the outer joint members 35 and 52 are set to be the same, and the inner diameter D6 of the protective pipe member 20 is also set. The outer diameter D2 of the shaft body 3 is set to be the same. Also in this case, the outer diameter D2 of the shaft 3 and the outer diameter D1 of the short shaft portions 2A and 2B are set to the same size, and the thickness T2 of the shaft 3 and the short shaft portions 2A and 2B The wall thickness dimension T1 is set to the same dimension. For this reason, the triangular waveform portion 9 of the short shaft portions 2A and 2B meshes with the triangular waveform portion 11 of the shaft body 3. In this state, the protective pipe member 20 is fitted on the shaft body 3.
 本発明の動力伝達シャフトでは、中空繊維強化プラスチック製のシャフト本体3の直径(外径寸法)の大径化が可能であり、しかも、シャフト本体3の繊維強化プラスチックの繊維配向角度を、トルク負荷状態において各三角形状部8、10の斜辺に生じる応力方向と同方向となるように構成することによって、繊維強化プラスチックの捩り強度を高レベルに確保できる。また、三角波形部9、11の各三角形状部8、10の斜辺のシャフト本体軸心に対して成す角度を30°~60°とすることによって、三角形状部10としては、その頂点部が約60°から120°の三角形状を成すことなり、形状による強度も安定する。すなわち、頂点部が約60°以下の鋭角であれば、いわゆる先細形状となって形状による強度が安定せず、逆に120°の鈍角となれば、噛合部Sの軸方向長さが短くなって、安定したトルク伝達機能を発揮しにくくなる。 In the power transmission shaft of the present invention, the diameter (outer diameter) of the shaft body 3 made of hollow fiber reinforced plastic can be increased, and the fiber orientation angle of the fiber reinforced plastic of the shaft body 3 can be set to a torque load. By configuring so as to be in the same direction as the stress direction generated on the hypotenuse of each triangular portion 8, 10 in the state, the torsional strength of the fiber reinforced plastic can be secured at a high level. Further, by setting the angle formed with respect to the shaft main axis of the hypotenuse of the triangular portions 8 and 10 of the triangular waveform portions 9 and 11 to 30 ° to 60 °, the triangular portion 10 has a vertex portion. It forms a triangular shape of about 60 ° to 120 °, and the strength due to the shape is also stable. That is, if the apex portion has an acute angle of about 60 ° or less, the so-called tapered shape is obtained and the strength due to the shape is not stable, and conversely if the obtuse angle is 120 °, the axial length of the meshing portion S is shortened. This makes it difficult to achieve a stable torque transmission function.
 このため、本発明では、繊維強化プラスチックの捩り強度を高レベルに確保でき、形状による強度も安定する。このため、軽量化を図ることができて、トルク伝達機能を有効に発揮できる動力伝達シャフトを提供できる。特に、三角波形部9、11の各三角形状部8,10の斜辺8a,10aのシャフト本体軸心に対して成す角度を45°とするとともに、シャフト本体3の繊維強化プラスチックの繊維配向角度を±45°とすることによって、トルク負荷状態において各三角形状部8、11の斜辺8a,10aに生じる応力方向と同方向に設定しやすい利点がある。 Therefore, in the present invention, the torsional strength of the fiber reinforced plastic can be secured at a high level, and the strength due to the shape is also stable. For this reason, it is possible to provide a power transmission shaft that can be reduced in weight and can effectively exhibit the torque transmission function. In particular, the angle formed with respect to the shaft main axis of the hypotenuses 8a and 10a of the triangular portions 8 and 10 of the triangular wave portions 9 and 11 is set to 45 °, and the fiber orientation angle of the fiber reinforced plastic of the shaft main body 3 is set. By setting the angle to ± 45 °, there is an advantage that it can be easily set in the same direction as the stress direction generated on the hypotenuses 8a and 10a of the triangular portions 8 and 11 in the torque load state.
 シャフト本体3に芯金15が内嵌されたものでは、シャフト本体3の座屈を防止することができるとともに、捩り強度向上に寄与する。また、三角波形部9、11が噛合する噛合部にカラー部材16等を外嵌することによって、トルク負荷時に外径側へ拡大(拡径)するのを防止することができ、接合力低下を防止でき、長期にわたって安定してトルク伝達機能を発揮することができる。 When the core 15 is fitted into the shaft body 3, the shaft body 3 can be prevented from buckling and contribute to improving torsional strength. Further, by externally fitting the collar member 16 or the like to the meshing portion where the triangular waveform portions 9 and 11 mesh, it is possible to prevent the outer diameter side from being expanded (expanded) at the time of torque load, thereby reducing the bonding force. The torque transmission function can be exhibited stably over a long period of time.
 多数の短繊維を含浸させたものでは、繊維強化プラスチックの強度を向上させることができ、より耐久性に優れた動力伝達シャフトを提供できる。 When impregnated with a large number of short fibers, the strength of the fiber reinforced plastic can be improved, and a power transmission shaft with higher durability can be provided.
 保護用パイプ材20にて被覆したものであれば、この保護用パイプ材20によって、シャフト本体3の外周側に、捩り強度補強のための芯金としての役割を発揮できるとともに、外部からの異物(例えば飛び石)や紫外線等から保護することができる。 As long as it is covered with the protective pipe material 20, the protective pipe material 20 can serve as a core metal for torsional strength reinforcement on the outer peripheral side of the shaft body 3, and foreign matter from the outside. (For example, stepping stones) and ultraviolet rays can be protected.
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、動力伝達シャフトにおいて、座屈を回避でき、かつ、捩り強度の確保が可能なシャフト本体3を得ることが可能であれば、芯金15や保護用パイプ材20等を省略してもよい。また、シャフト本体3の繊維強化プラスチックとしても、短繊維が含浸されてないものであってもよい。 As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. In the power transmission shaft, buckling can be avoided and torsional strength is ensured. If it is possible to obtain the shaft main body 3 capable of performing the above, the core metal 15, the protective pipe member 20, and the like may be omitted. Further, the fiber reinforced plastic of the shaft body 3 may not be impregnated with short fibers.
 また、シャフト本体3の三角形状部10の数や大きさ等は、シャフト本体3の径寸法や肉厚寸法等に応じて任意に設定できる。なお、前記実施形態では、各三角形状部10の頂部としてはアール部を形成することによって、丸みを付けたものであるが、このような丸みをつけないものであってもよい。 Further, the number and size of the triangular portion 10 of the shaft main body 3 can be arbitrarily set according to the diameter dimension, the thickness dimension, etc. of the shaft main body 3. In addition, in the said embodiment, although rounded by forming a rounded part as a top part of each triangular-shaped part 10, you may not give such roundness.
 芯金15や保護用パイプ材20を接合する場合、溶接以外に、摩擦接合(摩擦圧接・圧接)にて行ってもよい。摩擦接合とは、金属材料を接触加圧しながら相対運動を起こさせ、発生する摩擦熱を熱源とする接合法である。また、溶接にて接合を行う場合、電子ビーム溶接、レーザ溶接、アーク溶接、又はガス溶接等の種々の溶接方法を採用することができる。 When joining the metal core 15 or the protective pipe material 20, it may be performed by friction welding (friction welding / pressure welding) in addition to welding. Friction welding is a bonding method in which a metal material is caused to make a relative motion while being contact-pressed and the generated frictional heat is used as a heat source. Moreover, when joining by welding, various welding methods, such as electron beam welding, laser welding, arc welding, or gas welding, are employable.
 また、繊維強化プラスチックからなるシャフト本体3の製法として、前記実施形態では、フィラメントワインディング法を示したが、シートワインディング法等の他の方法を採用してもよい。ここで、シートワインディング法とは、回転しているマンドレルの外側に、シート状の繊維に樹脂を含浸し半硬化状態のもの(プリプレグ)を巻き付け、硬化させた後、マンドレルを引き抜いてパイプ状のものを成形する方法である。 In the above embodiment, the filament winding method is shown as a method for producing the shaft body 3 made of fiber reinforced plastic, but other methods such as a sheet winding method may be adopted. Here, the sheet winding method means that a sheet-like fiber is impregnated with resin on the outside of a rotating mandrel, and a semi-cured state (prepreg) is wound and cured, and then the mandrel is pulled out to form a pipe-like shape. It is a method of molding a thing.
 繊維強化プラスチックとしては、ガラス繊維強化プラスチック(GFRP)や炭素繊維強化プラスチック(CFRP)を用いるこことができ、さらには、ボロン繊維強化プラスチック(BFRP)、アラミド繊維強化プラスチック(AFRP, KFRP)やポリエチレン繊維強化プラスチック(DFRP)等も用いることができる。また、含浸させる短繊維としては、ガラス繊維や炭素繊維等を用いることができるが、カーボンナノチューブ(CNT)やセルロースナノファイバー(CNF)等であってもよい。 As the fiber reinforced plastic, glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) can be used, and further, boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP) and polyethylene. Fiber reinforced plastic (DFRP) or the like can also be used. Moreover, as the short fiber to be impregnated, glass fiber, carbon fiber, or the like can be used, but carbon nanotube (CNT), cellulose nanofiber (CNF), or the like may be used.
 本動力伝達シャフトは、自動車や各種産業機械に用いられる動力伝達用シャフトの用いることができる。固定式等速自在継手として、バーフィールドタイプやアンダーカットフリータイプの等速自在継手であっても、摺動式等速自在継手としては、トリポードタイプ、ダブルオフセットタイプ、クロスグルーブタイプの等速自在継手であってもよい。ドライブシャフト以外のプロペラシャフトに用いてもよい。また、摺動式等速自在継手としてトリポードタイプを用いる場合、シングルローラタイプであっても、ダブルローラタイプであってもよい。 This power transmission shaft can be a power transmission shaft used in automobiles and various industrial machines. Even if the fixed constant velocity universal joint is a Barfield type or an undercut-free type constant velocity universal joint, the sliding type constant velocity universal joint is a tripod type, double offset type, or cross groove type constant velocity universal joint. A joint may be used. You may use for propeller shafts other than a drive shaft. Further, when the tripod type is used as the sliding type constant velocity universal joint, it may be a single roller type or a double roller type.
S     噛合部
2A,2B    短軸部
3     シャフト本体
8,10      三角形状部
9、11      三角波形部
15   芯金
16   カラー部材
17   シート材
20   保護用パイプ材
31   固定式等速自在継手
32   摺動式等速自在継手
 
 
S meshing part 2A, 2B short shaft part 3 shaft body 8, 10 triangular part 9, 11 triangular corrugated part 15 core metal 16 color member 17 sheet material 20 protective pipe material 31 fixed type constant velocity universal joint 32 sliding type etc. Fast universal joint

Claims (8)

  1.  一対の等速自在継手を連結する動力伝達シャフトであって、
     各等速自在継手の外側継手部材のカップ底部に連設される金属製の短軸部と、この短軸部間に配設される中空繊維強化プラスチック製のシャフト本体を備え、シャフト本体の繊維強化プラスチックは方向性を持った繊維を有し、各短軸部の端部に、周方向に沿って三角形状部が複数個配設されてなる三角波形部を形成するとともに、シャフト本体の両端部に、周方向に沿って三角形状部が複数個配設されてなる三角波形部を形成し、短軸部側の三角波形部の側辺とシャフト本体側の三角波形部の側辺とが接触する噛合にて、一対の短軸部間にシャフト本体を介在させた状態で短軸部とシャフト本体とが直線状に配設一体化され、かつ、シャフト本体の繊維強化プラスチックの繊維配向角度を、トルク負荷状態において各三角形状部の斜辺に生じる応力方向と同方向となるように構成したことを特徴とする動力伝達シャフト。
    A power transmission shaft for connecting a pair of constant velocity universal joints,
    A metal short shaft portion connected to the cup bottom portion of the outer joint member of each constant velocity universal joint, and a hollow fiber reinforced plastic shaft main body disposed between the short shaft portions, the fiber of the shaft main body Reinforced plastic has directional fibers, and at the end of each short shaft part, a triangular corrugated part is formed by arranging a plurality of triangular parts along the circumferential direction, and both ends of the shaft body Forming a triangular corrugated portion in which a plurality of triangular portions are arranged along the circumferential direction, and the side of the triangular corrugated portion on the short axis side and the side of the triangular corrugated portion on the shaft body side are formed The short shaft portion and the shaft main body are linearly arranged and integrated in a state where the shaft main body is interposed between the pair of short shaft portions by contact meshing, and the fiber orientation angle of the fiber reinforced plastic of the shaft main body On the hypotenuse of each triangular part under torque load condition. Power transmission shaft, characterized by being configured such that the stress in the same direction that.
  2.  前記シャフト本体には芯金が内嵌されていることを特徴とする請求項1に記載の動力伝達シャフト。 2. The power transmission shaft according to claim 1, wherein a cored bar is fitted into the shaft main body.
  3.  三角波形部が噛合する噛合部にリング形状のカラー部材を外嵌したことを特徴とする請求項1又は請求項2に記載の動力伝達シャフト。 3. The power transmission shaft according to claim 1, wherein a ring-shaped collar member is externally fitted to a meshing portion where the triangular wave portion meshes.
  4.  三角波形部が噛合する噛合部に、繊維に樹脂を含浸させてなるシート材を巻設したことを特徴とする請求項1又は請求項2に記載の動力伝達シャフト。 The power transmission shaft according to claim 1 or 2, wherein a sheet material in which a fiber is impregnated with resin is wound around a meshing portion where the triangular corrugated portion meshes.
  5.  三角波形部が噛合する噛合部に、樹脂を含浸させてなる繊維体を巻設したことを特徴とする請求項1又は請求項2に記載の動力伝達シャフト。 3. The power transmission shaft according to claim 1 or 2, wherein a fiber body impregnated with resin is wound around a meshing portion where the triangular corrugated portion meshes.
  6.  シャフト本体の繊維強化プラスチックには多数の短繊維が含浸されていることを特徴とする請求項1~請求項5のいずれか1項に記載の動力伝達シャフト。 The power transmission shaft according to any one of claims 1 to 5, wherein the fiber reinforced plastic of the shaft body is impregnated with a large number of short fibers.
  7.  三角波形部が形成された短軸部は、等速自在継手の外側継手部材と一体成形品であることを特徴とする請求項1~請求項6のいずれか1項に記載の動力伝達シャフト。 The power transmission shaft according to any one of claims 1 to 6, wherein the short shaft portion on which the triangular wave portion is formed is a product integrally formed with the outer joint member of the constant velocity universal joint.
  8.  中空繊維強化プラスチック製のシャフト本体と、三角波形部が噛合する噛合部とを保護用パイプ材にて被覆したことを特徴とする請求項1に記載の動力伝達シャフト。
     
    2. The power transmission shaft according to claim 1, wherein the hollow fiber reinforced plastic shaft main body and the meshing portion with which the triangular corrugated portion meshes are covered with a protective pipe material.
PCT/JP2016/050194 2015-02-03 2016-01-06 Power transmission shaft WO2016125517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015019416A JP6522356B2 (en) 2015-02-03 2015-02-03 Power transmission shaft
JP2015-019416 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016125517A1 true WO2016125517A1 (en) 2016-08-11

Family

ID=56563869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050194 WO2016125517A1 (en) 2015-02-03 2016-01-06 Power transmission shaft

Country Status (2)

Country Link
JP (1) JP6522356B2 (en)
WO (1) WO2016125517A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167989A (en) * 2018-03-22 2019-10-03 Ntn株式会社 Constant velocity universal joint shaft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142718U (en) * 1979-03-30 1980-10-13
JPH01154730A (en) * 1987-12-11 1989-06-16 Mazda Motor Corp Manufacture of power transmission shaft
JPH04163130A (en) * 1990-10-26 1992-06-08 Sekisui Chem Co Ltd Preparation of fiber reinforced resin molded body
JP2002089580A (en) * 2000-07-31 2002-03-27 General Electric Co <Ge> Mechanical coupling for cooperating rotatable members
JP2002235726A (en) * 2001-02-07 2002-08-23 Ntn Corp Fiber-reinforced resin pipe and power transmission shaft using the resin pipe
US20120184383A1 (en) * 2011-01-14 2012-07-19 Skf Aerospace France Transmission shaft for transmitting rotational movements and/or forces, and method for manufacturing said shaft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191118U (en) * 1987-12-08 1989-06-15
JP2011052720A (en) * 2009-08-31 2011-03-17 Fujikura Rubber Ltd Frp driving shaft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142718U (en) * 1979-03-30 1980-10-13
JPH01154730A (en) * 1987-12-11 1989-06-16 Mazda Motor Corp Manufacture of power transmission shaft
JPH04163130A (en) * 1990-10-26 1992-06-08 Sekisui Chem Co Ltd Preparation of fiber reinforced resin molded body
JP2002089580A (en) * 2000-07-31 2002-03-27 General Electric Co <Ge> Mechanical coupling for cooperating rotatable members
JP2002235726A (en) * 2001-02-07 2002-08-23 Ntn Corp Fiber-reinforced resin pipe and power transmission shaft using the resin pipe
US20120184383A1 (en) * 2011-01-14 2012-07-19 Skf Aerospace France Transmission shaft for transmitting rotational movements and/or forces, and method for manufacturing said shaft

Also Published As

Publication number Publication date
JP6522356B2 (en) 2019-05-29
JP2016142363A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
US8876614B2 (en) FRP drive shaft
WO2016080178A1 (en) Power transmission shaft
EP2902165B1 (en) Method of manufacturing bar member and bar member
JP2016183738A (en) Power transmission shaft
US11940007B2 (en) Tubular body used for power transmission shaft and power transmission shaft
WO2016125517A1 (en) Power transmission shaft
JP2016098945A (en) Power transmission shaft
US20100113169A1 (en) Mold for manufacturing composite drive shaft and composite drive shaft manufactured using the mold
WO2019035395A1 (en) Power transmission shaft
KR101523617B1 (en) Drive Shaft Assembly adopting CFRP
JP7217587B2 (en) power transmission shaft
JP6581737B1 (en) Tube for power transmission shaft and power transmission shaft
JP2010249145A (en) Intermediate shaft for drive shaft
JP2019167989A (en) Constant velocity universal joint shaft
JP7264665B2 (en) power transmission shaft
JP7324589B2 (en) Pipe body and power transmission shaft used for power transmission shaft
JP2004293716A (en) Shaft for power transmission
JP2020138338A (en) Mandrel
JP2020138364A (en) Method for manufacturing pipe body used in power transmission shaft
JPH01229110A (en) Fiber-reinforced resin driving shaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746348

Country of ref document: EP

Kind code of ref document: A1