JPH04366139A - Cryogenic material made of fiber-reinforced resin - Google Patents

Cryogenic material made of fiber-reinforced resin

Info

Publication number
JPH04366139A
JPH04366139A JP3169441A JP16944191A JPH04366139A JP H04366139 A JPH04366139 A JP H04366139A JP 3169441 A JP3169441 A JP 3169441A JP 16944191 A JP16944191 A JP 16944191A JP H04366139 A JPH04366139 A JP H04366139A
Authority
JP
Japan
Prior art keywords
fiber
fibers
cryogenic
reinforced resin
material made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3169441A
Other languages
Japanese (ja)
Other versions
JP3218628B2 (en
Inventor
Toshihiro Kashima
鹿島 俊弘
Hidetomo Inui
乾 秀朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16944191A priority Critical patent/JP3218628B2/en
Publication of JPH04366139A publication Critical patent/JPH04366139A/en
Application granted granted Critical
Publication of JP3218628B2 publication Critical patent/JP3218628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measuring Magnetic Variables (AREA)
  • Buffer Packaging (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Abstract

PURPOSE:To provide a cryogenic FRP which exhibits scarcely any shrinkage due to temp. fall and hardly any magnetization and is light in wt. CONSTITUTION:A fiber-reinforced resin comprising an org. reinforcing fiber (e.g. a high-strength polyethylene fiber) and a matrix resin (e.g. an epoxy resin with an alicyclic acid anhydride as a curative) is used as a cryogenic material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は極低温の環境下で各種部
材として使用される繊維強化プラスチック複合材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fiber-reinforced plastic composite materials used as various parts in extremely low-temperature environments.

【0002】0002

【従来の技術】近年、超電導分野等で液体ヘリウムを用
いた極低温環境下での研究開発が盛んに行なわれるよう
になり、極低温用材料の開発も、ステンレス鋼,チタン
合金,アルミニウム合金等の金属材料と、繊維強化プラ
スチック等の非金属材料について進められている。この
様な極低温下での材料の応用分野は多岐にわたるため、
要求性能も多くの項目があり、しかも各分野ごとに異な
っている。例えば、スキッド磁束計、あるいはMRI等
に応用するような医療分野の場合、クライオスタットと
しては帯磁率、導電性、制振性、液体ヘリウム(以下H
eと略す)リーク性等の点が、また支持材としては寸法
安定性、低熱伝導度等の点が重要となる。一方、リニア
モーターカー、宇宙航空等の輸送分野では、軽量性が重
要な要求特性となるであろうし、さらにどのような分野
であっても、機械特性、加工性等は必要性能である。
[Background Art] In recent years, research and development using liquid helium in cryogenic environments has become active in the field of superconductivity, etc., and materials for cryogenic temperatures have been developed such as stainless steel, titanium alloys, aluminum alloys, etc. progress is being made on metal materials such as 100% and non-metallic materials such as fiber-reinforced plastics. The application fields of materials under such extremely low temperatures are wide-ranging, so
There are many requirements for performance, and they differ for each field. For example, in the medical field where it is applied to skid magnetometers or MRI, the cryostat has magnetic susceptibility, conductivity, vibration damping properties, and liquid helium (hereinafter referred to as H).
(abbreviated as "e") are important in terms of leakage properties, and as a support material, dimensional stability, low thermal conductivity, etc. are important. On the other hand, in transportation fields such as linear motor cars and aerospace, lightness will be an important required characteristic, and mechanical properties, workability, etc. are also required performances in any field.

【0003】従来より極低温用材料として多く用いられ
ている金属材料は、機械特性、加工性、Heリーク性に
おいて優れた性能を有しているが、熱伝導度が大きいた
め、断熱支持材料はもとより、クライオスタットあるい
はデュアー等の伝熱部には使用することができず、しか
も熱膨張率が大きく、寸法安定性に劣るといった欠点の
ため支持材料への適用をさらに困難にしている。また、
金属材料は導電性および帯磁率が大きいため、スキッド
磁束計に応用した場合は高いS/N比が得られず、MR
I、SMES等の交流機器用クライオスタットに使用す
ると渦電流に伴う発熱のためにHe蒸発量が増大し、熱
効率上および経済上問題となっていた。さらに、リニア
モーターカーを始めとする最先端輸送分野においては、
高速化、省エネルギーを目的とした軽量化の要求が強く
、もはやアルミニウム等の軽合金ですら重過ぎるのが現
状である。
[0003] Metal materials, which have traditionally been widely used as cryogenic materials, have excellent mechanical properties, workability, and He leak resistance, but because of their high thermal conductivity, they are difficult to use as heat-insulating support materials. Naturally, it cannot be used in heat transfer parts such as cryostat or dewar, and furthermore, it has disadvantages such as high coefficient of thermal expansion and poor dimensional stability, which makes it even more difficult to apply it to support materials. Also,
Metal materials have high conductivity and magnetic susceptibility, so when applied to a skid magnetometer, a high S/N ratio cannot be obtained, and MR
When used in a cryostat for AC equipment such as I, SMES, etc., the amount of He evaporation increases due to heat generation caused by eddy currents, causing problems in terms of thermal efficiency and economy. Furthermore, in the cutting-edge transportation field, including linear motor cars,
There is a strong demand for weight reduction in order to increase speed and save energy, and even light alloys such as aluminum are now too heavy.

【0004】上述のような金属材料が使用できない極低
温分野では、ガラス繊維等の繊維とマトリックス樹脂か
らなる複合材料(FRPと略すことがある)が用いられ
ている。これらの複合材料は、導電性、帯磁率、断熱性
の点では金属材料に比べて優れてはいるが、他の特性を
含めた総合的なレベルではまだ充分とは言えない。
[0004] In the cryogenic field where metal materials such as those mentioned above cannot be used, composite materials (sometimes abbreviated as FRP) consisting of fibers such as glass fibers and matrix resin are used. Although these composite materials are superior to metal materials in terms of electrical conductivity, magnetic susceptibility, and heat insulation, they are still not satisfactory in terms of overall properties including other properties.

【0005】例えば、ガラス繊維複合材料(GFRPと
略すことがある)は、一般的なマトリックス樹脂および
ガラス繊維の両者がいずれも正の膨張率を持つ材料であ
り、雰囲気温度が室温から極低温へ低下する際の体積収
縮が避けられないが、この時に生じるマイクロクラック
がHeリークの原因となるため、クライオスタットやデ
ュアへの応用の障害となり、さらにこの収縮に基づく寸
法安定性の悪さから、種々の極低温用部材として用いる
には困難なことが多い。また、上記複合材料の帯磁率は
金属に比べるとかなり小さな値を持つが、スキッド磁束
計等高感度化を目指す分野においてはまだ充分とは言え
ず、さらなる軽量化とともに改善の余地を残すものであ
る。
For example, glass fiber composite material (sometimes abbreviated as GFRP) is a material in which both the general matrix resin and glass fibers have a positive expansion coefficient, and the ambient temperature changes from room temperature to extremely low temperature. Although volumetric shrinkage is unavoidable when the volume decreases, the microcracks that occur at this time cause He leakage, which impedes application to cryostat and DUA.Furthermore, due to poor dimensional stability due to this shrinkage, various It is often difficult to use it as a member for cryogenic temperatures. In addition, although the magnetic susceptibility of the above composite materials is considerably smaller than that of metals, it is still not sufficient for applications such as skid magnetometers that aim for high sensitivity, and there is still room for further improvements in weight reduction. be.

【0006】[0006]

【発明が解決しようとする課題】本発明は上述のような
極低温用材料としてのFRPの欠点を考慮してなされた
もので、その目的は、まず軽量であり、温度低下による
体積収縮がほとんどなく、寸法安定性が良好で極低温下
でのマイクロクラック耐性に優れ、かつ帯磁率が実質上
0であるといった高性能な極低温用FRPを提供するこ
とにある。
[Problems to be Solved by the Invention] The present invention was made in consideration of the above-mentioned drawbacks of FRP as a material for cryogenic use, and its first objective is to make it lightweight and to have almost no volume shrinkage due to temperature drop. It is an object of the present invention to provide a high-performance FRP for cryogenic use, which has good dimensional stability, excellent micro-crack resistance at cryogenic temperatures, and has substantially zero magnetic susceptibility.

【0007】[0007]

【課題を解決するための手段】本発明は、有機繊維を補
強繊維として用いた繊維強化型樹脂複合材料を極低温用
材料として用いるところに要旨を有するものである。
[Means for Solving the Problems] The gist of the present invention is to use a fiber-reinforced resin composite material using organic fibers as reinforcing fibers as a cryogenic material.

【0008】[0008]

【作用】本発明において用いられる有機繊維としては、
高強力ポリエチレン,アラミド,ポリアリレート,ポリ
ベンズビスオキサゾール,ポリベンズビスチアゾール等
のPBZポリマー,ポリエチレンテレフタレート,ポリ
フェニレンサルファイド,ポリエチレンナフタレート,
ポリアミドイミド,ポリエーテルエーテルケトン,ポリ
エーテルケトンケトン等の繊維が挙げられる。これらの
繊維はガラス繊維に比べて、はるかに低比重であるため
、高強度、高弾性率でかつ軽い補強繊維を得ることがで
き、さらに帯磁率の面でも、無機繊維や金属材料に比べ
優れている。また、これらの繊維はいずれも負の膨張率
を持つ特異な物質であり、室温から温度を下げていくと
体積増加を示す。一般的にマトリックス樹脂は正の膨張
率を持っているため、上記繊維を複合することにより温
度による体積変化の少ないFRPを得ることが可能にな
るのである。上記の繊維の中では、帯磁率、比重、強度
の点で最も良好な性能を示す高強度ポリエチレン繊維が
好ましい。このようなポリエチレン繊維は、例えば特開
昭55−107506号公報、特開昭56−15408
号公報に開示されたような製法を用いて得ることができ
る。
[Function] The organic fibers used in the present invention include:
PBZ polymers such as high strength polyethylene, aramid, polyarylate, polybenzbisoxazole, polybenzbisthiazole, polyethylene terephthalate, polyphenylene sulfide, polyethylene naphthalate,
Examples include fibers such as polyamideimide, polyetheretherketone, and polyetherketoneketone. These fibers have a much lower specific gravity than glass fibers, making it possible to obtain reinforcing fibers with high strength, high modulus, and light weight.They are also superior in terms of magnetic susceptibility compared to inorganic fibers and metal materials. ing. Furthermore, all of these fibers are unique substances that have a negative coefficient of expansion, and their volume increases as the temperature is lowered from room temperature. Generally, matrix resin has a positive expansion coefficient, so by combining the above fibers, it is possible to obtain FRP with little change in volume due to temperature. Among the above-mentioned fibers, high-strength polyethylene fibers are preferred because they exhibit the best performance in terms of magnetic susceptibility, specific gravity, and strength. Such polyethylene fibers are disclosed in, for example, JP-A-55-107506 and JP-A-56-15408.
It can be obtained using a manufacturing method as disclosed in the above publication.

【0009】上記繊維の形態としては、短繊維フィラメ
ント、縒糸、紡績糸等の各種の糸または平織、綾織、朱
子織、袋織、バスケット等の公知の形態の織物が利用で
きる。また、多くの特性をすべて満足させるために、2
種以上の有機繊維あるいは有機繊維と無機繊維を混合し
て使用することもできる。無機繊維としては、ガラス,
アルミナ,シリカ,ジルコニア,チタニア,シリコンナ
イトライド,シリコンカーバイド等のセラミック繊維お
よびアルミニウム,スチール等の金属またはその合金繊
維が挙げられる。
[0009] As for the form of the above-mentioned fibers, various types of yarns such as short fiber filaments, twisted yarns, and spun yarns, or known forms of woven fabrics such as plain weave, twill weave, satin weave, bag weave, and basket weave can be used. In addition, in order to satisfy all of the many characteristics, 2
It is also possible to use more than one kind of organic fiber or a mixture of organic fiber and inorganic fiber. Inorganic fibers include glass,
Examples include ceramic fibers such as alumina, silica, zirconia, titania, silicon nitride, and silicon carbide, and fibers of metals such as aluminum and steel or their alloys.

【0010】この場合の混合方法としては、2種以上の
有機繊維同士あるいは有機・無機繊維のフィラメント同
士を合糸する方法、一方の繊維のフィラメントを芯にし
てその周囲を他方のフィラメントで被覆して芯鞘構造の
糸を製造する方法、両方の繊維のそれぞれのフィラメン
ト束を開繊した状態で重ね合わせて集束し、生成したフ
ィラメントを用いて混繊糸を製造する方法、有機繊維を
用いたプリプレグ同士あるいは有機繊維を用いたプリプ
レグと無機繊維を用いたプリプレグを積層する方法等が
挙げられるが、無機繊維は、帯磁率や重量および膨張係
数の点で有機繊維に大きく劣っているため、その配合量
は考慮する必要がある。
[0010] The mixing method in this case is to combine two or more types of organic fibers or organic/inorganic fiber filaments, or to use one fiber filament as a core and cover the surrounding area with the other filament. A method of manufacturing a yarn with a core-sheath structure using organic fibers, a method of manufacturing a mixed fiber yarn using the filaments produced by stacking and converging each filament bundle of both fibers in an opened state, and a method of manufacturing a mixed yarn using organic fibers. Methods include laminating prepregs on each other or prepregs using organic fibers and prepregs using inorganic fibers, but inorganic fibers are significantly inferior to organic fibers in terms of magnetic susceptibility, weight, and coefficient of expansion. The blending amount needs to be considered.

【0011】本発明で用いられるマトリックス樹脂とし
ては、エポキシ系,不飽和ポリエステル系,ビニルエス
テル系,ウレタン系,ウレタンアクリレート系等の樹脂
を用いることができる。これらの中で、脂環式酸無水物
を硬化剤として使用した場合のエポキシ樹脂は、マイク
ロクラック耐性に非常に優れていることが本発明者等に
よって明らかとなった。脂環式酸無水物硬化剤としては
、メチルヘキサヒドロ無水フタル酸およびメチルテトラ
ヒドロ無水フタル酸が好ましく選択され、これらは単独
でまたは混合して使用することができる。エポキシ樹脂
としては特に限定されないが汎用のビスフェノールA型
等が用いられる。
As the matrix resin used in the present invention, epoxy resins, unsaturated polyester resins, vinyl ester resins, urethane resins, urethane acrylate resins, etc. can be used. Among these, the inventors have found that an epoxy resin using an alicyclic acid anhydride as a curing agent has extremely excellent microcrack resistance. As the alicyclic acid anhydride curing agent, methylhexahydrophthalic anhydride and methyltetrahydrophthalic anhydride are preferably selected, and these can be used alone or in mixtures. The epoxy resin is not particularly limited, but general-purpose bisphenol A type and the like can be used.

【0012】本発明における複合材料を極低温用部材に
成形する方法としては、上記有機繊維の糸状またはテー
プ状のものにマトリックス樹脂を含浸させながらマンド
レルに巻き付けるフィラメントワインディング法または
テープワインディング法、プリプレグを積層して金型中
で加圧するプレス成形法、繊維とマトリックス樹脂を一
体にしてダイから加圧押出しするプルトルージョン法、
真空中で繊維とマトリックス樹脂を一体含浸した後に成
形する真空含浸法、オートクレーブ法等の公知の方法が
挙げられる。
[0012] Methods for forming the composite material of the present invention into cryogenic members include the filament winding method or tape winding method, in which the thread-like or tape-like organic fibers are impregnated with a matrix resin and wound around a mandrel, and the prepreg method. Press molding method in which the layers are laminated and pressurized in a mold, pultrusion method in which fibers and matrix resin are combined and extruded under pressure from a die,
Known methods include a vacuum impregnation method in which fibers and matrix resin are integrally impregnated in vacuum and then molded, and an autoclave method.

【0013】上記複合材中の繊維とマトリックス樹脂の
混合比率は、繊維の体積分率(Vfと略すことがある)
として35〜85%が好ましく、より好ましいのは40
〜70%である。繊維のVfが35%より少ないと繊維
の補強効果が発現せず、85%を超えるとマトリックス
樹脂の含浸が不充分となり、複合材料としての機械的特
性が悪化するため好ましくない。
[0013] The mixing ratio of the fibers and matrix resin in the composite material is determined by the volume fraction of the fibers (sometimes abbreviated as Vf).
is preferably 35 to 85%, more preferably 40%.
~70%. If the Vf of the fiber is less than 35%, the reinforcing effect of the fiber will not be exhibited, and if it exceeds 85%, the impregnation with the matrix resin will be insufficient and the mechanical properties of the composite material will deteriorate, which is not preferable.

【0014】[0014]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。
[Examples] The present invention will be specifically explained below using Examples, but the present invention is not limited thereto.

【0015】実施例1〜3 表1に示した組成のマトリックス樹脂を混合後、フィラ
メントワインデング法でそれぞれの有機繊維に含浸させ
ながらマンドレル上に巻き付け(配向角55°)円筒状
とした。次にこれをマンドレル上に保持したまま、 1
30℃で3時間硬化成形し、繊維のVf65%、外径 
150mmφ×200mm ,肉厚 5mmの成形体を
得た。
Examples 1 to 3 After mixing matrix resins having the composition shown in Table 1, each organic fiber was impregnated with the filament winding method and wound around a mandrel (orientation angle: 55°) to form a cylindrical shape. Next, while holding this on the mandrel, 1
Cured and molded at 30°C for 3 hours to reduce fiber Vf65% and outer diameter.
A molded body having a diameter of 150 mm×200 mm and a wall thickness of 5 mm was obtained.

【0016】比較例1〜4 比較例1ではガラス繊維に表1のビニルエステル樹脂を
含浸させながらマンドレルに巻き付け、これを 120
℃で1時間硬化成形し、実施例と同寸法のパイプを形成
した。比較例2はガラス繊維に表1のエポキシ樹脂を含
浸させながら実施例と同様の条件で成形した。比較例3
は表1のエポキシ樹脂のみを130℃で3時間硬化させ
てチューブ状に一体成形した。比較例4はステンレス鋼
(SUS304L)で同寸法のパイプを作成した。
Comparative Examples 1 to 4 In Comparative Example 1, glass fibers were impregnated with the vinyl ester resin shown in Table 1 and wound around a mandrel.
C. for 1 hour to form a pipe having the same dimensions as the example. Comparative Example 2 was molded under the same conditions as in Example while impregnating glass fiber with the epoxy resin shown in Table 1. Comparative example 3
The epoxy resin shown in Table 1 was cured at 130° C. for 3 hours and integrally molded into a tube shape. In Comparative Example 4, a pipe of the same dimensions was made of stainless steel (SUS304L).

【0017】[0017]

【表1】[Table 1]

【0018】各パイプを次のような方法で評価し、結果
を表2に示した。 (1)耐クラック性 試料パイプを室温状態から液体He中に入れ、30分放
置した後に引き上げてクラックができているかどうかの
目視観察を行なった。 ○;クラックはまったく認められない。 △;クラックが少し認められる。 ×;全面に大きなクラックがある。
Each pipe was evaluated by the following method, and the results are shown in Table 2. (1) Crack resistance A sample pipe was placed in liquid He at room temperature, left for 30 minutes, then pulled out and visually observed to see if any cracks had formed. ○; No cracks observed at all. Δ: Some cracks are observed. ×: There are large cracks on the entire surface.

【0019】(2)Heリーク性 まず各パイプの両端をシールして真空に吸引してからH
eガスを系内に入れ、標準リーク量が 5.0×10−
8torr・l/secであることを確認した。次にパ
イプ外筒幅にHeガスを吹きかけHeリーク量を測定し
、標準リーク量に対する割合(%)で示した。次にパイ
プを液体He中に30分放置した後に取り出して上記と
同様にHeリーク量を測定した。
(2) He leakage properties First, seal both ends of each pipe, vacuum the pipes, and then
When e-gas is introduced into the system, the standard leakage amount is 5.0×10-
It was confirmed that the speed was 8 torr·l/sec. Next, He gas was sprayed onto the width of the pipe outer cylinder to measure the He leakage amount, which was expressed as a percentage (%) of the standard leakage amount. Next, the pipe was left in liquid He for 30 minutes, then taken out and the amount of He leakage was measured in the same manner as above.

【0020】(3)スピン数(Ns) 各試料を液体Heで冷却しながらESR(電子スピン共
鳴)を測定しスピン数を求めた(スピン数は帯磁率と比
例する)。
(3) Spin number (Ns) The spin number was determined by measuring ESR (electron spin resonance) while cooling each sample with liquid He (the spin number is proportional to the magnetic susceptibility).

【0021】(4)収縮率 各試料の室温から液体He温度までの寸法変化率をTM
A法により測定し収縮率を算出した(昇温速度:5 ℃
/min )。
(4) Shrinkage rate The dimensional change rate of each sample from room temperature to liquid He temperature is TM
The shrinkage rate was calculated using method A (heating rate: 5°C
/min).

【0022】(5)比重 比重計で測定した(25℃)。(5) Specific gravity Measured with a hydrometer (25°C).

【0023】(6)曲げ強度 各試料から厚さ5mm、幅5mmの試料を切り出し、支
点間距離25mm、クロスヘッド速度1mm/分で、室
温および液体He温度での曲げ強度を測定した。
(6) Bending strength A sample with a thickness of 5 mm and a width of 5 mm was cut out from each sample, and the bending strength was measured at room temperature and liquid He temperature with a distance between fulcrums of 25 mm and a crosshead speed of 1 mm/min.

【0024】(7)比曲げ強度 曲げ強度と比重より比曲げ強度を算出した。(7) Specific bending strength Specific bending strength was calculated from bending strength and specific gravity.

【0025】[0025]

【表2】[Table 2]

【0026】[0026]

【発明の効果】本発明によって得られる極低温用材料は
、膨張率が負である有機繊維と膨張率が正であるマトリ
ックス樹脂を複合させたFRPであるため、温度低下に
よる収縮率はほとんど0となり、極低温時でも耐マイク
ロクラック性および寸法安定性に優れた非常に軽量な部
材を得ることができる。また、高強度な有機繊維と、特
定の硬化剤を配合したエポキシ樹脂を用いることによっ
て、帯磁率、機械特性にも優れた極低温用材料を提供す
ることができた。
Effects of the Invention: The cryogenic material obtained by the present invention is an FRP that is a composite of organic fibers with a negative expansion coefficient and matrix resin with a positive expansion coefficient, so the shrinkage rate due to temperature drop is almost 0. Therefore, it is possible to obtain an extremely lightweight member with excellent microcrack resistance and dimensional stability even at extremely low temperatures. Furthermore, by using high-strength organic fibers and an epoxy resin blended with a specific curing agent, we were able to provide a cryogenic material with excellent magnetic susceptibility and mechanical properties.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  有機繊維を補強繊維として用いた繊維
強化型樹脂による極低温用材。
Claim: 1. A cryogenic material made of a fiber-reinforced resin using organic fibers as reinforcing fibers.
JP16944191A 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite Expired - Fee Related JP3218628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16944191A JP3218628B2 (en) 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16944191A JP3218628B2 (en) 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite

Publications (2)

Publication Number Publication Date
JPH04366139A true JPH04366139A (en) 1992-12-18
JP3218628B2 JP3218628B2 (en) 2001-10-15

Family

ID=15886667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16944191A Expired - Fee Related JP3218628B2 (en) 1991-06-13 1991-06-13 Cryogenic fiber reinforced plastic composite

Country Status (1)

Country Link
JP (1) JP3218628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291171A (en) * 2005-03-14 2006-10-26 Sumitomo Chemical Co Ltd Polyolefin resin composition
JP2007035835A (en) * 2005-07-26 2007-02-08 Taiyo Nippon Sanso Corp Manufacturing method of inner tub of cryostat
CN105563945A (en) * 2014-10-10 2016-05-11 山东大学 Use of zirconia fiber as low/ultralow temperature insulation material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291171A (en) * 2005-03-14 2006-10-26 Sumitomo Chemical Co Ltd Polyolefin resin composition
JP2007035835A (en) * 2005-07-26 2007-02-08 Taiyo Nippon Sanso Corp Manufacturing method of inner tub of cryostat
CN105563945A (en) * 2014-10-10 2016-05-11 山东大学 Use of zirconia fiber as low/ultralow temperature insulation material

Also Published As

Publication number Publication date
JP3218628B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JPH04366139A (en) Cryogenic material made of fiber-reinforced resin
Horiuchi et al. Cryogenic properties of composite materials
JPH05320369A (en) Material for cryogenic use
JPH05320321A (en) Cryogenic material
JP3582602B2 (en) Cryogenic container
JPH06226867A (en) Very low temperature fiber reinforced plastic material
JPH06218828A (en) Fiber reinforced plastic material for very low temperature
JP3601608B2 (en) Cryogenic fiber reinforced plastic material
Schwartz et al. Characteristics of boron fibers and boron-fiber-reinforced plastic composites.
JP3036170B2 (en) Mount for skid system
Hanson Tensile and cyclic fatigue properties of graphite filament-wound pressure vessels at ambient and cryogenic temperatures
Devred et al. Insulation systems for NB3SN accelerator magnet coils fabricated by the “wind and react” technique
JPH06126846A (en) Fiber reinforced plastic material for extremely low temperature use
JPH06211993A (en) Fiber-reinforced plastic material for cryogenic temperature
Wang et al. Tensile and torsional fatigue of fiber-reinforced composites at cryogenic temperatures
JP7361952B2 (en) Heat insulating container, magnetoencephalograph and spinal magnetograph using the same
JP2008306092A (en) Superconducting coil
JPH06224026A (en) Superconducting coil device
JP6247672B2 (en) Load supporting material and method for manufacturing the same
JP3362874B2 (en) Permanent current switch
JP3582601B2 (en) Cryogenic container
Kasen Composite materials for cryogenic structures
JPH0469493A (en) Heat insulating support member for cryogenic temperature vessel
WO2022249960A1 (en) Thermally insulated container and magnetospinograph using same
JPH08195311A (en) Superconducting coil

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees