JP3601608B2 - Cryogenic fiber reinforced plastic material - Google Patents

Cryogenic fiber reinforced plastic material Download PDF

Info

Publication number
JP3601608B2
JP3601608B2 JP29829193A JP29829193A JP3601608B2 JP 3601608 B2 JP3601608 B2 JP 3601608B2 JP 29829193 A JP29829193 A JP 29829193A JP 29829193 A JP29829193 A JP 29829193A JP 3601608 B2 JP3601608 B2 JP 3601608B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
plastic material
fiber reinforced
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29829193A
Other languages
Japanese (ja)
Other versions
JPH07164541A (en
Inventor
俊弘 鹿島
秀朋 乾
東一 岡田
茂宏 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP29829193A priority Critical patent/JP3601608B2/en
Publication of JPH07164541A publication Critical patent/JPH07164541A/en
Application granted granted Critical
Publication of JP3601608B2 publication Critical patent/JP3601608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は極低温の環境下で、クライオスタット、デュアー、支持材料、スペーサヘーなど各種印材として使用される繊維強化プラスチック成形体に関する。
【0002】
【従来の技術】
従来、極低温の環境下で使用される部材はステンレス、アルミ合金などの金属又は、ガラス繊維からなる強化プラスチック材(GFRP)から構成されている。一方極低温下での応用分野は多様であり、その要求性能は分野ごとに異なっている。
例えば医療用途でのスキット磁束計、MRIなどに応用する場合にはクライオスタットとしては帯磁率、導電性、制振性、Heリーク性など、また支持材としては寸法安定性、熱伝導などが重要である。またリニアモーターカー、宇宙航空などの輸送分野では軽量性が特に重要となるし、機械特性、加工性などは全ての用途に必要である。
これに対して金属は機械特性、加工性、Heリーク性などに対しては大きな信頼性を持つ反面、熱伝導度が高く、特にアルミ合金はそれが著しい。そのため断熱支持材料はもとより、クライオスタット又はデュアーの伝熱部には使用することができない。加えて熱膨張率が高く、寸法安定性も悪いという欠点もあり、支持部材への適用を更に困難にしている。また導電性及び帯磁率が高く制振性が悪いため、スキッド磁束計では高いS/Nが得られないこと、MRI、SMESその他の交流機器用クライオスタットでは渦電流に伴う発熱により、He蒸発量を増大させ、熱効率上及び経済上問題となる。更に輸送分野では、高速化、省エネルギーを目指して軽量化の要請は強い。その点ではステンレスは極めて重く多くの展開を望めない。その欠点を補うためアルミ合金が重用されているが、繊維強化プラスチックに比べてまだ可成重く熱伝導率が極めて高いという欠点を有する。
この様に多くの欠点を持つ金属系材料が使用できない分野ではガラス繊維からなる繊維強化プラスチックが用いられている。例えば導電性、帯磁率、断熱性の点では金属系に比べて大幅な改善がみられた。一方このGFRPにも種々の問題点があり、多くの分野で、開発ができないのが現状である。
【0003】
【発明が解決しようとする課題】
極低温分野での主要な応用として、核融合炉用超電導磁石の支持材料がある。図1は、核融合炉の側面図であり、図2はその断面図を示す、装置は真空容器プラズマ容器 及び磁場コイル よりなり磁場コイル 部は連続した真空内容器を構成し中が液体Heで満たされている。真空容器 とプラズマ容器 及び磁場コイル の間は真空部 で構成され、外部からの熱幅射をしゃ断している。磁場コイル は断熱支持材 によって支えられており、さらにこれは左右に倒れるのを防ぐために両者の支持材を左右に固定するための連結材 により結ばれている。この磁場コイルは円形構造となっているが液体He温度(LHeT)では、超電導コイルは立体的に大きく収縮し、このため磁場コイルによって発生するプラズマ容器 内でのプラズマ分布の均一性がくずれるこになりこれを避けることが重要な課題となっている。
これを装置の断面図2で説明する。運転開始時磁場コイル部に液体Heを入れ冷却するがそれに伴いコイルは立体的に大きく収縮する。そして2つのコイル底部A及びBが近付く方向に収縮応力が働く。2つの底部を支えている断熱支持材は下端が室温の真空容器に固定されているので位置の変化はないが上端部は温度変化に伴い絶対的に2つの内側方向に応力がかかる。そのためこのままでは徐々に倒れることになるがこれを連結材 で防いでいる。この磁場コイルの収縮に伴う変形によりプラズマ容器内に発生するプラズマの分布が変化することとなり核融合反応に重大な影響を及ぼすこととなる。
この連結材は金属又はセラミックス又はGFRP等の材料が使用されるが断熱支持材に接するため低温にさらされるが、それに伴い収縮するため磁場コイルの底部が接近しようとする熱応力に抗することができずコイルの形状を保持することができない。
本発明は上記の様な問題点に鑑みてなされれたもので、その目的は連結材として極低温で長さ(軸)方向の寸法変化が実質上0に近いか又は膨張する筒又は柱状の繊維強化プラスチックを提供するにある。
【0004】
【課題を解決するための手段】
本発明は、上記の目的を達成するために繊維強化プラスチックの繊維材料として高強度高弾性率ポリエチレン繊維を用いることを特徴とする。ここでいう高強度高弾性率ポリエチレン繊維においては、特開昭55−107506号公報、特開昭56−15408号公報記載の製法を用いて得ることができる。これらはいずれも負膨張(室温から温度を下げると伸長する)を有するという特異な性質を持ち、金属、ガラスに比べて比重が小さく、比強度、比弾性率の高い、且つ軽量な強化繊維が得られる。
【0005】
一方マトリックス樹脂は正膨張を示すが、これら繊維のロービングを巻回して、成形した筒又は柱状成形体は、周方向に大きな負膨張率を持たせることができる。従って、これよりなる上記連結材料は低温になるに従って伸長するので断熱支持材の固定を可能として磁場コイルの高度な保形が可能となる。また、この時これら負膨張を有する有機繊維と正膨張を有する無機繊維を混合使用することもできる。その場合、無機繊維としては、ガラス、アルミナ、シリカ、チタニア、ジルコニア、シリコンナイトライド、シリコンカーバイドなどのセラミックスからなる繊維及びアルミニウム、スチール等の単体金属や、その合金からなる金属繊維が例示されるが、ガラス、アルミナ、ジルコニア、シリカなどの繊維は熱伝導率が小さく、機械特性が優れている点で特に好ましい。
【0006】
GFRPを上記連結材として使用する場合の最大の問題点は極低温での収縮の問題である。本発明ではポリエチレン、アラミド、ポリアリレートなどの高強力、高弾性率で且つ負膨張率を有する有機繊維を用いた筒又は柱状の強化プラスチックを作成することにより極低温下での熱収縮応力に抗して支持材を固定して連結することのできる軽量で高強力・高弾性率の部材として提供するものである。ここで使用されるマトリックスとしてはエポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタン樹脂、ウレタンアクリレート樹脂などが使用できるが特に好ましいのはエポキシ樹脂である。これらのマトリクス樹脂はいずれも正膨張を示すが、負膨張を示すこれら有機繊維を用いて巻き角度を適当に選んでフィラメントを巻回して、成形した筒又は柱状成形体は図4に示す様に軸方向に対して絶対値の大きな膨張率を示す。そして、その値は繊維の配向角に関わるが配向角は軸方向に対して5〜40°が適当であるが、望ましく10〜40°である。角度40°を越えると、軸方向の正膨張(低温になるに従い収縮する)が大きくなり、連結材として不適となり、5°未満では成形品内部に発生する熱応力が大きくなりクラックが入り易くなるなど不安定となる。
一方、GFRPの場合はガラス繊維及びマトリックス樹脂とも正膨張であるので巻き角度に無関係に、軸方向には正膨張という通常の材料に見られる特性しか得られない。
これにより低温になるにつれて軸方向に膨張し機械的性の優れた連結材が得られ支持材及びマクネットを固定し安定性の高い大型装置を製作することが可能となる。
【0007】
成形法としては本繊維を糸状またはテープ状のものにマトリックス樹脂を含浸させながらマンドルに巻き付けるフィラメントワインディング法又はテープワインディング法などが挙げられる。
上記複合材中の繊維とマトリックス樹脂の混合比率は、繊維の体積分率(Vf)として35〜85%が好ましく、より好ましいのは40〜70%である。繊維のVfが35%より少ないと繊維の補強効果が発現せず、85%を越えるとマトリックス樹脂と含浸しにくくなり複合材料としての機械的特性が悪化するため好ましくない。
【0008】
以下、本発明の実施例について第1,2図を参照して説明する。1はステンレス製、2はセラミックス型のプラズマ容器、3は超電導コイルであり、この外側はGFRPの密閉されたジャケットでおおわれいる。そしてこの中に液体Heが流されコイルはその中に浸漬されている。4はGFRP製の断熱支持材である。本発明の有機繊維よりなる円筒状の繊維強化プラスチックは連結材5でありこれの作成は以下の様になった。有機繊維としてはポリエチレン繊維(東洋紡ダイニーマ、SK−60)、アラミド繊維(日本アラミド繊維、トワロンHM)、ポリアリレート(クラレ、ベクトラン)及びガラス繊維を用いて実施例1,4、比較例2,3,5,6,7の合計7種類の円筒状繊維強化プラスチックをフィラメントワインディング法により作成した。マトリックスとしてはエポキシ樹脂を使用し以下の配合により、均一混合し樹脂ドープを作成した。
エピコート−827 (油化シエル) 100
エピキュアーYH−300( 〃 ) 80
EMI−24 ( 〃 ) 1
次に各種繊維にエポキシ樹脂を含浸させながらマンドレルに巻き付け円筒状とした。次にこれをマンドレル上に保持したまま100℃×2hr、その後130℃×3hrにて硬化成形し繊維体積含有率65%、外径100mm×5000mm、肉厚15mmの成形体を得た。作成した試料及び評価結果を表1に示す。
【0009】
【表1】

Figure 0003601608
【0010】
プラズマの安定性
各試料を図1又は2の連結材としてセットし、液体Heコイルに充填した状態で運転した時のプラズマ安定性を調べ、高い順に、
○>△>×とした。
熱膨張率
パイプにストレインゲージをはり付けた後、液体N2中に浸積し軸方向の寸法 変化を測定した。
耐クラック性
各パイプを室温状態から液体He中に入れ30分保持した後引き上げて、それを目視で観察する。耐クラック性の高い順に○>△>×とした。
【図面の簡単な説明】
【図1】本発明における一用途であるクライオスタットの正面図。
【図2】本発明における一用途であるクライオスタットの側面図。
【図3】巻角度と熱膨張係数との関係を示す図。
【符号の説明】
A:本発明に係る有機繊維、
B:ガラス繊維、1:外筒、2:内筒、3:下底板[0001]
[Industrial applications]
The present invention relates to a fiber-reinforced plastic molded article used as various types of printing materials such as a cryostat, a dewar, a support material, and a spacer under an extremely low temperature environment.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a member used in an extremely low temperature environment is made of a metal such as stainless steel or an aluminum alloy, or a reinforced plastic material (GFRP) made of glass fiber. On the other hand, application fields at cryogenic temperatures are diverse, and their required performances differ from field to field.
For example, when applied to a skit magnetometer, MRI, etc. for medical use, magnetic susceptibility, conductivity, vibration damping properties, He leak properties, etc. are important for the cryostat, and dimensional stability, heat conduction, etc. are important for the support material. is there. In the transportation fields such as linear motor cars and aerospace, lightness is particularly important, and mechanical properties and workability are required for all applications.
On the other hand, metals have great reliability with respect to mechanical properties, workability, He leak properties, etc., but have high thermal conductivity, especially aluminum alloys. Therefore, it cannot be used for a heat transfer part of a cryostat or a dewar, as well as a heat insulating support material. In addition, it has a drawback of high thermal expansion coefficient and poor dimensional stability, which makes it more difficult to apply to a support member. In addition, because the conductivity and magnetic susceptibility are high and the vibration damping property is poor, a high S / N cannot be obtained with a skid magnetometer, and the cryostat for MRI, SMES, and other AC equipment causes the amount of He evaporation due to heat generated by eddy current. Increases, causing heat efficiency and economic problems. Furthermore, in the transportation field, there is a strong demand for lighter weight for higher speed and energy saving. In that respect, stainless steel is extremely heavy and cannot be expanded much. Aluminum alloys are heavily used to make up for the disadvantages, but have the disadvantage that they are still heavier and have higher thermal conductivity than fiber reinforced plastics.
In fields where metal-based materials having many disadvantages cannot be used, fiber-reinforced plastics made of glass fibers are used. For example, in terms of conductivity, magnetic susceptibility, and heat insulating properties, a significant improvement was observed as compared with metal-based materials. On the other hand, the GFRP has various problems, and cannot be developed in many fields at present.
[0003]
[Problems to be solved by the invention]
A major application in the cryogenic field is support materials for superconducting magnets for fusion reactors. FIG. 1 is a side view of a fusion reactor, and FIG. 2 is a cross-sectional view thereof. The apparatus is composed of a vacuum vessel, a plasma vessel, and a magnetic field coil. be satisfied. A vacuum section is formed between the vacuum vessel, plasma vessel, and magnetic field coil to block external heat radiation. The magnetic field coils are supported by adiabatic supports, which are connected by a connecting material to fix the supports to the left and right to prevent them from falling left and right. This magnetic field coil has a circular structure, but at liquid He temperature (LHeT), the superconducting coil contracts greatly three-dimensionally, and the uniformity of plasma distribution in the plasma container generated by the magnetic field coil is lost. Avoiding this has become an important issue.
This will be described with reference to a sectional view of the apparatus. At the start of the operation, the liquid He is put into the magnetic field coil unit and cooled, but the coil contracts greatly three-dimensionally. Then, contraction stress acts in a direction in which the two coil bottoms A and B approach. Since the lower end is fixed to the vacuum container at room temperature, the position of the heat insulating support member supporting the two bottom portions does not change, but the upper end portion is absolutely stressed in two inward directions with the temperature change. For this reason, it will gradually fall down as it is, but this is prevented by the connecting material. The deformation accompanying the contraction of the magnetic field coil changes the distribution of the plasma generated in the plasma container, which has a significant effect on the nuclear fusion reaction.
This connection material is made of metal or ceramics or a material such as GFRP, but it is exposed to low temperature because it comes into contact with the heat insulating support material, but it contracts with it, so it can resist the thermal stress that the bottom of the magnetic field coil approaches. It cannot maintain the shape of the coil.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object the purpose of a connecting member having a tube or a columnar shape whose dimensional change in the length (axial) direction is substantially zero or expands at cryogenic temperatures. To provide fiber reinforced plastic.
[0004]
[Means for Solving the Problems]
The present invention is characterized by using a high-strength high-modulus polyethylene fiber as a fiber material of a fiber-reinforced plastic to achieve the above object. The high-strength and high-modulus polyethylene fibers mentioned here can be obtained by the production methods described in JP-A-55-107506 and JP-A-56-15408. All of these have the unique property of having a negative expansion (elongate when the temperature is lowered from room temperature). Lightweight reinforced fibers having a lower specific gravity, higher specific strength, higher specific elastic modulus, and lighter than metals and glass are used. can get.
[0005]
On the other hand, although the matrix resin shows positive expansion, a cylindrical or columnar molded body formed by winding a roving of these fibers can have a large negative expansion coefficient in the circumferential direction. Therefore, since the connecting material thus formed elongates as the temperature becomes lower, the heat insulating support material can be fixed, and the shape of the magnetic field coil can be maintained at a high level. At this time, the organic fibers having negative expansion and the inorganic fibers having positive expansion can be mixed and used. In that case, examples of the inorganic fibers include fibers made of ceramics such as glass, alumina, silica, titania, zirconia, silicon nitride, and silicon carbide, and simple metals such as aluminum and steel, and metal fibers made of an alloy thereof. However, fibers such as glass, alumina, zirconia, and silica are particularly preferred because of their low thermal conductivity and excellent mechanical properties.
[0006]
The biggest problem when GFRP is used as the connecting material is the problem of shrinkage at extremely low temperatures. In the present invention, a tubular or columnar reinforced plastic using an organic fiber having a high strength, a high elastic modulus, and a negative expansion coefficient such as polyethylene, aramid, and polyarylate is produced to withstand heat shrinkage stress at an extremely low temperature. It is provided as a lightweight, high-strength, high-elasticity member capable of fixing and connecting a support member. As the matrix used here, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a urethane resin, a urethane acrylate resin, or the like can be used, but an epoxy resin is particularly preferable. Each of these matrix resins shows positive expansion, but using these organic fibers showing negative expansion, the winding angle is appropriately selected and the filament is wound, and the molded cylinder or columnar molded body is formed as shown in FIG. The expansion coefficient has a large absolute value in the axial direction. The value is related to the orientation angle of the fiber. The orientation angle is suitably 5 to 40 ° with respect to the axial direction, but is desirably 10 to 40 °. If the angle exceeds 40 °, the positive expansion in the axial direction (shrinks as the temperature becomes lower) increases, making it unsuitable as a connecting material. If the angle is less than 5 °, the thermal stress generated inside the molded article increases and cracks easily occur. It becomes unstable.
On the other hand, in the case of GFRP, since both the glass fiber and the matrix resin are positively expanded, only the characteristic of normal expansion, which is a characteristic of ordinary materials, is obtained in the axial direction regardless of the winding angle.
As a result, as the temperature decreases, a connecting member having excellent mechanical properties can be obtained by expanding in the axial direction, and the supporting member and the macnet can be fixed, and a large-sized device having high stability can be manufactured.
[0007]
Examples of the molding method include a filament winding method and a tape winding method in which the fiber is wound around a mandrel while impregnating a matrix resin into a thread or tape.
The mixing ratio of the fiber and the matrix resin in the composite material is preferably 35 to 85% as a volume fraction (Vf) of the fiber, and more preferably 40 to 70%. If the Vf of the fiber is less than 35%, the reinforcing effect of the fiber will not be exhibited, and if it exceeds 85%, it will be difficult to impregnate with the matrix resin and the mechanical properties of the composite material will be deteriorated, which is not preferable.
[0008]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 is a stainless steel, 2 is a ceramic type plasma container, 3 is a superconducting coil, and its outside is covered with a sealed jacket of GFRP. Then, the liquid He is flowed therein, and the coil is immersed therein. Reference numeral 4 denotes a heat insulating support made of GFRP. The cylindrical fiber-reinforced plastic made of the organic fiber of the present invention is the connecting material 5 and was prepared as follows. Examples 1 and 4 and Comparative Examples 2 and 3 using polyethylene fibers (Toyobo Dyneema, SK-60), aramid fibers (Japanese aramid fibers, Twaron HM), polyarylate (Kuraray, Vectran) and glass fibers as organic fibers. , 5, 6 , and 7, a total of seven types of cylindrical fiber reinforced plastics were prepared by a filament winding method. An epoxy resin was used as the matrix, and a resin dope was prepared by uniformly mixing the following components.
Epikote-827 (Yukaka Shell) 100
Epicure YH-300 (〃) 80
EMI-24 (〃) 1
Next, the various fibers were wound around a mandrel while being impregnated with an epoxy resin to form a cylindrical shape. Next, while holding this on a mandrel, it was cured and molded at 100 ° C. × 2 hr and then at 130 ° C. × 3 hr to obtain a molded body having a fiber volume content of 65%, an outer diameter of 100 mm × 5000 mm and a wall thickness of 15 mm. Table 1 shows the prepared samples and evaluation results.
[0009]
[Table 1]
Figure 0003601608
[0010]
Plasma Stability Each sample was set as a connecting member of FIG. 1 or 2 and the plasma stability when operated in a state filled with a liquid He coil was examined.
△>△> ×
After attaching a strain gauge to the thermal expansion pipe, the pipe was immersed in liquid N2 and the dimensional change in the axial direction was measured.
Crack resistance Each pipe is placed in liquid He from a room temperature state, held for 30 minutes, pulled up, and visually observed. △>△> × in order of higher crack resistance.
[Brief description of the drawings]
FIG. 1 is a front view of a cryostat which is one application of the present invention.
FIG. 2 is a side view of a cryostat which is one application in the present invention.
FIG. 3 is a diagram showing a relationship between a winding angle and a coefficient of thermal expansion.
[Explanation of symbols]
A: The organic fiber according to the present invention,
B: glass fiber, 1: outer cylinder, 2: inner cylinder, 3: lower bottom plate

Claims (1)

樹脂と高強度高弾性率ポリエチレン繊維を一体成形してなる筒又は柱状の繊維強化プラスチック材であり、高強度高弾性率ポリエチレン繊維のロービングを軸に対して5度以上40度未満の角度となる様に巻き樹脂と一体成形してなる筒又は柱状の極低温用繊維強化プラスチック材。A cylindrical or columnar fiber reinforced plastic material obtained by integrally molding a resin and high-strength high-modulus polyethylene fiber. The roving of high-strength high-modulus polyethylene fiber has an angle of 5 ° or more and less than 40 ° with respect to the axis. Or a column-shaped fiber reinforced plastic material for cryogenic use, which is formed integrally with the wound resin.
JP29829193A 1993-11-29 1993-11-29 Cryogenic fiber reinforced plastic material Expired - Fee Related JP3601608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29829193A JP3601608B2 (en) 1993-11-29 1993-11-29 Cryogenic fiber reinforced plastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29829193A JP3601608B2 (en) 1993-11-29 1993-11-29 Cryogenic fiber reinforced plastic material

Publications (2)

Publication Number Publication Date
JPH07164541A JPH07164541A (en) 1995-06-27
JP3601608B2 true JP3601608B2 (en) 2004-12-15

Family

ID=17857744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29829193A Expired - Fee Related JP3601608B2 (en) 1993-11-29 1993-11-29 Cryogenic fiber reinforced plastic material

Country Status (1)

Country Link
JP (1) JP3601608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105563945B (en) * 2014-10-10 2018-04-03 山东大学 Application of the Zirconium oxide fibre as low temperature, ultra-low temperature heat preservation material

Also Published As

Publication number Publication date
JPH07164541A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
Reed et al. Cryogenic properties of unidirectional composites
GB2446974A (en) Resin impregnated coil and support structure for a magnetic resonance electromagnet and a method of its manufacture.
Reed et al. Cryogenic composite supports: a review of strap and strut properties
JP3601608B2 (en) Cryogenic fiber reinforced plastic material
US6325108B1 (en) Prestressed composite cryogenic piping
Horiuchi et al. Cryogenic properties of composite materials
JP3218628B2 (en) Cryogenic fiber reinforced plastic composite
JPH06218828A (en) Fiber reinforced plastic material for very low temperature
US5650230A (en) Compressive strut for cryogenic applications
JPH06126846A (en) Fiber reinforced plastic material for extremely low temperature use
JP3582602B2 (en) Cryogenic container
JPH06226867A (en) Very low temperature fiber reinforced plastic material
JPH06211993A (en) Fiber-reinforced plastic material for cryogenic temperature
Hanson Tensile and cyclic fatigue properties of graphite filament-wound pressure vessels at ambient and cryogenic temperatures
EP0370147A1 (en) Tubular composite construction
JPH06318514A (en) Superconducting coil device
JPH05320369A (en) Material for cryogenic use
JP3104268B2 (en) Superconducting magnet application equipment
JPH0541546A (en) Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application
JPH08195311A (en) Superconducting coil
JP3036170B2 (en) Mount for skid system
JP3582601B2 (en) Cryogenic container
JPH0469493A (en) Heat insulating support member for cryogenic temperature vessel
JPH05320321A (en) Cryogenic material
JPH07335427A (en) Superconductive coil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees