JPH057023A - Integrally molded heat insulating retainer - Google Patents

Integrally molded heat insulating retainer

Info

Publication number
JPH057023A
JPH057023A JP3270609A JP27060991A JPH057023A JP H057023 A JPH057023 A JP H057023A JP 3270609 A JP3270609 A JP 3270609A JP 27060991 A JP27060991 A JP 27060991A JP H057023 A JPH057023 A JP H057023A
Authority
JP
Japan
Prior art keywords
mandrel
heat insulating
resin
cylinders
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3270609A
Other languages
Japanese (ja)
Inventor
Hitoshi Murotani
均 室谷
Yasuo Shinohara
泰雄 篠原
Koji Yamatsuta
浩治 山蔦
Yoshifumi Nakanou
佳史 中納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP3270609A priority Critical patent/JPH057023A/en
Publication of JPH057023A publication Critical patent/JPH057023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To improve thermal insulation properties in the range from a low temperature to a high temperature, by arranging two cylinders, whose diameters are different, in the superposed coaxial circles state, and integrally molding the adjacent cylinders in a unified body at the central parts of the cylinders. CONSTITUTION:Reinforcing fiber impregnated with resin is wound around a rotary mandrel 14 in the state that an auxiliary mandrel 15 and a bolt 16 are removed. When molding is finished until a part corresponding to an inner cylinder, the mandrel is interrupted and the auxiliary mandrel 15 is fixed to the mandrel 14 by using the bolt 16. By rotating again the mandrel 14 the reinforcing fiber impregnated with resin is wound around the central part and the auxiliary mandrel 15, thus forming an outer cylinder part 1 and a central part 3. These are left to stand for a specified time and then the bolt is removed and the auxiliary mandrel 15 is pulled out. Thereby a double cylinder heat insulating retainer which is connected by integral molding at the central part can be obtained, so that a heat insulating retainer for a low temperature vessel which retainer has excellent heat insulating properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化樹脂製の断熱支
持材に関する。
FIELD OF THE INVENTION The present invention relates to a heat insulating support made of fiber reinforced resin.

【0002】[0002]

【従来の技術】低温を保持するための容器、特に極低温
を保持するための容器、すなわち液体ヘリウムを貯蔵す
るための断熱容器においては、液体ヘリウムの蒸発量を
最小限に押さえるために、優れた断熱特性を有し、内部
への熱浸入量の小さいことが必要条件となる。単純な液
体ヘリウム用の容器で、この条件を満たすために、種々
の断熱支持構造が採用されているが、浮上式鉄道に用い
る超電導磁石用の断熱容器では、内部の超電導磁石に働
く浮上力および推進力を常温部に伝達する必要があり、
そのために、超電導コイルを内蔵した液体ヘリウム内槽
と常温部の間に協力な支持力を有する必要がある反面、
液体ヘリウムへの熱浸入は極力小さくすることが望まし
いため、非常に難しい問題となっている。
2. Description of the Related Art A container for holding a low temperature, particularly a container for holding a cryogenic temperature, that is, a heat insulating container for storing liquid helium is excellent in order to minimize the evaporation amount of liquid helium. It is necessary to have good heat insulation properties and to have a small amount of heat intrusion into the interior. In a simple container for liquid helium, various adiabatic support structures have been adopted to satisfy this condition.However, in a container for a superconducting magnet used for a levitation railway, the levitation force acting on the internal superconducting magnet and It is necessary to transfer the driving force to the room temperature section,
Therefore, while it is necessary to have a cooperative supporting force between the liquid helium inner tank containing the superconducting coil and the room temperature part,
Since it is desirable to minimize the heat infiltration into liquid helium, it is a very difficult problem.

【0003】極低温容器の断熱支持構造について、特開
昭55−87000号公報、同56−152211号公
報及び同59−98570号公報では、複数個の直径の
異なる円筒を同心円状に重ねて配置し、隣接する円筒ど
うしの接合を該円筒の中央部で行うものと両端で行うも
のを交互に組合わせて構成し、前後、左右、上下の支持
力を一個で負担できる極低温容器の断熱支持構造を開示
している。
Regarding the heat insulating support structure of a cryogenic container, in JP-A-55-87000, JP-A-56-152211, and JP-A-59-98570, a plurality of cylinders having different diameters are arranged concentrically. However, it is constructed by alternately combining the joints of adjacent cylinders at the center of the cylinders and the joints at both ends, and can support front, rear, left and right, and up and down by a single unit. The structure is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来法
では円筒を個々に別々に製作し、ついで隣接する円筒同
士を接合しているので、大きな荷重に耐えるには問題が
残った。すなわち円筒同士を接合する操作は難しく、接
合前には円筒表面を平滑にするための機械加工が必須に
なり、また同心円状に重ねて配置された円筒同士を中央
部で接着剤を用いて接合しようとしても、充分に圧をか
けることが難しく、接着強度に問題があり、更に生産性
にも欠けていた。本発明は、上記欠点を解決しようとす
るものであって、かつ優れた断熱性能を有する低温容器
の断熱支持材を提供するものである。
However, in the conventional method, since the cylinders are individually manufactured and then the adjacent cylinders are joined to each other, there remains a problem to withstand a large load. That is, it is difficult to join the cylinders together, and it is necessary to perform machining to smooth the surfaces of the cylinders before joining.In addition, the concentric cylinders are joined together with an adhesive at the center. Even if it was tried, it was difficult to apply sufficient pressure, there was a problem in adhesive strength, and further productivity was lacking. The present invention is intended to solve the above-mentioned drawbacks, and provides a heat insulating support material for a cryogenic container having excellent heat insulating performance.

【0005】[0005]

【課題を解決するための手段】本発明は、2個の径の異
なる円筒が同心円状に重ねて配置され、隣接する円筒同
士が該円筒の中央部にて一体成形された構造を有するこ
とを特徴とする繊維強化樹脂からなる一体成形断熱支持
材に関する。
The present invention has a structure in which two cylinders having different diameters are concentrically overlapped with each other, and adjacent cylinders are integrally formed at the center of the cylinder. The present invention relates to an integrally molded heat-insulating support material made of a fiber-reinforced resin.

【0006】以下、本発明を図面に基づいて説明する。
図1は、本発明の繊維強化樹脂製の一体成形断熱支持材
の例であって、隣接する外筒1、内筒2を中央部で一体
成形された二重円筒構造を有する断熱支持材である。
The present invention will be described below with reference to the drawings.
FIG. 1 shows an example of an integrally molded heat-insulating support material made of fiber reinforced resin of the present invention, which is a heat-insulating support material having a double cylindrical structure in which an adjacent outer cylinder 1 and inner cylinder 2 are integrally molded at the central portion. is there.

【0007】図2は、図1に示した一体成形断熱支持材
を用いた低温容器の断熱支持構造の断面図である。これ
は、本発明の隣接する外筒1、内筒2が中央部3で一体
成形された二重円筒からなる断熱支持材と、隣接する外
筒4、内筒5が中央部6で一体成形された二重円筒から
なる断熱支持材とを接続治具7で接合した四重円筒から
なる断熱支持構造を示す。該断熱支持構造は低温容器側
壁8と常温の取付部側壁9とを接続固定している。それ
ぞれとの固定方法は溶接、ピン接合等周知の方法が用い
られる。
FIG. 2 is a sectional view of a heat insulating support structure for a cryogenic container using the integrally formed heat insulating support shown in FIG. This is because the adjacent outer cylinder 1 and inner cylinder 2 of the present invention are a double-cylinder heat insulating support member integrally formed at the central portion 3, and the adjacent outer cylinder 4 and inner cylinder 5 are integrally formed at the central portion 6. The heat-insulating support structure made of a quadruple cylinder in which the heat-insulating support material made of the formed double cylinder is joined by the connecting jig 7 is shown. The heat insulating support structure connects and fixes the low temperature container side wall 8 and the room temperature mounting part side wall 9. A well-known method such as welding or pin joining is used as a fixing method for each.

【0008】図3は、浮上式鉄道に用いる超電導コイル
用の断熱構造を示すもので、図2に示した断熱支持材を
用いた極低温容器の断熱支持構造の概略の側面図であ
る。該断熱支持構造は超電導コイルの入った極低温容器
12と台車取付部11を、断熱支持材10が固定してい
るものである。ここでは、補助車輪等は省略して台車の
一部13を図示している。
FIG. 3 shows a heat insulation structure for a superconducting coil used in a levitation railway, and is a schematic side view of a heat insulation support structure of a cryogenic container using the heat insulation support material shown in FIG. In this heat insulating support structure, a cryogenic container 12 containing a superconducting coil and a truck mounting portion 11 are fixed by a heat insulating support material 10. Here, the auxiliary wheels and the like are omitted, and a part 13 of the carriage is shown.

【0009】本発明の一体成形断熱支持材の製造方法と
しては、フィラメントワインディング法、ハンドレイア
ップ法等を適用できるが、フィラメントワインディング
法(以下、FW法ということがある)が好ましい。図4
は、本発明の一体成形断熱支持材をフィラメントワイン
ディング法で製造するときに用いるマンドレル一式の例
を示すものであって、円筒型マンドレル14に補助マン
ドレル15をボルト16で固定した状態を示している。
A filament winding method, a hand lay-up method or the like can be applied as a method for producing the integrally molded heat-insulating support material of the present invention, but the filament winding method (hereinafter sometimes referred to as FW method) is preferable. Figure 4
Shows an example of a set of mandrels used when the integrally molded heat-insulating support material of the present invention is manufactured by the filament winding method, and shows a state in which an auxiliary mandrel 15 is fixed to a cylindrical mandrel 14 with bolts 16. ..

【0010】本発明の一体成形断熱支持材を製造するに
当たっては、まず補助マンドレル15、ボルト16を除
いた状態で、回転するマンドレル14に樹脂を含浸させ
た強化繊維を巻き付ける、そして、内筒に相当する部分
まで成形ができたら、マンドレルを停止して、補助マン
ドレル15をボルト16でマンドレル14に固定して、
再びマンドレル14を回転して、中央部および補助マン
ドレル15の上に樹脂を含浸させた強化繊維を巻き付け
ていき、図1における外筒部1および中央部3を形成す
る。
In manufacturing the integrally molded heat-insulating support material of the present invention, first, with the auxiliary mandrel 15 and the bolts 16 removed, the rotating mandrel 14 is wrapped with a resin-impregnated reinforcing fiber, and then the inner cylinder is wound. After forming the corresponding part, stop the mandrel and fix the auxiliary mandrel 15 to the mandrel 14 with bolts 16.
The mandrel 14 is rotated again, and the reinforcing fiber impregnated with the resin is wound around the central part and the auxiliary mandrel 15 to form the outer cylinder part 1 and the central part 3 in FIG.

【0011】そして、用いた樹脂が常温硬化型樹脂のと
きには、所定時間放置後、加熱硬化型樹脂のときには、
所定時間、所定温度に保持した後、ボルト16をはずし
補助マンドレル15を引き抜くと、中央部で一体成形に
より連結された二重円筒の断熱支持材が得られる。
When the resin used is a room temperature curable resin, it is allowed to stand for a predetermined time, and when it is a heat curable resin,
After holding at a predetermined temperature for a predetermined time, the bolt 16 is removed and the auxiliary mandrel 15 is pulled out to obtain a double-cylinder heat-insulating support material integrally connected at the central portion.

【0012】補助マンドレル15は中央部に向けて、外
周のみ0.5°以上のテーパーを付けることが好まし
い。0.5°未満のテーパーでは硬化後のFRPから補
助マンドレル15を引き抜きにくい。
It is preferable that the auxiliary mandrel 15 has a taper of 0.5 ° or more only on the outer periphery toward the central portion. With a taper of less than 0.5 °, it is difficult to pull out the auxiliary mandrel 15 from the FRP after curing.

【0013】また、マンドレル14と補助マンドレル1
5の材質については、熱膨張率が異なる2種の金属を用
いることが好ましい。すなわち、マンドレル14に熱膨
張率の大きい金属を用い、補助マンドレル15にマンド
レル14より熱膨張率の小さい金属を用いた場合、加熱
硬化型樹脂の場合、硬化の際にマンドレル14の膨張の
方が大きいので円筒部に圧力がかかり、繊維に対して樹
脂の含浸を良くする。またマンドレルを離型する際にも
冷却するとマンドレル14の方が大きく収縮するので、
抜けやすく好ましい。
Also, the mandrel 14 and the auxiliary mandrel 1
As for the material of No. 5, it is preferable to use two kinds of metals having different thermal expansion coefficients. That is, when a metal having a large coefficient of thermal expansion is used for the mandrel 14 and a metal having a coefficient of thermal expansion smaller than that of the mandrel 14 is used for the auxiliary mandrel 15, in the case of a thermosetting resin, the expansion of the mandrel 14 during curing is Since it is large, pressure is applied to the cylindrical portion, and the fibers are better impregnated with the resin. Also, when the mandrel is released from the mold, the mandrel 14 shrinks more when cooled,
Easy to pull out and preferable.

【0014】本発明で用いる強化繊維は、アルミナ質繊
維、セラミック繊維,ガラス繊維、炭素繊維、アラミド
繊維等が挙げられる。極低温だけの範囲では、炭素繊維
が熱伝導率が低いので好ましく、液体窒素温度域から室
温域ではガラス繊維が熱伝導率が低いので好ましい。
Examples of the reinforcing fiber used in the present invention include alumina fiber, ceramic fiber, glass fiber, carbon fiber and aramid fiber. Carbon fibers are preferable in a range of only an extremely low temperature because they have low thermal conductivity, and glass fibers are preferable in a temperature range of liquid nitrogen to room temperature because they have low thermal conductivity.

【0015】常温から極低温まで断熱性能が優れている
のは、アルミナ質繊維である。例えば、炭素繊維は極低
温域ではガラス繊維より熱伝導率が低いが、室温域では
逆にガラス繊維の方が炭素繊維より熱伝導率が低くな
る。そのため熱の貫入量を最小にするには、ガラス繊維
強化樹脂と炭素繊維強化樹脂を併用した複雑な構造を取
る必要があった。しかし、アルミナ質繊維は、極低温域
から室温域にわたる広い温度範囲で、ガラス繊維および
炭素繊維のそれぞれの低い方とほぼ同一の熱伝導率を示
すので、全体をアルミナ質繊維強化樹脂(以下、ALF
RPということがある)からなる単一材料で作ることが
できる。
Alumina fibers have excellent heat insulating properties from room temperature to extremely low temperatures. For example, carbon fiber has a lower thermal conductivity than glass fiber in an extremely low temperature range, but conversely, glass fiber has a lower thermal conductivity than carbon fiber in a room temperature range. Therefore, in order to minimize the amount of heat penetration, it was necessary to take a complicated structure using both glass fiber reinforced resin and carbon fiber reinforced resin. However, since the alumina fiber shows almost the same thermal conductivity as the lower one of the glass fiber and the carbon fiber in a wide temperature range from the extremely low temperature region to the room temperature region, the entire alumina fiber reinforced resin (hereinafter, ALF
(Sometimes referred to as RP).

【0016】本発明に用いられるアルミナ質繊維の組成
はアルミナ含有量が60重量%以上、シリカ含有量が4
0重量%以下、好ましくはアルミナ72重量%以上、シ
リカ28重量%以下、さらに好ましくはアルミナ75〜
98重量%以下、シリカ25〜2重量%のものがよい。
またシリカ含有量の内、繊維全重量に対して10重量%
以下、好ましくは5重量%以下の範囲でこれをリチウ
ム、ベリリウム、ホウ素、ナトリウム、マグネシウム、
リン、カリウム、カルシウム、チタン、クロム、マンガ
ン、イットリウム、ジルコニウム、ランタン、タングス
テン、バリウムの一種または二種以上の酸化物で置き換
えてもよい。
The composition of the alumina fiber used in the present invention has an alumina content of 60% by weight or more and a silica content of 4%.
0 wt% or less, preferably 72 wt% or more of alumina, 28 wt% or less of silica, and more preferably 75 to 75
It is preferably 98% by weight or less and 25 to 2% by weight silica.
Of the silica content, 10% by weight based on the total weight of the fiber
Below, preferably in the range of 5 wt% or less, lithium, beryllium, boron, sodium, magnesium,
It may be replaced with one or more oxides of phosphorus, potassium, calcium, titanium, chromium, manganese, yttrium, zirconium, lanthanum, tungsten, barium.

【0017】本発明に用いられるアルミナ質繊維の形態
は、長繊維で用いる方が高強度の特徴を生かせるので好
ましい。長繊維のときにはロービング、マット、織物と
して用いるのがよい。
The form of the alumina fiber used in the present invention is preferably used as long fibers because the characteristics of high strength can be utilized. When it is a long fiber, it is preferably used as a roving, a mat or a woven fabric.

【0018】このようなアルミナ質繊維として、アルテ
ックス(商品名:住友化学工業(株)製)、アルセン
(商品名:電気化学工業(株)製)、Nextel(商
品名:3M社製)、アルマックス(商品名:三井鉱山
(株)製)、FP Fiber(Du Pont 社製)等を挙げるこ
とができる。これらの中で好ましいアルミナ質繊維は、
アルテックス(住友化学工業(株)製)及びアルセン
(電気化学工業(株)製)である。
As such an alumina fiber, Artex (trade name: manufactured by Sumitomo Chemical Co., Ltd.), Arsen (trade name: manufactured by Denki Kagaku Co., Ltd.), Nextel (trade name: manufactured by 3M Company), Examples include Almax (trade name: manufactured by Mitsui Mining Co., Ltd.) and FP Fiber (manufactured by Du Pont). Among these, preferred alumina fibers are
These are Altex (produced by Sumitomo Chemical Co., Ltd.) and Arsen (produced by Denki Kagaku Co., Ltd.).

【0019】該アルミナ質繊維の強度、弾性率は繊維径
を約10μmとすればそれぞれ150kg/mm2 、2
0t/mm2 以上の値を示すものが好ましい。例えばア
ルミナ含有量85重量%、シリカ含有量15重量%の組
成からなる径10μmのアルミナ質繊維アルテックスは
引張強度180kg/mm2 以上、引張弾性率21t/
mm2 以上の値を示す。
The strength and elastic modulus of the alumina fiber are 150 kg / mm 2 and 2, respectively, when the fiber diameter is about 10 μm.
Those having a value of 0 t / mm 2 or more are preferable. For example, an alumina fiber Altex having a diameter of 10 μm and having a composition of 85% by weight of alumina and 15% by weight of silica has a tensile strength of 180 kg / mm 2 or more and a tensile elastic modulus of 21 t /
Indicates a value of mm 2 or more.

【0020】また該アルミナ質繊維のX線的構造におい
てα−アルミナの反射を実質的に示さないものが望まし
い。一般に無機繊維は高温において繊維内に繊維を形成
する無機物の結晶粒子が成長し、これら結晶粒子間の粒
界破壊のために繊維強度が著しく低下する。同時に、結
晶粒子の成長に伴って繊維の表面積が減少し、この為に
樹脂との接着性が低下する。この事情は該アルミナ質繊
維において本発明者らの検討の結果によれば、そのX線
回析像にα−アルミナによる反射が現れることによって
特徴づけられる。従って本発明に用いられるアルミナ質
繊維はそのX線回析像にα−アルミナの反射が現れない
ように製造されたものが好ましい。
It is desirable that the X-ray structure of the alumina fiber does not substantially show the reflection of α-alumina. Generally, in inorganic fibers, the crystal grains of the inorganic substance forming the fibers grow in the fiber at a high temperature, and the fiber strength is remarkably lowered due to the grain boundary destruction between these crystal grains. At the same time, the surface area of the fibers decreases with the growth of the crystal particles, which reduces the adhesion with the resin. This circumstance is characterized by the reflection of α-alumina in the X-ray diffraction image of the alumina fiber according to the results of studies by the present inventors. Therefore, the alumina fiber used in the present invention is preferably manufactured so that the reflection of α-alumina does not appear in the X-ray diffraction image.

【0021】アルテックスは数100オングストローム
程度の非常に微細な微結晶より構成されているため、熱
伝導率が普通のアルミナ繊維より小さく、従って本発明
の目的には最適な材料である。
Since ARTEX is composed of very fine crystallites of about several hundred angstroms, it has a thermal conductivity smaller than that of ordinary alumina fiber, and is therefore an optimum material for the purpose of the present invention.

【0022】また本発明のマトリックスに用いられる合
成樹脂類としては、一般にFW法、ハンドレイアップ法
等による繊維強化複合材料の製造に用いられている公知
の合成樹脂が使用される。例示すると、エポキシ樹脂、
フェノール樹脂、アルキッド樹脂、尿素樹脂、メラミン
樹脂、不飽和ポリエステル樹脂、芳香族ポリアミド樹
脂、ポリアミド−イミド樹脂、ビニルエステル樹脂、ポ
リエステル−イミド樹脂、ポリイミド樹脂、ポリベンゾ
チアゾール樹脂、ケイ素樹脂などの熱硬化性樹脂、ポリ
エチレン、ポリプロピレン、ポリメチルメタアクリレー
ト、ポリスチレン(いわゆるハイ・インパクト・ポリス
チレンも含む)、ポリ塩化ビニール、弗素樹脂、ABS
樹脂、スチレン−アクリロニトリル共重合体、ポリアミ
ド(ナイロン6,6・6,6・10,6・11,6・1
2など)、ポリアセタール、ポリスルホン、ポリカーボ
ネート、ポリフェニレンオキサイド、ポリエーテルエー
テルケトン、ポリエーテルケトン、ポリアミドイミド、
ポリスルホン、ポリエーテルスルホン、芳香族ポリエス
テルなどの熱可塑性樹脂を挙げることができる。好まし
い熱硬化性樹脂組成物としてはエポキシ樹脂、不飽和ポ
リエステル樹脂およびビニルエステル樹脂が挙げられ
る。また好ましい熱可塑性樹脂としては、ポリエーテル
エーテルケトン、ポリエーテルスルホンおよびポリアミ
ドイミド樹脂が挙げられる。また支持材の熱輻射を低減
する為にメッキ用エポキシ樹脂を用い成形後メッキ、蒸
着等を施すことも有効である。
As the synthetic resins used in the matrix of the present invention, known synthetic resins generally used in the production of fiber reinforced composite materials by the FW method, the hand layup method and the like are used. For example, epoxy resin,
Thermosetting of phenol resin, alkyd resin, urea resin, melamine resin, unsaturated polyester resin, aromatic polyamide resin, polyamide-imide resin, vinyl ester resin, polyester-imide resin, polyimide resin, polybenzothiazole resin, silicon resin, etc. Resin, polyethylene, polypropylene, polymethylmethacrylate, polystyrene (including so-called high impact polystyrene), polyvinyl chloride, fluororesin, ABS
Resin, styrene-acrylonitrile copolymer, polyamide (nylon 6,6,6,6,10,6,11,6.1
2 etc.), polyacetal, polysulfone, polycarbonate, polyphenylene oxide, polyetheretherketone, polyetherketone, polyamideimide,
There may be mentioned thermoplastic resins such as polysulfone, polyether sulfone and aromatic polyester. Preferred thermosetting resin compositions include epoxy resins, unsaturated polyester resins and vinyl ester resins. Preferred thermoplastic resins include polyetheretherketone, polyethersulfone and polyamideimide resins. It is also effective to perform plating, vapor deposition, etc. after molding using an epoxy resin for plating in order to reduce heat radiation of the support material.

【0023】[0023]

【発明の効果】本発明の一体成形断熱支持材は、同心円
状に重ねて配置された円筒同士を中央部で接着剤で接合
したものではなく、フィラメントワインディング法で一
体成形され、二重円筒であるから、機械的物性に優れて
おり、またその安定性もよい上、生産性が高い。特にア
ルミナ質繊維強化樹脂からなる極低温容器の一体成形断
熱支持材は、優れた引張強度、曲げ強度およびそれぞれ
の剛性、優れた層間剪断強度および極低温域から常温域
にわたる優れた断熱性を有するものである。
The integrally molded heat insulating support material of the present invention is not a cylinder in which concentric circularly stacked layers are joined together by an adhesive in the central portion, but is integrally molded by a filament winding method and is a double cylinder. Therefore, it has excellent mechanical properties, is stable, and has high productivity. In particular, the integrally molded heat-insulating support material of a cryogenic container made of an alumina fiber reinforced resin has excellent tensile strength, bending strength and respective rigidity, excellent interlaminar shear strength, and excellent heat insulating properties from the low temperature range to the normal temperature range. It is a thing.

【0024】[0024]

【実施例】図4に示したマンドレルから補助マンドレル
15、ボルト16を除いた状態で、回転する円筒形成用
マンドレル14にエポキシ樹脂を含浸させたアルミナ質
繊維(商品名アルテックスSX−11−1K:住友化学
工業(株)製、繊維径15mm)を巻き付け、内筒に相
当する部分を形成する。ついで、回転を停止して、補助
マンドレル15をボルト16で円筒成形用金型14の両
端に固定する。再びマンドレルを回転して、補助マンド
レル15の上に上記の樹脂を含浸させたアルミナ質繊維
を巻き付けて外筒を形成してゆく。補助金型に覆われて
いない中央部は直接に先に巻き付けられた内筒の表面に
直接巻き付けられることになる。かくして外筒と内筒の
一体成形部分が形成される。所定の温度にて所定時間放
置した後、ボルト16をはずし、補助マンドレル15を
引き抜くと本発明の図1に示される繊維強化樹脂製一体
成形断熱支持材が得られる。本発明の断熱支持材を用い
た低温容器の断熱支持構造を図2及び図3に示した。
EXAMPLE Alumina fibers (commercial name Altex SX-11-1K) obtained by impregnating the rotating mandrel 14 for forming a cylinder with an epoxy resin in a state where the auxiliary mandrel 15 and the bolt 16 are removed from the mandrel shown in FIG. : Sumitomo Chemical Co., Ltd., fiber diameter 15 mm) is wound to form a portion corresponding to the inner cylinder. Then, the rotation is stopped, and the auxiliary mandrel 15 is fixed to both ends of the cylindrical molding die 14 with the bolts 16. The mandrel is rotated again, and the alumina fiber impregnated with the above resin is wound around the auxiliary mandrel 15 to form an outer cylinder. The central portion which is not covered by the auxiliary mold is directly wound around the surface of the inner cylinder previously wound. Thus, the integrally molded portion of the outer cylinder and the inner cylinder is formed. After standing at a predetermined temperature for a predetermined time, the bolt 16 is removed, and the auxiliary mandrel 15 is pulled out to obtain the fiber-reinforced resin integrally molded heat insulating support material shown in FIG. 1 of the present invention. A heat insulating support structure for a cryogenic container using the heat insulating support of the present invention is shown in FIGS. 2 and 3.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一体成形断熱支持材の一部切裁断面図FIG. 1 is a partially cut sectional view of an integrally molded heat insulating support material of the present invention.

【図2】一体成形断熱支持材を二体用いた四重円筒から
なる断熱支持構造の断面図
FIG. 2 is a sectional view of a heat insulating support structure composed of a quadruple cylinder using two integrally formed heat insulating support materials.

【図3】極低温容器の断熱支持構造の概略の側面図FIG. 3 is a schematic side view of a heat insulating support structure for a cryogenic container.

【図4】本発明の一体成形断熱支持材を製造するときに
用いるマンドレルの一部切裁断面図
FIG. 4 is a partially cut cross-sectional view of a mandrel used when manufacturing the integrally molded heat-insulating support material of the present invention.

【符号の説明】[Explanation of symbols]

1,一体成形断熱支持材の外筒部 2,一体成形断熱支持材の内筒部 3,一体成形断熱支持材の中央部 4,一体成形断熱支持材の外筒部 5,一体成形断熱支持材の内筒部 6,一体成形断熱支持材の中央部 7,接続治具 8,極低温容器壁 9,取付部側壁 10,断熱支持材 11,台車取付部 12,超伝導コイルの入った極低温容器 13,台車の一部 14,円筒型マンドレル 15,補助マンドレル 16,ボルト 1, outer cylinder part of integrally formed heat insulation support material 2, inner cylinder part of integrally formed heat insulation support material 3, central part of integrally formed heat insulation support material 4, outer cylinder part of integrally formed heat insulation support material 5, integrally formed heat insulation support material Inner cylinder part 6, central part of integrally molded heat insulating support 7, connecting jig 8, cryogenic container wall 9, mounting part side wall 10, heat insulating support 11, bogie mounting part 12, cryogenic temperature with superconducting coil Container 13, Part of cart 14, Cylindrical mandrel 15, Auxiliary mandrel 16, Bolt

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中納 佳史 茨城県つくば市北原6 住友化学工業株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshifumi Nakano 6 Kitahara, Tsukuba, Ibaraki Sumitomo Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】2個の径の異なる円筒が同心円状に重ねて
配置され、隣接する円筒同士が該円筒の中央部にて一体
成形された構造を有することを特徴とする繊維強化樹脂
からなる一体成形断熱支持材。
Claims: 1. A structure in which two cylinders having different diameters are concentrically overlapped with each other, and adjacent cylinders are integrally molded at the center of the cylinder. An integrally molded heat-insulating support made of fiber-reinforced resin.
JP3270609A 1991-10-18 1991-10-18 Integrally molded heat insulating retainer Pending JPH057023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270609A JPH057023A (en) 1991-10-18 1991-10-18 Integrally molded heat insulating retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270609A JPH057023A (en) 1991-10-18 1991-10-18 Integrally molded heat insulating retainer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02192186 Division 1990-07-19 1990-07-19

Publications (1)

Publication Number Publication Date
JPH057023A true JPH057023A (en) 1993-01-14

Family

ID=17488477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270609A Pending JPH057023A (en) 1991-10-18 1991-10-18 Integrally molded heat insulating retainer

Country Status (1)

Country Link
JP (1) JPH057023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143425A1 (en) * 2017-02-03 2018-08-09 イーグル工業株式会社 Heat-insulating structure and liquid supply system
WO2022209811A1 (en) * 2021-03-31 2022-10-06 株式会社有沢製作所 Thermal-insulation container and magnetospinograph using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143425A1 (en) * 2017-02-03 2018-08-09 イーグル工業株式会社 Heat-insulating structure and liquid supply system
WO2022209811A1 (en) * 2021-03-31 2022-10-06 株式会社有沢製作所 Thermal-insulation container and magnetospinograph using same

Similar Documents

Publication Publication Date Title
US4968545A (en) Composite tube and method of manufacture
US4741873A (en) Method for forming rigid composite preforms
US4260143A (en) Carbon fiber reinforced composite coil spring
US4131701A (en) Composite tubular elements
RU2113379C1 (en) Blade made from thermoplastic composite material for helicopter tail rotor and method of manufacture of such blade
US5221391A (en) Process for producing a preform for forming fiber reinforced plastics
US6592979B1 (en) Hybrid matrix fiber composites
US20050104441A1 (en) Fiber reinforced composite wheels
JPH057023A (en) Integrally molded heat insulating retainer
JPH0541546A (en) Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application
EP0370147A1 (en) Tubular composite construction
EP0531055B1 (en) Thrust tube capable of sufficiently damping a vibration
US4807531A (en) Contemporary composite polar boss
JP5277338B2 (en) Manufacturing method of fiber reinforced resin support bar for substrate storage cassette
JP2001317689A (en) Pressure tank
JP4476260B2 (en) Method for manufacturing composite article
Rebouillat et al. Carbon fiber applications
JPH1016068A (en) Manufacture of tube body constituted of fiber-reinforced thermoplastic resin
WO2022209811A1 (en) Thermal-insulation container and magnetospinograph using same
JPH03192129A (en) Heat-insulating support material and container
US4818582A (en) Tension bands and methods for their manufacture
EP4268716A1 (en) Insulated container, and magnetoencephalograph and magnetospinograph including same
JPH04366139A (en) Cryogenic material made of fiber-reinforced resin
JP2002031277A (en) Composite transport pipe with continuous length
JP3257238B2 (en) Fiber reinforced plastic cylinder